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MODAL TRACKING

OF

A STRUCTURAL DEVICE:

A Subspace Identification Approach

J. V. Candy, S. N. Franco, E. L. Ruggiero, M. C. Emmons, I. M. Lopez, L. M. Stoops

Executive Summary
Mechanical devices operating in an environment contaminated by noise, uncer-

tainties, and extraneous disturbances lead to low signal-to-noise-ratios creating an
extremely challenging processing problem. To detect/classify a device subsystem
from noisy data, it is necessary to identify unique signatures or particular features.
An obvious feature would be resonant (modal) frequencies emitted during its nor-
mal operation. In this report, we discuss a model-based approach to incorporate
these physical features into a dynamic structure that can be used for such an
identification. The approach we take after pre-processing the raw vibration data
and removing any extraneous disturbances is to obtain a representation of the
structurally unknown device along with its subsystems that capture these salient
features. One approach is to recognize that unique modal frequencies (sinusoidal
lines) appear in the estimated power spectrum that are solely characteristic of
the device under investigation. Therefore, the objective of this effort is based on
constructing a black box model of the device that captures these physical features
that can be exploited to “diagnose” whether or not the particular device sub-
system (track/detect/classify) is operating normally from noisy vibrational data.
Here we discuss the application of a modern system identification approach based
on stochastic subspace realization techniques capable of both (1) identifying the
underlying black-box structure thereby enabling the extraction of structural modes
that can be used for analysis and modal tracking as well as (2) indicators of con-
dition and possible changes from normal operation.

Typically, the vibrational signature of the structural device is measured (di-
rectly or remotely) and provided as a noisy input to a modal identifier that is
used to track modal evolution as well as construct a decision function as input
to a detector. The detector first “decides” whether or not it is potentially an
anomalous structural subsystem that is not vibrating normally. If so, the detector
provides an input to the device classifier to decide on the particular class or sub-
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system anomaly. In this paper, we confine our focus on the modal identification
and tracking aspects of the anomaly detection problem.

We briefly develop the necessary background in stochastic subspace realiza-
tion, discuss the algorithm and apply it to an unknown structural device (black
box) characterized by a set of noisy multiple input/multiple output accelerometer
measurements extracting the modal model from buffered segments of data, ex-
tract the unique modal frequencies, track their evolution and evaluate the overall
performance of the processor.

1.0 INTRODUCTION

Complex mechanical devices operating in environments contaminated by
noise, uncertainties, and extraneous disturbances lead to low signal-to-noise-
ratios creating an extremely challenging processing problem to: (1) detect
that they are operating “normally”; and (2) determine critical subsystem
performance, that is, their identities, location and overall condition. In at-
tempting to detect/classify a particular type of device subsystem from noisy
vibration data, it is necessary to identify signatures or particular features
from that device that make it unique. One of the most obvious features
would be to identify resonant (modal) frequencies emitted during its normal
operation. In this report, we discuss a model-based approach to incorporate
these physical features into a dynamic structure that can be used for such an
identification. The approach we take after pre-processing the raw vibration
data and removing any extraneous disturbances is to obtain a representation
of the structurally unknown device along with its subsystems that capture
these salient features.

Many applications require the monitoring of structural modes to deter-
mine the condition of a device under investigation especially if the it is a
critical entity of an operational system. For instance, a cooling pump of a
nuclear reactor on a submarine or surface ship or the structural integrity
of the hull of a sea going vessel after an event may have occurred that has
possibly altered its integrity. Application to a wide variety of on-board en-
gines or motors of ships as well as autonomous underwater vehicles require
constant monitoring especially prior-to and during at-sea applications. Here
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we discuss the application of a modern system identification approach based
on stochastic subspace realization techniques capable of both (1) identifying
the underlying black-box structure thereby enabling the extraction of struc-
tural modes that can be used for analysis and modal tracking as well as (2)
indicators of condition and possible changes from normal operation.

One approach is to recognize that unique modal frequencies (e.g. sinu-
soidal lines) appear in the estimated power spectrum that are solely char-
acteristic of the device under investigation. Therefore, the objective of this
effort is based on constructing a black box model of the device that captures
these physical features that can be exploited to “diagnose” whether or not
the particular device subsystem (track/detect/classify) is operating normally
from noisy vibrational data. Standard approaches to detect anomaly mech-
anisms at the onset range from a simple accelerometer strategically placed
to observe the Fourier spectrum of known response to using cepstral analysis
to identify periodic responses. Measures of anomalies can deteriorate signifi-
cantly if noise is present - a common situation in an operational environment.
Most of the current monitoring approaches for anomaly detection and iso-
lation lead to single-channel processing of measured sensor data. Multiple
sensors (such as accelerometers for vibrations, microphones for acoustics,
strain gauges for stress and thermocouples for temperature) in a structure
provide additional information about the system for condition and perfor-
mance. This implies that the application of a multi-channel (multi-input,
multi-output) system representation, which is most easily handled in state-
space form, without restrictions to single-channel spectral representations is
required.

The approach we take is outlined in the figure below. A model-based
modal detection scheme for device diagnostics is illustrated conceptually in
Fig. 1.0. Here the vibrational signature of the structurally unknown device
is measured (directly or remotely) and provided as a noisy input to a modal
identifier that is used to track modal evolution as well as construct a decision
function as input to a detector. The detector first “decides” whether or not
it is potentially an anomalous structural subsystem that is not vibrating
normally. If so, it provides an input to the device classifier to decide on the
particular class or subsystem anomaly. In this report, we confine our focus
on the modal identification and tracking aspects of the anomaly detection
problem.



4

Modal
Tracker

No

Continue

(Device)

DEVICE
ANOMALY

Classification
And

Prediction 

YES

DEVICE ANOMALY CLASSIFIER 

Report
Action 

???

• 

• 

•

Classifier No. 1

Classifier No. N

• 

• 

•

Modal
Identifier

Measurement
System

Structural
Device
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The model-based approach for anomaly detection, classification and pre-
diction was shown in Fig. 1.0. The basic concept is that the process or
vibrational system under consideration is modeled using system identifica-
tion techniques [1], [2] to ”fit” modal models to the data. If direct noise
data is not available, then a reasonable approach is to model the noise as
additive and random leading to a Gauss-Markov model [1]. Once a repre-
sentation of the overall system (structure, sensors, and noise) is developed,
then a anomaly detector or condition monitor can be developed to monitor
the status of the dynamic vibrational system.

We briefly develop the necessary background in stochastic subspace real-
ization, discuss the algorithm and apply it to an unknown structural device
(black box) characterized by a set of noisy multiple input/multiple output
accelerometer measurements extracting the modal model from buffered seg-
ments of data and evaluate its overall performance. Our goal is to eventually
provide a real-time technique for on-board processing.

2.0 State-Space Vibrational Models

Most structures or equivalently vibrational systems are multiple input/multiple
output (MIMO) systems that are easily captured within the state-space
framework. For instance, a linear, time-invariant mechanical system can
be expressed as a second order vector-matrix, differential equation given by

M d̈(τ) + Cdḋ(τ) + Kd(τ) = Bpp(τ) (1)

where d is the Nd × 1 displacement vector, p is the Np × 1 excitation force,
and M , Cd, K, are the Nd×Nd lumped mass, damping, and spring constant
matrices characterizing the vibrational process model, respectively.

Defining the 2Nd-state vector in terms of the displacement and its deriva-
tive as x(τ) :=

[
d(τ) | ḋ(τ)

]
, then the continuous-time state-space repre-

sentation of this process can be expressed as

ẋ(τ) =

 0 | I
−−− | − −−
−M−1K | −M−1Cd


︸ ︷︷ ︸

A

x(τ) +

 0
−−−
M−1Bp


︸ ︷︷ ︸

B

p(t) (2)
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The corresponding measurement or output vector relation can be charac-
terized by

y(τ) = Cad̈(τ) + Cvḋ(τ) + Cdd(τ) (3)

where the constant matrices: Ca,Cv,Cd are the respective acceleration, ve-
locity and displacement weighting matrices of appropriate dimension.

In terms of the state vector relations of Eq. 2, we can express the accel-
eration vector as:

d̈(τ) = −M−1Kd(τ)−M−1Cdḋ(τ) + M−1Bpp(τ) (4)

Substituting for the acceleration term in Eq. 3, we have that

y(τ) = −CaM
−1
[
Bpp(τ)− Cdḋ(τ)−Kd(τ)

]
+ Cvḋ(τ) + Cdd(τ)

or

y(τ) =
[
Cd −CaM

−1K | Cv −CaM
−1C d

]
︸ ︷︷ ︸

C

 d(τ)
−−−
ḋ(τ

+ CaM
−1Bp︸ ︷︷ ︸

D

p(τ)

(5)
to yield the vibrational measurement as:

y(τ) = Cx(τ) + Du(τ) (6)

where the output or measurement vector is y ∈ RNy×1 completing the mul-
tiple input/multiple output (MIMO) vibrational model.

Note that sensor models can capture the dynamics of the sensors, as they
interact with the dynamics of the states. For example, in a typical vibrational
system, this equation represents the outputs of a set of accelerometers which
are wideband relative to the process and therefore, simply fixed gains.

One of the most expository representations of a mechanical system is
its modal representation [3], [4], where the modes and mode shape expose
the internal structure and its response to various excitations. The modal
representation of a system can easily be found from state-space systems by
transforming the coordinates of the representation to modal space which
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is accomplished through an eigen-decomposition in the form of a similarity
transformation such that the system matrices Σ := {A, B, C,D} are trans-
formed to modal coordinates by the transformation matrix TM constructed
of the eigenvectors of the underlying system [5], [6] ,[7], that is,

Σ

TM

−→ ΣM

where we have

{
A, B, C,D

}
−→

{
AM , BM , CM , DM

}
:=
{
TMAT−1

M , TMB, CT−1
M , D

}
that yields an “equivalent” system from an input/output perspective, that
is, the transfer functions are identical

H(s) = CM(sI−AM)−1BM+DM = CT−1
M ×(sI−TMAT−1

M )−1×TMB = C(sI−A)−1B+D

as well as the corresponding impulse response matrices

H(τ) = CMeAM (τ)BM = CT−1
M × TMeA(τ)T−1

M × TMB = CeA(τ)B

It is well-known from systems theory [5]-[7] that the solution to the
continuous-time, state-space system of Eq. 2 is given by

x(τ) = eA(τ−τ0)x(τ0)︸ ︷︷ ︸
homogeneous

+
∫ τ

τ0
eA(τ−α)Bu(α)dα︸ ︷︷ ︸

forced

(7)

consisting of the homogeneous and forced solutions from which can define
the state transition matrix for the linear time invariant (LTI) system as

Φ(τ, τ0) = eA(τ−τ0) [State Transition Matrix] (8)

Transforming this solution by performing an eigen-decomposition for dis-
tinct (independent) eigenvalues leads to a diagonal transition matrix, that
is, selecting the modal similarity transformation TM for
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x(τ) = TM × xM(τ)

satisfying the eigen-equations

Aεi = λiεi for i = 1, 2, · · · , Nx

where {λi} are the distinct eigenvalues (real and/or complex) of A or equiva-
lently the roots (modes) of the determinant |λI−A| (characteristic equation)
[13] and {εi} are the corresponding eigenvectors (mode shapes) that lead to

TM = [ε1 | ε2 | · · · | εNx ]

the modal matrix consisting of independent columns such that

ATM = TMΛ

for Λ = diag[λ1, λ2, · · · , λNx ].
For this modal system, we have that the modal state transition matrix

ΦM follows from the eigen-decomposition as

ΦM(τ, τ0) = TMeA(τ−τ0)T−1
M = eTMA(τ−τ0)T−1

M = eΛ(τ−τ0) =
Nx∑
i=1

εie
λi(τ−τ0)ηT

i

(9)
where we have incorporated the reciprocal eigenvectorss {ηT

i }; i = 1, · · · , Nx

(rows of T−1
M ) to obtain

ΦM(τ, τ0) = eΛ(τ−τ0) =


eλ1(τ−τ0) 0

. . .

0 eλNx (τ−τ0)

 [MODAL State Transition Matrix]

(10)
In this coordinate system, the modal state solution is:

xM(τ) = eΛ(τ−τ0)xM(τ0) +
∫ τ

τ0
eΛ(τ−α)Bu(α)dα (11)

which can be written explicitly for the ith-mode xi as

xi(τ) = eλi(τ−τ0)xi(τ0) +
∫ τ

τ0
eλi(τ−α)bimum(α)dα (12)
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for i = 1, 2, · · · , Nx; m = 1, · · · , Nu with bim the (i, m)th component of the
input transmission matrix B.

The corresponding measurement or output of the state-space system is
easily found by multiplying Eq. 7 by the measurement matrix C, that is,

yM(τ) = CMeΛ(τ−τ0)x(τ0) +
∫ τ

τ0
CMeΛ(τ−α)BMu(α)dα (13)

which can also be expressed by applying the modal transformation as to
obtain the mth-component of the output ym as

yn(τ) =
Nx∑
i=1

cT
nie

λi(τ−τ0) xi(τ0)+
Nx∑
i=1

∫ τ

τ0
cnie

λi(τ−α) bimum(α)dα for n = 1, · · · , Ny

(14)
with cni the (n, i)th component of the of output transmission matrix C. This
is defined as the modal representation of the system [6].

With this in mind, we now extend the modal state-space system to the
complex modal case which is quite common in structural dynamics [3], [4].
For a typical structural system, the eigenvalues are complex, but still distinct.
In this case the system matrix can be decomposed, as before, using the
eigen-decomposition which now yields complex eigen-pairs along with the
corresponding complex eigenvectors, that is,

λi = −σi ± jωi

ti = [ξi | ξ∗i ] for i = 1, 2, · · · , Nd for Nx = 2×Nd (15)

for Nd the dimension of the corresponding displacement vector of Eq. 1 and
ti the ith-column vector of TM with σi is the damping coefficient, ωi the
damped natural frequency and φi the phase (see Sec. 2.0 ) such that

e−σiτ × cos (ωiτ + φi) [Damped Sinusoid]

Note that the homogeneous state and output responses are real, since

xM(τ) =
Nx∑
i=1

2e−σi(τ−τ0)<{xi(τ0)} =
Nx∑
i=1

2e−σi(τ−τ0)|xi(τ0)| cos (ωiτ +φi) (16)
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We also have that the modal transformation matrix becomes

TM =
[
ξ1 ξ∗1 | ξ2 ξ∗2 | · · · | ξNx/2 ξ∗Nx/2 |

]
(17)

and applying this transformation to the system matrix A, we obtain

AM = Λ = TM ×A×T−1
M = diag

([
σ1 ω1

−ω1 σ1

]
, · · · ,

[
σNx ωNx

−ωNx σNx

])
(18)

with
BM = TM ×B; CM = C × T−1

M and DM = D

which leads to the modal state transition matrix for the complex eigen-system
as

ΦM(τ, τ0) = eΛ(τ−τ0) = exp




Λ1 0

. . .

0 ΛNx


︸ ︷︷ ︸

Λ

(τ − τ0)


for Λi =

[
σi ωi

−ωi σi

]

(19)
Thus, the complex modal state-space system is given by

ẋ(τ) = AMx(τ) + BMu(τ)

y(τ) = CMx(τ) + DMu(τ) (20)

where the system matrices become

AM =


AM1 0 · · · 0

0 AM2 · · · 0
...

...
. . . 0

0 0 · · · AMNx



BM =


BM1

...
BMNx

 ; CM =
[
CM1 | · · · | CMNx

]
; DM = D
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and AMi
= Λi.

Sampling this system with an analog-to-digital converter (ADC) such that
τ → tk over the interval (τk, τk−1], then we have the corresponding sampling
interval defined by 4tk := τk − τk−1.

x(tk) = Φ(tk, tk−1)x(tk−1) +
∫ tk

tk−1

Φ(tk, α)Bc(α)uαdα (21)

and therefore from the differential equation above, we have the solution

Φ(tk, tk−1) =
∫ tk

tk−1

A(α)Φ(tk, α)dα for Φ(t0, t0) = I (22)

where Φ(tk, tk−1) is the sampled-data state transition matrix—the critical
component in the solution of the state equations enabling us to calculate the
state evolution in time.

If we further assume that the input excitation is piecewise constant (uα →
u(tk−1)) over the interval (tk, tk−1], then it can be removed from under the
superposition integral in Eq. 21 to give

x(tk) = Φ(tk, tk−1)x(tk−1) +

(∫ tk

tk−1

Φ(tk, α)Bc(α)dα

)
× u(tk−1) (23)

Under this assumption, we can define the sampled input transmission
matrix as

B(tk−1) :=
∫ tk

tk−1

Φ(tk, α)Bc(α)dα (24)

and therefore the sampled-data state-space system with equally or unequally
sampled data is given by:

x(tk) = Φ(tk, tk−1)x(tk−1) + B(tk−1)u(tk−1)

y(tk) = C(tk)x(tk) + D(tk)u(tk)

(25)

For a discrete-time LTI system (to follow), it is straightforward to show
by induction that [1]
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Φ(t, `) = At−` (26)

Since we sample the continuous-time system, we will employ a discrete
state-space representation and then transform the results back to the continuous-
time domain. The generic linear, time invariant state-space model is defined
by its system matrix A, input transmission matrix B, output or measurement
matrix C and direct input feed-through matrix D for discrete-time systems
as

x(t + 1) = Ax(t) + Bu(t) [State]

y(t) = Cx(t) + Du(t) [Output] (27)

for the state x ∈ RNx×1, input u ∈ RNu×1, and output y ∈ RNy×1 with t an
integer.

Corresponding to this representation is the discrete transfer function in
terms of the Z-transform

H(z) = C(zI − A)−1B + D (28)

and the corresponding impulse response termed the Markov parameters [5],
[7]

H(t) = CAt−1B + Dδ(t) (29)

for δ the Kronecker delta function.
Expanding the state equations, we can easily show that

x(t) = Atx(0) +
t−1∑
k=0

At−k−1Bu(k − 1); t = 0, 1, · · · , K (30)

and therefore the output is given by

y(t) = CAtx(0) +
t−1∑
k=0

CAt−k−1Bu(k − 1) + Dδ(t) (31)

or expanding this relation further, we have
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
y(0)
y(1)

...
y(K − 1)

 =


C

CA
...

CAt−K−1


︸ ︷︷ ︸

O

x(0)+


D · · · 0

CB D · · · 0
...

...
...

...
CAK−1B · · · CB D


︸ ︷︷ ︸

T


u(0)
u(1)

...
u(K − 1)


(32)

Shifting these relations in time is simply given by
y(`)

y(` + 1)
...

y(` + K − 1)

 = OKx(0) + TK


u(`)

u(` + 1)
...

u(` + K − 1)

 (33)

yK(`) = OKx(`) + TKuK(`) (34)

where O is the observability matrix of linear systems theory [1].
Now if we combine these m of these vectors of Eq. 34 creating a batch data

matrix over the K-samples, we obtain the data equation, that is, defining
the matrices as

Y`,m;K =
[
ym(`) · · · ym(` + K − 1)

]
(35)

U`,m;K =
[
um(`) · · · um(` + K − 1)

]
(36)

X`,m;K =
[
xm(`) · · · xm` + K − 1)

]
=
[
x(`) Ax(`) · · · AK−1x(`)

]
(37)

we obtain the data equation that relates the system model to the data (input
and output matrices)

Y`,m;K = OKX`,m;K + TKU`,m;K (38)

This expression represents the fundamental relationship for the input-
state-output of a linear time-invariant (LTI) state-space system that will be
exploited next.
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3.0 State-Space Identification: Subspace Ap-

proach

In this section we develop the basic subspace approach to state-space system
identification. We start with the fundamental problem of identifying or ex-
tracting the state-space system Σ = {A, B, C,D}—the realization problem
and then evolve to the development of subspace identification techniques.
First, we investigate the basis of realization methods.

The realization problem is simply stated as:

GIVEN a set of impulse response matrices {Hi(t)} with corresponding Markov
parameters, Hi = CAtB+Dδ(t); t = 0, 1, · · · , K−1, FIND the corresponding
state-space system, Σ := {A, B, C,D}.

The solution to this deterministic problem proceeds by first creating the
Hankel matrix defined by

Hm;K =


H0 H1 · · · HK−1

H1 H2 · · · HK
...

...
...

...
Hm Hm−1 · · · Hm+K−2

 =


CB CAB · · · CAK−1B

CAB CA2B · · · CAKB
...

...
...

...
CAm−1B CAmB · · · CAm+K−2


(39)

and therefore,

Hm;K = Om × CK (40)

where Om is the observability matrix defined previously, while CK is the
controllability matrix (reachability matrix) [1] defined by

CK :=
[
B AB · · · AK−1B

]
(41)

Some important system theoretic properties of Hankel matrices are:

• The system defined by Σ is minimal if and only if it is completely
controllable and completely observable [Minimal Order]

• For a minimal realization, Σ the rank of the Hankel matrix satisfies:
ρ[Hm,K ] ≤ min

{
ρ[Om], ρ[CK ]

}
≤ Nx [Rank Property]
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• ρ[Hm,K ] = ρ[Hm+1,K ] = ρ[Hm,K+1] = Nx [Shift Property]

Such a minimal realization is stable if:

• The eigenvalues of the system matrix A lie within the unit circle:
λ
[
A
]
≤ 1

• The corresponding observability and controllability Gramians defined
below satisfy the positivity constraints:

ΣAC = AT ΣACA + CT C ≥ 0 [Observability Gramian]

ΣAB = AΣABAT + BBT ≥ 0 [Controllability Gramian]

Applying these properties, we define a balanced realization for a stable
system A matrix as:

• For ΣAB = ΣAC = ΣK where Σ is a diagonal matrix such that

ΣK = diag
[
σ1, σ2, · · · , σK

]
for σ1 ≥ σ2 ≥ · · ·σK

and ΣK is given by the singular value decomposition (SVD) of the
Hankel matrix:

HK,K = UKΣKVK

• The resulting realization is said to be scale invariant [24], that is, the
balanced realized is robust to amplitude scaling.

We also note from the shift invariant property of the Hankel matrix
(above) that

H↑K,K = O↑KCK = OKA× CK = OK × ACK := H←K,K (42)

since

O↑K =


C

CA
...

CAK−1


︸ ︷︷ ︸

OK

×A =


CA
CA2

...
CAK


︸ ︷︷ ︸

O↑K



16

and

C←K = A×
[
B AB · · · AK−1B

]
︸ ︷︷ ︸

CK

=
[
AB A2B · · · AKB

]
︸ ︷︷ ︸

C←K

3.0.1 Deterministic State-Space Realizations

Now we have the basic tools to solve the deterministic realization problem by
performing the SVD of the Hankel matrix, Hm,K where m ≥ Nx and K ≥ Nx

with Nx the dimension of the minimum realization (system) or equivalently
the underlying true number of states; therefore,

Hm,K =
[
UNx UN

] [ ΣNx 0
0 0

] [
VT

Nx

VT
N

]
= UNxΣNxVT

Nx
(43)

for ΣNx = diag
[
σ1, σ2, · · · , σNx

]
From the factorization of the Hankel matrix and its SVD, we have that

Hm,K = Om × CK =
(
UNxΣ

1/2
Nx

)
︸ ︷︷ ︸

ONx

(
Σ

T/2
Nx
VT

Nx

)
︸ ︷︷ ︸

CNx

(44)

where ΣNx is the matrix square root, that is, R = S1/2 × ST/2 obtained by
the Cholesky decomposition [13].

Now from shifting properties (above) of the observability (or controllabil-
ity) matrix we can obtain the system matrices from either [5], [6], [7]

ONx−1 × A = O↑Nx

A× CNx−1 = C←Nx

which yields the system matrices by applying the pseudo-inverse
(
Z# :=

(ZT Z)−1ZT
)

A = O#
Nx−1 ×O

↑
Nx

or

A = C←Nx
× C#

Nx−1
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with the input and output matrices extracted directly from the controllability
and observability matrices as

B = C(1 : Nx, 1 : Nu) and C = O(1 : Ny, 1 : Nx) (45)

where recall the Nu is the dimension of the input vector u and Ny that of
the output or measurement vector y with the notation (Matlab) 1 : N →
1, 2, · · · , N or equivalently select the corresponding rows (columns) 1-to-N of
the matrix.

3.0.2 Stochastic Realization

In this section we briefly develop the innovations model for a discrete-time
system which is related to a Gauss-Markov representation and then show
how it is a special case of this structure.

The Gauss-Markov model for correlated process and measurement noise
is given by

x(t) = Ax(t− 1) + Bu(t− 1) + W (t− 1)w∗(t− 1)

y(t) = Cx(t) + v∗(t) (46)

where R∗(t, k) := R∗δ(t− k) and

R∗ :=

 Rw∗w∗ | Rw∗v∗
– – – – –

Rv∗w∗ | Rv∗v∗

 =

 WRwwW ′ | WRwv
– – – – –

RvwW ′ | Rvv


and the (Nx + Nv) × (Nx + Nv) block covariance matrix, R∗, is full with
cross-covariance matrices Rw∗v∗ on its off-diagonals.

The innovations model is a constrained version of the correlated Gauss-
Markov characterization. If we assume that {e(t)} is a zero-mean, white,
Gaussian sequence, that is e ∼ N (0, Ree), then a particular Gauss-Markov
model for a time-invariant system evolves defined as the innovations model
[1] by:

x(t) = Ax(t− 1) + Bu(t− 1) + Ke(t− 1)

y(t) = Cx(t) + Du(t) + e(t) (47)
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where e(t) is the Ny-dimensional innovations vector and K is the (Nx ×Ny)
gain (Kalman) or weighting matrix.

R∗ee := cov

([
Ke(t)
e(t)

]
,

[
Ke(t)
e(t)

])
=

 KReeK
′ | KRee

– – – – –
ReeK

′ | Ree

 δ(t− k)

Comparing the innovations model to the Gauss-Markov model, we see
that they both are equivalent corresponding to the case where w and v are
correlated.

We define the stochastic realization problem as:

GIVEN a set of input/output data, {u(t), y(t)}, k = 1, · · · , N ; FIND
the “best” (minimum error variance) set of the unknown parameters, ΣINV :=
{A, B, C,D, K,Ree, x(0), P (0)} that characterize the innovations model of
Eq. 47.

Before we discuss the solution to this problem, let us investigate the
properties of the innovations model more closely. In our usual model develop-
ment, we start with the Gauss-Markov representation given by the model set
ΣGM := {A, B, C,D, Rww, Rvv, Rwv, x(0), P (0)} and a variety of state-space
problems are defined within this framework (e.g. state estimation). The same
problems can be defined in terms of this model. Therefore, the model set for
the innovations model is defined as ΣINV := {A, B, C,D, K,Ree, x(0), P (0)}.
The only problem here is that we are usually “not” usually given, ΣINV , but
ΣGM . From the equivalence of these models, it is possible to show that if
we are given ΣGM and we want to obtain ΣINV , then we must develop the
relations between the parameters of the model sets.

The equivalent solution is given by the set of relations called the Kalman-
Szego-Popov (KSP) equations. The KSP equations can be solved iteratively
to obtain (K, Ree) by directly implementing the innovations model for the
time invariant case. It can be shown that corresponding to a spectral factor,
we can define a stochastic realization, ΣKSP := {A, B, C,D} based on the
generalized KSP lemma by using the equivalence of the spectral factors to
the sum decomposition of the state-space power spectral density (see [1] for
details). The proof follows by equating like terms in the sum decomposition
and spectral factors from the KSP lemma. It can also be shown that any
stochastic realization given by ΣKSP may not satisfy the KSP equations
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uniquely; therefore, we turn to the innovations model which does provide a
unique solution. The innovations model for the time-invariant case is given
by

x̂(t) = Ax̂(t− 1) + Bu(t− 1) + Ke(t− 1)

y(t) = C(t)x̂(t) + Du(t) + e(t) (48)

where the innovations is e ∼ N (0, Ree), the state (estimate) is x̂(t), K is
the optimal Nx×Ny gain (Kalman) or weighting matrix with corresponding
estimated state covariance, P̂ := Cov(x̂(t)).

Equating the decomposition with the factors using the innovations model
yields the KSP equations where the resulting covariance relations are given
by and P̂ is the estimated state covariance,

P̂ − AP̂A′ = KReeK
′

B − AC ′ = KRee

D + D′ − CP̂C ′ = Ree (49)

Solving these equations iteratively: Ree(i) → Ree, K(i) → K and P̂(i) →
P yields the KSP algorithm using the innovations model summarized in Table
1.

Summarizing the solution to the stochastic realization problem, we must:

• Obtain the state-space realization ΣKSP := {A, B, C,D} using a sub-
space identification algorithm and the Hankel matrix populated with
covariance rather than impulse response matrices (Ryy(`) := cov

(
y(t)y(tk+`

)
; ` =

0, 1, · · · , L) ([25],[26])

• Iteratively solve the KSP equations (Table 1) for the associated gain
and innovations covariance (K, Ree)

Table 1. KSP Iterative Algorithm:

Innovations Covariance

Ree(i) = D + D′ − CP̂(i)C ′
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Gain

K(i) =
(
B − AP̂(i)C ′

)
R−1

ee (i)

Estimated Covariance

P̂(i + 1) = AP̂(i)A′ + K(i)Ree(i)K
′(i)

Initial Conditions

P̂(0)
Stopping Rule

∣∣∣I − P̂(i)× P̂−1(i + 1)
∣∣∣ ≤ ε for ε << 1

This completes the fundamental background information required to com-
prehend the subsequent techniques developed.

4.0 Subspace Identification

In this section we develop the fundamental subspace approach to extract-
ing the state-space realization from input-output data extending the realiza-
tion from impulse response data—still assumed deterministic. Input-output
data can be handled in a fashion similar to the impulse response data just
discussed. In this case we must return to the “data matrices” developed
previously and create similar structures based on sound system theoretical
concepts as before.

Here we assume we are given input-output data corresponding to a LTI
system with vector inputs u ∈ RNu×1 and vector outputs y ∈ RNy×1 with
discrete time samples, t = 0, 1, · · · , K such that the input-output data is
given respectively by (as before)

u = [u(0) u(1) · · · u(K − 1)]T and y = [y(0) y(1) · · · y(K − 1)]T

Suppose we have k-data samples such that k > Nx, then the correspond-
ing block Hankel matrices can be created directly from Eq. 35 with the shift
k to give both vector input-output (state) relations
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yk(t) = Okx(t) + Tku(t) (50)

and the corresponding matrix input-output (state) equation as

Yk|2k−1 = OkXk + TkUk|2k−1 (51)

where the matrices are defined (as before) in Eqs. 35-37.
The initial states are given by

Y0|k−1 = OkX0 + TkU0|k−1 (52)

Here U0|k−1, Y0|k−1 are the past inputs and outputs, while Uk|2k−1, Yk|2k−1 are
the future inputs and outputs which are all block Hankel matrices [22]-[26].

Next we define the augmented (input-output) data matrix D along with
its corresponding LQ-decomposition as:

D0|k−1 :=

 U0|k−1

−−
Y0|k−1

 =

 I 0
− −
T H

 =

 I 0
− −
T OC

 =

 L11 0
− −
L21 L22

×[ QT
1

QT
2

]
(53)

or simply

OkX0Q2 = L22 (54)

which implies that the rank ρ(L22) = Nx.
Therefore, performing the SVD of L22, that is,

L22 =
[
U1 U2

] [ Σ1 0
0 0

] [
VT

1

VT
2

]
(55)

yields

OkX0Q2 = U1 × Σ1 × VT
1 = (U1Σ

1/2
1 )︸ ︷︷ ︸

Ok

× (Σ
T/2
1 VT

1 )︸ ︷︷ ︸
Ck

(56)

and as before the system matrices are A, B, C,D can be extracted by:

A = O#
Nx−1 ×O

↑
Nx

; C = O(1 : Ny, 1 : Nx) (57)
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The input transmission an direct feedthrough matrices B and D can be
obtained by solving a least-squares problem using the pseudo-inverse

(
Z# :=

(ZT Z)−1ZT
)

that directly that leads to the following solution[
D̂

B̂

]
= Z#ZT × (UT

2 L21L
−1
11 ) (58)

(see [25], [26] for more details).
We develop the algorithm in more detail in Appendix A. Therefore, we

have the Multivariable Output Error State-SPace (MOESP) algorithm given
by:

• Compute the LQ-decomposition of D of Eq. 53;

• Perform the SVD of L22 in Eq. 55 to extract Ok;

• Obtain A and C from Eq. 57; and

• Solve the least-squares problem to obtain B and D from Eq. 58.

• Solve the KSP equations to obtain K and Ree from Eq. 49.

Finally for the deterministic realization problem from input-output data,
we develop an alternative oblique projection method based on the data matrix
[25]. This oblique projection algorithm is termed Numerical algorithms 4
Subspace IDentification (N4SID) and is developed in Appendix B.

Following the “road-map” of Fig. 1.0 developed in the introduction, we
proceed to the application of the identified vibrational model to anomaly
detection by employing these “identified” models first in a model-based pro-
cessing scheme.

5.0 Subspace Approach to Vibrational Sys-

tem Identification

The overall approach to modal-frequency tracking/anomaly detection is based
on the development of robust subspace identification techniques that can be
applied to solve this problem—in real-time. The main idea is to pre-process a
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section or window of digitized data and perform a system (vibrational) iden-
tification followed by an extraction of the underlying modes from the identi-
fied model producing raw estimates of the corresponding modal frequencies
and mode shapes (not discussed here). Once the “raw” modal frequencies
in each window are extracted a sequential tracking algorithm (Kalman fil-
ter) is applied to “smooth” the estimates which are eventually input to a
corresponding change or anomaly detection algorithm (not discussed here)
for monitoring performance. This approach is highly dependent on the par-
ticular subspace identification algorithm selected as well as the underlying
order (2 × number of modes) of the vibrational system under investigation.
For instance,a 12-mode (24-state) identification requires a minimum data-
window of 3000-samples that is approximately a 3 sec time-window, while a
25-mode (50-state) identification requires a data-window of 7000-samples (9
sec time-window); therefore, a real-time application must take these factors
into account when selecting order.

In this section we outline the model-based approach to vibrational system
anomaly detection for our problem. The overall objective is to develop a
model-based method capable of monitoring of a vibrational system providing
operational status (normal), detecting and classifying anomalies (abnormal)
in real-time. We summarize the major steps required to achieve this goal in
Fig. 2

• Pre-process (outliers, whitening, bandpass filtering, normalization) data
relative to the targeted vibrational system information.

• Identify (subspace) underlying vibrational model from the data sets in
state-space form Σ = {A, B, C,D}.

• Transform identified model to the modal state-space representation
ΣM = {AM , BM , CM , DM}.

• Extract modal frequencies and mode shapes from the modal state-space
model.

• Track (Kalman filter) the raw frequencies sequentially in real-time.

• Detect anomalies using a sequential (real-time) model-based detector.

• OFF-Line
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MODAL
TRACKING

(Kalman Filter)

MODAL
FREQUENCY

(Anomaly Detection)

MODAL
FREQUENCY

EXTRACTION

(A-eigen-decomposition)

MODAL
IDENTIFICATION

(Discrete State-Space
[A,B,C,D] model)

PRE-Processing

(Outliers, Whitening, 
Filtering, Normalizing)

RAW
BUFFERED

DATA
(Data Window)

MODAL
TRANSFORMATION

(Modal State-Space
[Am,Bm,Cm,Dm] model)

POST-Processing

(Outlier Removal,
Modal Tracking)

MODAL
FREQUENCY
STATISTICS

(Averages,
Error Deviations)

OFF-LINE Analysis

Figure 2: Model-Based Dynamic Monitoring: PRE-processing, modal iden-
tification, modal frequency extraction, modal tracking, anomaly detection,
POST-processing, performance statistics.
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• Post-process (outlier/tracker) the on-line tracking data.

• Estimate the modal frequency statistics to evaluate performance.

Next we discuss each of these steps in more detail.

5.0.1 Pre-Processing

Pre-processing of the acquired vibrational data is a crucial first step in the
signal processing. It is designed to extract the “targeted” frequencies and
remove outliers, sample (2.25 × Nyquist frequency) to minimize the rate,
enhance or equalize the modal frequencies, filter any disturbances outside
the band of interest and normalize the filtered data to scale the data for
identification.

Outlier detection/correction is based on the median absolute deviation
(MAD) statistic because of its inherent robustness property relative to the
usual mean/standard deviation approach [34], [35]. MAD is defined as

MAD(t) := γ Mt (|Yt −Mi(Yi) |) (59)

where Yt := {y(0), · · · , y(t)} is the set of discrete-time data up to time t,
Mt is the median of the data, and γ = 1.4826 is a constant based on the
normalized (assumed Gaussian) data. The outliers are detected using the
bounds

Mt − β ×MAD(t) < Yt < Mt + β ×MAD(t) (60)

where β is a threshold equivalent to a confidence limit—we selected β = 4
for our data sets [34], [35]. Due to the limited amount of estimated modal
frequency samples available in our application, we replaced the detected out-
lier with the median amplitude of the data as shown in Fig. 3 usually less
than 1% of the samples/window.

Once the outliers are detected/corrected from each of the measurement
channels an equalizing or whitening filter was applied to the data set for
each channel. For this implementation we applied a 1−3 order, all-pole (au-
toregressive) filter with the coefficients estimated using the Levinson-Durbin
recursion (see [1])
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Figure 3: Outlier Detection/Correction: (a) Raw measurement channel data
with outlier detection. (b) Measurement channel with outlier correction to
the median value.
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y(t) = −α1y(t− 1)− α2y(t− 2)− α3y(t− 3) + σε(t); t = 1, · · · , Nt (61)

where {αi} is the set of estimated filter coefficients, σ is the filter gain and ε
is the corresponding error sequence [1]. With the coefficients estimated, an
inverse filter was applied to the data to achieve the desired results an provide
an equalized sequence at each channel {ε(t)}, that is,

ε(t) = −α1ε(t− 1)− α2ε(t− 2)− α3ε(t− 3) + σy(t); t = 1, · · · , Nt (62)

With the data corrected and equalized, the resulting channels are then
bandpass filtered using a classical, 12-th order, analog prototype, Butter-
worth digital filter providing a maximally-flat magnitude response between
the frequency ranges of 180− 400 Hz—our targeted modal frequencies.

yfn(t) = −
Nf∑
i=1

ciε(t− i); t = 1, · · · , Nt (63)

where the {ci} are the Nf pre-calculated Butterworth filter coefficients for
the n-th channel. We also applied a bandstop filter in the frequency range of
290−320 Hz, since we know a-priori from the power spectrum of the raw data
that a notch is present in the data sets indicating that the structure has no
modal frequencies in that region of interest. Finally, this set of filtered chan-
nel data {yfn(t)} is normalized scaling it to provide multiple input/multiple
output data for the subspace identification algorithm such that

yn(t) =
yfn(t)− µfn

σfn

; n = 1, · · · , Ny (64)

where µfn and σfn are the corresponding mean and standard deviations of
the n-th channel time series. This completes the pre-processing. Next we
consider the subspace identification.

5.0.2 Subspace Identification

After pre-processing the window of raw vibration data, the subspace identifi-
cation algorithm is applied to estimate the discrete-time MIMO state-space
model, Σ̂(m) = {Â(m), B̂(m), Ĉ(m), D̂(m)} as discussed in Sec. 4.
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5.0.3 Transformation to Modal State-Space

With this estimated model, Σ̂(m), available after processing the m-th data
window, we can now transform the identified discrete-time modal to the
modal state space by applying the similarity transformation (TM) based on
the eigen-transformation of A(m) → AM(m) (eigenvalue-eigenvector) as dis-
cussed in Sec. 2 enabling the new model set Σ̂M(m) = {ÂM(m), B̂M(m), ĈM(m), D̂M(m)}.

5.0.4 Modal Frequency Extraction

Modal frequencies and mode shapes (not discussed here) are now extracted
from the transformed model, ΣM(m), by performing the simple discrete-time
to continuous-time transformation of the Z-domain to the Fourier domain F ,
that is, σ(m)± 2πf(m) → 1

4t
ln (Re[Z]± Im[Z]) providing the set of modal

frequencies for post-processing and tracking, {f̂n(m)}; 1, · · · , Nm where Nm

is the number of modes (2 × states) selected for the identification.

5.0.5 Modal Frequency Tracking

The modal frequency tracker design is a model-based processor (Kalman fil-
ter) that has been applied successfully in wide variety of applications [1], [32],
[33]. The underlying frequency estimator/tracker is based on the following
Gauss-Markov representation that evolves directly from a finite difference
representation of the instantaneous frequency changes.

ḟ(t) ≈ f(tk+1)− f(tk)

4tk

or re-writing this expression gives

f(tk+1) = f(tk) +4tkḟ(tk) (65)

Assuming that the frequency change is constant over the sampling inter-
val (ḟ(tk+1) ≈ ḟ(tk)) and the model uncertainty is characterized by Gaus-
sian process noise leads to the following set of discrete-time, Gauss-Markov
stochastic equations

f(tk+1) = f(tk) +4tkḟ(tk) + w1(tk) [Frequency]
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ḟ(tk+1) = ḟ(tk) + w2(tk) [Rate] (66)

where w is zero-mean, Gaussian with w ≈ N (0, Rww). The corresponding
measurement is also contaminated with instrumentation noise represented
by zero-mean, Gaussian uncertainties as

y(tk) = f(tk) + v(tk) [Measurement]

such that v ∼ N (0, Rvv). A combination of both process and measurement
systems can be placed in a discrete-time (tk → t), state-space framework by
defining the state vector x(t) := [f(t) | ḟ(t)]′ to give the Modal-Frequency
Gauss-Markov model as

x(t + 1) =

[
1 4t
0 1

]
x(t) + w(t)

y(t + 1) = [ 1 | 0 ]x(t + 1) + v(t + 1) (67)

Now with this underlying frequency model established, we know that the
optimal solution to the state estimation or frequency tracking problem is
provided by the Kalman filter [1], that is,

x̂(t + 1|t + 1) = x̂(t + 1|t) + K(t + 1)e(t + 1)

or in terms of the components (states) we have

f̂(t + 1|t + 1) = f̂(t + 1|t) + K1(t + 1)e(t + 1)

ˆ̇f(t + 1|t + 1) = ˆ̇f(t + 1|t) + K2(t + 1)e(t + 1)

ŷ(t + 1|t) = f̂(t + 1|t)
e(t + 1) = y(t + 1)− ŷ(t + 1|t) (68)

where e(t) is the innovations/residual sequence and K(t) are the gains or
weights. This notation is defined by the conditional mean, f̂(t + 1|t) :=
E {f(t + 1)|y(t), · · · , y(0)}, that is, the estimate of f(t + 1) based on all of
the available data up to time t.
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Since we are primarily interested in a real-time application, we restrict the
processor to reach steady-state, that is, the Kalman gain becomes a constant
(steady-state) which can calculated iteratively as in the stochastic realization
using the KSP-equations or equivalently obtained directly from the discrete
Riccati equation to give the frequency tracker relations [1], [32], [33]

f̂(t + 1) = f̂(t) + K1e(t + 1)

ˆ̇f(t + 1) = ˆ̇f(t) + K2e(t + 1)

ŷ(t + 1) = f̂(t + 1)

e(t + 1) = y(t + 1)− ŷ(t + 1) (69)

where K is now a pre-calculated constant.
A typical tracking result is shown for a single frequency track in Fig. 4.

Note from the raw data that the estimates are contaminated with correlated
process noise leading to a smoother appearance rather than the usual un-
correlated (white) noise—typical in instrumentation systems. In (a) we see
an “optimal” track where the steady-state filter follows the modal frequency
variations and provides an enhanced estimate; however, we are interested in
applying more smoothing and choose to weight the optimal solution more
heavily by multiplying the optimal gain by a fixed scaling constant, that is,
K → µK with µ the scaling constant. The results are shown in Fig. 4b,c
where we see that the tracker output provides a much smoother (less varia-
tions) for µ = 0.1 and µ = 0.01. It was found after a large number of runs
that this approach leads to a very robust tracking solution that is desired for
on-line operations.

5.0.6 Post-Processing

After all of the operations have been performed, the subspace approach has
essentially evolved from a set of noisy MIMO data, to identifying a state-
space model at each data window and extracting its modal frequencies and
shapes. Each of the modal models is available for archiving (if desired)
and the resulting set of modal frequencies is available for post-processing.
The data that consists of the identified set of modal frequencies and shapes
for each of the Nf -frequencies are available for post-processing consisting
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Figure 4: Modal Frequency Tracking for Single Channel: (a) Optimal
weighted tracker. (b) Scaled optimal tracker with µ = 0.1. Scaled optimal
tracker with µ = 0.01.
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MODAL TRACKING STATISTICS: 13-Mode Model (OFF-Line) MODAL TRACKING STATISTICS: 13-Mode Model (OFF-Line) MODAL TRACKING STATISTICS: 13-Mode Model (ON-Line) (a) (b) (c)

Figure 5: Modal Frequency Tracking using a 13-Mode Model: (a) POST-
processed (OFF-line) tracker for raw modal frequencies. (b) ON-line model
frequency tracker. (c) POST-processed (OFF-line) tracker for sequential
modal frequencies.

of outlier detection/correction and further smoothing using the frequency
tracker (as above). Typical results are shown in Fig. 5 which illustrates
the raw modal frequencies directly from the subspace identification in Fig.
5a to the on-line estimates of the outlier and tracker in Fig. 5b to the
final post-processed modal frequency tracker in Fig. 5c. Here we note the
improvement of applying the on-line outlier/tracker combination, initially ,
and the improved modal frequency estimates after post-processing.

This completes the discussion of the subspace approach, next we apply it
to our “unknown” device and evaluate its performance.

6.0 Application: Structural Device

In this section, we discuss the application of the subspace approach to a struc-
turally “unknown” device, that is, a complex, stationary structure (black
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-box) with no rotating parts that is subjected to random excitation with
accelerometer sensors placed on its surface and around its periphery. We
do have some prior information about its modal response from historical ta-
bles and use this information as targeted modes (frequencies and shapes) to
evaluate the validity and performance of these results as well as guiding any
pre-processing of the acquired data.

The device under test was subjected to random excitations by placing
a stinger or motor-driven rod perpendicular to the base of the structure.
A suite of 19-triaxial accelerometers were positioned strategically about the
device surface as well as a single sensor allocated to measure the excitation
time series. In total, an array of 57-accelerometer channels acquired a set of
10-minute duration data at a 6.4KHz sampling frequency. The data were
subsequently down-sampled to 0.9KHz in order to focus on the targeted
modal frequencies (< 400Hz). From the state-space perspective, we have a
targeted system of up to a maximum of 14-modes or 28-states with an array
of 57 channels of time series measurements and 1-channel of an excitation
measurement as illustrated in Fig. 6.

The raw data (down-sampled) represents the expected data acquired from
the real-time acquisition system. The long time series were pre-processed by
performing outlier detection/correction, whitening filter (optional), bandpass
filtering, normalization prior to performing the system identification. Once
pre-processed the input/output data were provided to the subspace algo-
rithm that enabled the identification of a discrete-time state-space model,
Σ = {A, B, C,D}, that was then transformed to the modal state-space,
ΣM = {AM , BM , CM , DM}, providing both modal frequencies and mode
shape information, that is, modal eigenvalues and eigenvectors. Outliers
were detected/corrected from these raw modal frequency estimates and pro-
vided as input to the frequency tracker (steady-state Kalman filter [1]) en-
abling a “smoothed” sequential estimate in real-time. After the data set is
processed, modal frequencies and mode shapes extracted, the data are then
post-processed to improve the estimates even further by applying a “batch”
tracker (Kalman filter) with the improved ensemble statistics, since the entire
track of data is now available. These results are then analyzed and provided
for eventual anomaly detection (see Fig. 2).

With all of this information available, we first performed a suite of sub-
space identifications by specifying the number of modes ranging from 9− 16,
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Modal
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Anomaly
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SUBSPACE IDENTIFICATION APPROACH

Figure 6: Structural Device Experimental Setup: Motor driven stinger ran-
dom vibrations, MIMO ADC measurements, subspace identification: identi-
fier, tracker, detector system.
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AND 20, 25, with our targeted number was 14 modal frequencies from the
historical tables. For each number of these modes, we generated the corre-
sponding frequency tracks one for each modal frequency as shown in Fig. 7
for a 13-mode (26-state) identification. Here we observe the estimated power
spectrum of the identified model for each data window in (a) along with
the identified modal frequencies (+) in order to illustrate any clustering. In
Fig. 7b we see the resulting on-line outlier corrected/tracks for each of the
identified modal frequencies. Therefore, an ensemble of frequency estimates
resulted for each track for post-processing statistical analysis. Comparisons
of the ensemble averages of the identified modal frequencies are shown in Ta-
ble 2. When the number of modes selected was less than or equal to 14, the
tracks were reasonable stable, but only 10−11 of the target frequencies were
essentially captured (within reasonable bounds) by the subspace identifier.
Increasing the order greater than 14 enabled another of the targeted modes
to be identified (11 → 12), but found excdessive “false” modes with wild
frequency tracks. It is clear from the table that orders less than 12 are not
capable of reasonably estimating 10 or more modes and that those orders of
12 and above can capture at least 10 modes.

These frequencies along with their accompanying statistics are used to
determine which of the model orders selected enable a “reasonable” estimate
of the targeted frequencies as shown in Table 2. Next we are able to select
the model order based on the calculated 1 σ standard deviations along with
the corresponding percentage relative error1 statistics. The average results,
standard deviations and error percentages, are also shown in the table. Even
though the 15 and 16 modal identifications provided somewhat superior sta-
tistical estimates of the modal frequencies and the fact that an additional
targeted mode was identified, their erratic behavior of the extraneous modes
caused concern for eventual on-line failure detection therefore, they were not
considered viable candidates. Based on these concerns, we selected the 13-
mode (26-state) model for our subspace algorithm providing not only the
most reasonable trade-off of deviation/error as well as a practical window
time (3300-samples) of 7.1-seconds/identification which is based on the re-
quired number of samples for the identification algorithm (ID time x sampling
interval). This time is quite reasonable for a 900 Hz sampling frequency and
vibrational monitoring of the system. Note that the higher the order, the

1Percentage relative error (%ε) is given by True−Estimate
True × 100.
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POWER SPECTRA/MODAL FREQUENCY ESTIMATION: 13-Mode (26-state) MIMO State-Space Model 

ON-LINE MODAL FREQUENCY TRACKER: 13-Mode (26-state) MIMO State-Space Model 

Modal 
Frequency
Estimates

Figure 7: Subspace Identification of 13 Mode Model: (a) Estimated transfer
functions of identified modal models and raw modal frequency estimates
(+). (b) Sequential (ON-line) modal frequency tracker results with outlier
corrections (10-sample initialization).
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number of samples for subspace identification increases.
Post-processing of the tracking frequencies were shown in Fig. 5. Clearly,

as expected, the batch post-processor performing both outlier correction and
tracker smoothing, is superior to the on-line tracks primarily because the
ensemble statistics of 83 data windows are now available to improve the es-
timates as illustrated previously in Fig. 5c. The ensemble statistics for the
13-mode identification are shown in Fig. 8 where we see the corresponding
scatter plot along with the corresponding 99.9% confidence interval about
the mean modal frequency. Clearly the estimates are reasonably precise as
shown in (a) and in Table 2 as well. In Fig. 8(b) we observe the correspond-
ing modal frequency histogram with most of the identified frequency bins
heavily populated indicating very high probabilities of the modal frequencies
estimated by the subspace tracker.
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Figure 8: POST-Processing Modal Frequency Tracking Ensemble Statistics:
(a) Modal frequency scatter plot with 99.9% confidence limits about the
mean. (b) Modal frequency histogram indicating high probabilities in iden-
tified modal frequency bins.
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MODAL TRACKING STATISTICS: 13-Mode Model (OFF-Line) MODAL TRACKING STATISTICS: 12-Mode Model (OFF-Line) MODAL TRACKING STATISTICS: 14-Mode Model (OFF-Line) 

OPTIMAL MODAL FREQUENCY TRACKER (12-Mode) OPTIMAL MODAL FREQUENCY TRACKER (13-Mode) OPTIMAL MODAL FREQUENCY TRACKER (14-Mode)

Figure 9: POST-Processed Modal Frequency Tracking of 12-Mode, 13-Mode,
14-Mode Identified State-Space Model Results.
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Table 2. MODAL IDENTIFICATION ENSEMBLE STATISTICS

MODAL Frequency Estimates (Relative Error(ε))
Frequency 12± σ(%ε) 13± σ(%ε) 14± σ(%ε) 15± σ(%ε) 16± σ(%ε)

190 Hz 189±0.2(0.5) 189±0.2(0.5) 189±0.1(0.5) 188±0.2(1.1) 188±0.1(1.1)
208 Hz 207±0.4(0.5) 206±0.5(1.0) 205±0.4(1.4) 204±0.5(1.9) 203±0.4(2.4)
219 Hz 229±2.3(4.6) 223±0.7(0.5) 221±1.2(0.9) 216±0.8(1.4) 213±0.5(2.7)
242 Hz 238±0.8(1.7) 236±0.8(2.1) 241±1.7(0.4) 247±1.0(2.1) 243±0.7(0.4)
260 Hz 260±2.1(0.0) 256±0.8(0.4) 258±3.5(0.8) 254±0.9(2.3) 259±1.1(0.4)
276 Hz - 276±2.6(0.0) - 268±3.1(2.9) 276±2.1(0.0)
279 Hz 281±6.3(0.7) - 279±5.1(0.0) 284±3.8(1.8) -
344 Hz 347±0.7(0.9) 344±10.8(0.0) 346±7.6(0.6) 348±1.7(1.2) 349±1.4(1.5)
351 Hz 353±0.6(0.6) 350±0.6(0.3) 352±0.6(0.6) 353±0.6(0.6) 354±0.8(0.3)
359 Hz - 354±1.4(1.4) 359±1.9(0.0) 359±1.9(0.0) 359±1.1(0.0)
362 Hz - - - - 362±0.9(0.0)
364 Hz 371±0.3(0.0) 372±0.2(2.4) 372±0.4(2.2) 373±0.1(2.5) 373±0.1(2.5)
377 Hz 376±0.3(0.3) 375±0.3(0.5) 377±9.2(0.0) 376±0.3(0.3) 378±0.4(0.3)
383 Hz - - - - -

Avg σ(%ε) ±1.4 (0.98%) ±1.8 (0.83%) ±3.00 (0.67%) ±1.24 (1.55%) ±0.8 (0.97%)
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7.0 Summary

This report summarizes the development of a model-based modal tracking
scheme capable of the on-line processing of structural responses applying both
system identification methods to extract a modal model and state estimation
techniques to track the modal frequencies for eventual anomaly detection and
fault location.

Background information on state-space vibrational systems was devel-
oped in Sec. 2.0 evolving directly to a multiple input/multiple output (MIMO)
structural formulation. From this representation the modal state-space model
was introduced through an eigenvalue-eigenvector formulation leading to the
required similarity transformation and complex modes. Next the sampled-
data state-space system eas briefly developed and evolved to a discrete state-
space system that provided the basis for the system identification methods to
follow. Powerful MIMO subspace identification methods were discussed lead-
ing to the extraction of a modal state-space model from noisy vibrational
measurements. This model provides the essential data required as input to
the model-based tracking scheme.

The model-based identifier/tracker was applied to evaluate test data evolv-
ing from a vibrating system consisting of approximately 12-modes with 19-
directional (X,Y ,Z) accelerometer measurements for a total of 57-channels of
noisy data. Each of the steps in developing the approach from pre-processing
the raw data to subspace identification to model-based tracking were dis-
cussed in detail leading to the performance analysis of the tracking techniques
completing this effort.

Future work will consist of the development of more robust techniques
for real-time operations.
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A APPENDIX: Subspace Identification—Orthogonal

Projections

In this section we develop the fundamental subspace approach to extract-
ing the state-space realization from input-output data extending the realiza-
tion from impulse response data—still assumed deterministic. Input-output
data can be handled in a fashion similar to the impulse response data just
discussed. In this case we must return to the “data matrices” developed
previously and create similar structures based on sound system theoretical
concepts as before.

Here we assume we are given input-output data corresponding to a LTI
system with vector inputs u ∈ RNu×1 and vector outputs y ∈ RNy×1 with
discrete time samples, t = 0, 1, · · · , K such that the input-output data is
given respectively by (as before)

u = [u(0) u(1) · · · u(K − 1)]T and y = [y(0) y(1) · · · y(K − 1)]T

Suppose we have k-data samples such that k > Nx, then the correspond-
ing block Hankel matrices can be created directly from Eq. 34 with the shift
k to give both vector input-output (state) relations

yk(t) = Okx(t) + Tku(t) (70)

and the corresponding matrix input-output (state) equation as

Yk|2k−1 = OkXk + TkUk|2k−1 (71)

where the matrices are defined (as before)

Uk|2k−1 =
[
uk(t) uk(t + 1) · · · uk(t + K − 1)

]
Yk|2k−1 =

[
yk(t) uk(t + 1) · · · yk(t + K − 1)

]
Xk =

[
x(t) x(t + 1) · · · x(t + K − 1)

]

with the initial states given by

Y0|k−1 = OkX0 + TkU0|k−1 (72)

Here U0|k−1, Y0|k−1 are the past inputs and outputs, while Uk|2k−1, Yk|2k−1 are
the future inputs and outputs which are all block Hankel matrices [22]-[26].
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Next we define the augmented (input-output) data matrix D along with
its corresponding LQ-decomposition as:

D0|k−1 :=

 U0|k−1

−−
Y0|k−1

 =

 I 0
− −
T H

 =

 I 0
− −
T OC

 =

 L11 0
− −
L21 L22

×[ QT
1

QT
2

]
(73)

or multiplying the terms and identifying the relations, we have

U0|k−1 = L11Q
T
1

Y0|k−1 = L21Q
T
1 + L22Q

T
2 (74)

or solving for Q1 and substituting, we have

QT
1 = L−1

11 × U0|k−1

Y0|k−1 = L21L
−1
11 × U0|k−1︸ ︷︷ ︸

E{Y0|k−1|U0|k−1}

+ L22Q
T
2︸ ︷︷ ︸

E{U0|k−1|U⊥0|k−1
}

(75)

These expressions enable the orthogonal decomposition of Y0|k−1; there-
fore, it follows from Eq. 73 that

Y0|k−1 = OkX0 + TkU0|k−1 = OkX0 + Tk(L11Q
T
1 ) = L21Q

T
1 + L22Q

T
2 (76)

but post-multiplying this expression by Q2 with the ortho-normality/orthogonality
conditions of the LQ-decomposition imposed as: QT

2 ×Q2 = I and QT
1 ×Q2 =

0 gives

Y0|k−1Q2 = OkX0Q2 + TkL11 QT
1 Q2︸ ︷︷ ︸
0

= L21 QT
1 Q2︸ ︷︷ ︸
0

+L22 QT
2 Q2︸ ︷︷ ︸
I

or simply

OkX0Q2 = L22 (77)

which implies that the rank ρ(L22) = Nx.

Therefore, performing the SVD of L22, that is,

L22 =
[
U1 U2

] [ Σ1 0
0 0

] [
VT

1

VT
2

]
(78)
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yields

OkX0Q2 = U1 × Σ1 × VT
1 = (U1Σ

1/2
1 )︸ ︷︷ ︸

Ok

× (Σ
T/2
1 VT

1 )︸ ︷︷ ︸
Ck

(79)

and as before the system matrices are A, B, C,D can be extracted by:

A = O#
Nx−1 ×O

↑
Nx

; C = O(1 : Ny, 1 : Nx) (80)

with B and D obtained by solving a least-squares problem directly, since
pre-multiplying Eq. 76 by UT

2 gives

UT
2 OkX0 + UT

2 TkU0|k−1 = UT
2 L21Q

T
1 + UT

2 L22Q
T
2

but after substituting for U0|k−1 and applying the orthogonality conditions
UT

2 Ok = 0 and UT
2 L22 = 0, we have

UT
2 Tk(L11Q

T
1 ) = UT

2 L21Q
T
1

post-multiply by Q1 and using its orthonormal property (QT
1 Q1 = I) gives

UT
2 Tk = UT

2 L21 × L−1
11 (81)

which leads to the least-squares solution[
D̂

B̂

]
= Z#ZT × (UT

2 L21L
−1
11 ) (82)

(see [25], [26] for more details). Therefore, we have the Multivariable Output
Error State-SPace (MOESP) algorithm given by:

• Compute the LQ-decomposition of D of Eq. 73;

• Perform the SVD of L22 in Eq. 78 to extract Ok;

• Obtain A and C from Eq. 80; and

• Solve the least-squares problem to obtain B and D from Eq. 82.
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A APPENDIX: Subspace Identification—Oblique

Projections

Finally for the deterministic realization problem from input-output data, we
develop an alternative oblique projection method based on the data matrix
[25] by defining first the “past” and “future” operators as:

Up := U0|k−1; Yp := Y0|k−1; Xp := X0

Uf := Uk|2k−1; Yf := Yk|2k−1; Xf := Xk

with the matrix input-output relations given by

Yp = OkXp + TkUp [Past]

Yf = OkXf + TkUf [Future]

(83)

with data matrices, past and future, defined by:

Dp =

 Up

−−−
Yp

 =

 U0|k−1

−−−
Y0|k−1

 ;Df =

 Uf

−−−
Yf

 =

 Uk|2k−1

−−−
Yk|2k−1

 (84)

The state vector is a basis of the intersection of the past and future
subspaces and it can be computed by the SVD. First, performing the LQ-
decomposition of the past and future data matrices, we have that

Uf

Up

Yp

Yf

 =


L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44

 =


QT

1

QT
2

QT
3

QT
4


which can be rewritten as: Uf

Dp

Yf

 =

 R11 0 0
R21 R22 0
R31 R32 0

 =

 Q̃T
1

Q̃T
2

Q̃T
3

 (85)

which then leads us to the oblique projection of Yf onto Dp along Uf [25],
[26], that is,
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ξ := E||Up{Yp|Dp} =

 R11 0 0
R21 R22 0
R31 R32 0

 =

 Q̃T
1

Q̃T
2

Q̃T
3

 (86)

Decomposing ξ using the SVD, we obtain

ξ =
[
U1 U2

] [ Σ1 0
0 0

] [
VT

1

VT
2

]
= U1Σ1VT

1 (87)

and therefore equating terms, we have

ξ = OkXf = R32R
#
22Dp

Ok = U1Σ
1/2
1

Xf = Σ
1/2
1 VT

1 (88)

This oblique projection algorithm is termed Numerical algorithms 4 Subspace
IDentification (N4SID) [25] and can be summarized by the following steps:

• Compute the LQ-decomposition of ξ of Eq. 87;

• Perform the SVD of ξ in Eq. 88 to extract Ok;

• Compute Xf of Eq. 88 and define (construct)

X k+1 = [x(k + 1) · · · x(k + K − 1)]

X k = [x(k) · · · x(k + K − 2)]

Yk|k = [y(k) · · · y(k + K − 2)]

Uk|k = [u(k) · · · u(k + K − 2)]

• Obtain A, B, C,D by solving the least-squares problem as: X k+1

−−−
Yk|k

 =

[
A B
C D

]  X k

−−−
Uk|k


[

Â B̂

Ĉ D̂

]
=


 X k+1

−−−
Yk|k


 X k

−−−
Uk|k


T


 X k

−−−
Uk|k


 X k

−−−
Uk|k


T

−1

completing the algorithm.


