
LLNL-PROC-413879

Interoperable Mesh Components
for Large-Scale,
Distributed-Memory Simulations

Karen Devine, Lori Diachin, Jason Kraftcheck, Ken
Jansen, Vitus Leung, X. Luo, Mark Miller, Carl
Ollivier-Gooch, Alex Ovcharenko, Onkar Sahni, Mark
Shephard, Tim Tautges, Ting Xie, M. Zhou

June 12, 2009

SciDAC 2009
San Diego, CA, United States
June 12, 2009 through June 16, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Interoperable mesh components for large-scale,

distributed-memory simulations

K Devine1, L Diachin2, J Kraftcheck4, K E Jansen3, V Leung1,
X Luo3, M Miller2, C Ollivier-Gooch5, A Ovcharenko3, O Sahni3,
M S Shephard3, T Tautges6, T Xie3 and M Zhou3

1 Sandia National Labs, Albuquerque, NM, 2 Lawrence Livermore National Lab, Livermore,
CA, 3 Rensselaer Polytechnic Institute, Troy, NY, 4 University of Wisconsin, Madison, WI, 5

University of British Columbia, Vancouver, BC, 6 Argonne National Laboratory, Argonne, IL

E-mail: kddevin@sandia.gov, diachin2@llnl.gov, kraftche@cae.wisc.edu,

jansen@rpi.edu, vjleung@sandia.gov, xluo@scorec.rpi.edu, miller86@llnl.gov,

cfog@mech.ubc.ca, shurik@scorec.rpi.edu, osahni@scorec.rpi.edu,

shephard@scorec.rpi.edu, tautges@mcs.anl.gov, txie@scorec.rpi.edu,

zhou@scorec.rpi.edu

Abstract. SciDAC applications have a demonstrated need for advanced software tools to
manage the complexities associated with sophisticated geometry, mesh, and field manipulation
tasks, particularly as computer architectures move toward the petascale. In this paper, we
describe a software component — an abstract data model and programming interface — designed
to provide support for parallel unstructured mesh operations. We describe key issues that must
be addressed to successfully provide high-performance, distributed-memory unstructured mesh
services and highlight some recent research accomplishments in developing new load balancing
and MPI-based communication libraries appropriate for leadership class computing. Finally, we
give examples of the use of parallel adaptive mesh modification in two SciDAC applications.

1. Introduction
Many simulations for solving partial differential equations (PDEs) require the ability to model
complex geometries defined by CAD or other engineering design tools. Such geometries in turn
require the generation of meshes that have high fidelity to both the computational domain
description as well as to the features of interest in the numerical solution, e.g., regions of high
gradients. This process is further complicated by the need to perform simulations on petascale
computers where additional issues such as load balance, communication costs, and optimal data
decompositions come into play. Because these operations are common to many simulations, re-
usable software for these tasks can be shared across many application codes which could reduce
the time, effort, and expertise required to develop and maintain simulation software.

Reuse of scientific software has traditionally relied on the use of frameworks or library-
based implementations and many useful tools have been developed over the years for both
unstructured (e.g., [1, 2, 3, 4, 5]) and structured meshes (e.g., [6, 7, 8]). In addition, libraries
that provide mesh quality improvement [9, 10], front tracking [11], mesh refinement [12], and
parallel partitioning and load balancing [13] have been developed as well. However, the use
of libraries or frameworks can significantly hamper experimentation with different software

SciDAC 2009, LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

1

instances that provide similar functionality. In particular, libraries of similar purpose often
package functionality in very different ways. Consequently, data structures shared between the
application and library and even the control flow between the application and library may need
to be totally re-designed. This is especially true for meshing and geometry libraries where
applications often directly access the underlying data structures, which can be quite different
from implementation to implementation. Thus, using different libraries interchangeably or
interoperably for this functionality has proven difficult at best and has hindered the wide spread
use of advanced meshing and geometry tools developed by the research community.

Components represent a higher level of abstraction than libraries. Essentially, a component
defines both a specification for an application programming interface (API) and an abstract
data model defining the semantics of the data that is passed through the interface. There are
several key advantages to using a component-based approach in that the focus is on interfaces
rather than on data structures or file formats. This allows any application using a component
to use another implementation of the same component API, because all implementations have
substantially equivalent functionality.

In this paper, we describe a parallel unstructured mesh component developed by the
Interoperable Technologies for Advanced Petascale Simulations (ITAPS) project (Section 2).
As we have worked to scale the software that uses our mesh component implementations to
100,000 processors and beyond, several interesting research projects to improve load balance
and reduce communication costs have arisen. We briefly describe our work in these areas and
show both weak and strong scaling results for implicit finite element/volume solvers and adaptive
mesh refinement services (Section 3). We conclude by showcasing the use of the adaptive mesh
refinement service in accelerator and fusion SciDAC applications (Section 4).

2. The ITAPS parallel mesh component
The ITAPS parallel mesh component builds on previous work that resulted in the definition of a
serial abstract data model and interfaces for serial mesh data. In this section, we briefly describe
the key concepts from that earlier work that are germaine to the current discussion, and describe
the parallel data model (Section 2.1) and language- and data-structure-independent interface to
support query and modification of meshes on distributed memory computers (Section 2.2). We
then highlight several software implementations of the interface and services that use the serial
and parallel interfaces to provide key functionality to application codes (Section 2.3).

2.1. The abstract data model
At a high level, the ITAPS data model divides the data required by a simulation into three core
data types: the geometric data, the mesh data, and the field data. These core data types are
associated with each other through data relation managers. The data relation managers control
the relationships among two or more of the core data types, resolve cross references between
entities in different groups, and can provide additional functionality that depends on multiple
core data types. Key building blocks within these data models are the concepts of entities, entity
sets, and tags.

• Entities are used to represent atomic pieces of information such as vertices in a mesh or
edges in a geometric model. Entity adjacency relationships define how the entities connect
to each other and both first-order and second-order adjacencies are supported.

• Entity sets are arbitrary collections of entities that may be an ordered list or unordered. The
two primary supported relationships among entity sets are contained in and parent/child
to allow for subsetting and hierarchical applications. In addition, entity sets also have “set
operation” capabilities such as set subtraction, intersection, or union.

SciDAC 2009,, , LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

2

• Tags are used as containers to attach user-defined data to ITAPS entities and entity sets.
Tags can be multi-valued which implies that a given tag handle can be associated with
many different entities. We support specialized tag types for improved performance as well
as the more general opaque case that allows any type of data to be attached.

To support many of the services that applications desire, such as adaptive mesh refinement, the
data model includes the concept of modification to allow changes to geometry, topology, or set
structure. In the case of the mesh, capabilities include changing vertex coordinates and adding
or deleting entities. Modification often requires interactions between the mesh, geometry and
field data models and is one of the primary uses for the data relations manager.

The parallel ITAPS data model extends the concepts described above to handle the
requirements of distributed memory applications. In such applications, the unstructured mesh
is typically divided or partitioned over the independent processor memories of the computer.
To be useful to applications, we must maintain information about mesh entities and their
adjacencies that is “shared”. In addition, applications require the ability to move mesh entities
and their associated information between different processors to update the mesh partition while
maintaining this shared information. Moreover, applications expect that the mesh data model
defined previously will continue to work as expected within a process or for global address
spaces and shared memory paradigms. These requirements are addressed through the following
additional core concepts.

• A mesh partition is a decomposition of the mesh entities (e.g., vertices, edges, faces, and
regions) into subsets called parts. The partition is responsible for mapping the entities to
parts and for mapping the parts to processes. We note that each process may have one or
more parts and that each part is wholly contained within a process. Parts are identified
globally by unique part IDs and, within a process, by opaque part handles. A partition has
a communicator associated with it. Thus “global” operations are performed with respect
to data in all parts in the partition’s communicator and “local” operations are performed
with respect to either a part’s or process’s data.

• Mesh entities are owned by exactly one part in the partition where ownership imbues the
right to modify. It is important to note that ownership is not necessarily static during
the course of a computation and can be changed due to a repartitioning of the mesh or
due to local micro-migration operations. In addition, some entities will have read-only
copies on other parts, for example, along part boundaries and for ghosting operations. No
globally unique entity IDs are required or supplied by the data model although they can be
constructed by the user as a pair [part ID, entity handle].

• Mesh entities can be further classified as an internal entity (an owned entity not on an
interpart boundary), a part-boundary entity (an entity on an interpart boundary which are
shared between parts), or a ghost entity (a non-owned, non-part-boundary entity); see
Figure 1. Copies are defined to be all ghost entities plus all non-owned part-boundary
entities. The data model defines rules for the amount of information about copies that
an implementation must manage. For example, an entity’s owner must store information
about all copies of the entity, and a copy must store information about the entity’s owner.
Remote parts and entities are computed after mesh modification so that queries for remote
data do not require communication.

2.2. The ITAPS iMeshP interface
Once the abstract data model is defined, the next step to creating interoperable technologies is
to define common interfaces that support its functionality. A key aspect of the ITAPS approach
is that we do not enforce any particular data structure or implementation with our interfaces,

SciDAC 2009,, , LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

3

Figure 1. A simple example showing the iMeshP datamodel. Image (a) shows the relationship
bewteen iMesh and iMeshP, (b) shows entity classification, and (c) shows ghost entities.

requiring only that certain questions about the geometry, mesh, or field data can be answered
through calls to the interface. All data passed through the interface is in the form of opaque
handles to objects defined in the data model. One of the most challenging aspects of this effort
remains balancing performance of the interface with the flexibility needed to support a wide
variety of data types. Further challenges arise when considering the support of many different
scientific programming languages which we address using a two-pronged approach. First, we
provide a C-language binding for our interfaces that is compatible with most needs in scientific
computing. Additional flexibility, albeit at a somewhat higher cost, is supported through the use
of the SIDL/Babel technology [14] provided by the Common Component Architecture Forum.

In previous work, a full specification for the serial mesh interface, called iMesh, was completed
and implemented by several institutions. The extension to iMeshP, the parallel mesh interface,
required the definition of a number of additional functions; for example, functions to easily
create and modify partitions, create ghost entities, retrieve ghost and owner entity tag data,
and determine an entity’s ownership status. To simplify the iMeshP interface, we allow part
handles to be substituted for entity-set handles in all serial iMesh functions. Thus, operations
such as adding entities to parts and querying the number of entities in a part can be achieved
using the same interface as adding entities to and querying entity sets. Additional iMeshP
functions provide information about part boundaries and neighboring parts. Furthermore, the
iMeshP interface supports parallel operations needed for efficient computation, load balancing
and mesh modification. By necessity, these operations involve parallel communication and both
synchronous and asynchronous parallel operations are supported. This design enables such
things as updates of tag data in ghost entities during computation, large- or small-scale entity
migration for dynamic load balancing or edge swapping, updates of vertex coordinates in non-
owned vertices for mesh smoothing, and coordination in the creation of new entities along part
boundaries for mesh refinement. For more information see [15].

To illustrate iMesh and iMeshP interface usage, we provide a simple example of using the
C-binding version in Figure 2. Line 14 shows the creation of a new mesh instance which creates
the local opaque handle mesh that is used in later calls to refer to this instance of the interface
on this process. Likewise, line 15 shows the creation of the root set which contains all the
mesh data on the processor once it is loaded. Line 20 shows the call to create the partition
handle on all processors and associate the MPI communicator with it. Line 21 shows the use
of the iMeshP load function to populate the mesh and partition interface on all processors
using a string name identifier. In this example, the data is loaded from file 125hex.vtk, but
iMeshP load can also be used for on-the-fly mesh creation. Line 24 shows the global query to
retrieve the number of parts in the partition. Line 25 shows the call to get the global number of

SciDAC 2009,, , LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

4

1 #include ‘‘iMesh.h’’
2 #include ‘‘iMeshP.h’’
4 #include <mpi.h>
5
6 int main(int argc, char *argv[])
7 {
8 // create and populate the Mesh instance
9 iMesh_Instance mesh;
10 iBase_EntitySetHandle root_set;
11 iMeshP_PartitionHandle partition;
12 int num_parts, num_vtx, ierr;
13
14 iMesh_newMesh("", &mesh, &ierr, 0);
15 iMesh_getRootSet(mesh, &root_set, &ierr);
16
17 MPI_Init(&argc, &argv);
18
19 // create the partition and load the mesh
20 iMeshP_createPartitionAll(mesh, MPI_COMM_WORLD, &partition, &ierr)
21 iMeshP_load(mesh, partition, root_set, "125hex.vtk", "", &ierr, 10, 0);
22
23 // get the number of parts and number of vertices in the partition
24 iMeshP_getNumParts(mesh, partition, &num_parts, &ierr);
25 iMeshP_getNumOfTypeAll(mesh, partition, root_set, iBase_VERTEX, &num_vtx, &ierr);
26 }

Figure 2. Example use of the C-binding of the iMeshP interface.

vertices in the partition; this call may require global communication if it is not stored locally.

2.3. ITAPS software using iMesh and iMeshP
The ITAPS consortium has produced four implementations of the iMesh interface based on
pre-existing mesh databases. Each of the four has its own particular strengths and so are
useful in different application settings. In addition, two of the four iMesh implementations
also have at least partial iMeshP implementations available. These implementations are listed
in Table 1. In addition, the ITAPS team is developing a number of component services
that use the iMesh and iMeshP interfaces to support simulations involving complex domains,
adaptive techniques, and high-order methods. Specific tools include mesh quality improvement
through smoothing with Mesquite [9] and swapping [10], high-order mesh curve correction
tools [16], adaptive mesh refinement through MeshAdapt [12], front tracking through FronTier
[11], dynamic load balancing services through Zoltan [13], and visualization plug-ins into
VisIt [17]. These component services can be used directly by applications and can also be
integrated to form higher-level integrated services such as shape-optimization and AMR-Front
tracking technologies. Each of these services has been demonstrated to work with multiple
implementations of the iMesh and iMeshP component APIs. We generally see little reduction in
the overall efficiency of an application using the iMesh or iMeshP interfaces compared to using
native data structures when following the ITAPS “best practices” implementation guidelines.
For example, we tested the time to partition a MOAB mesh using Zoltan through the MOAB
native interfaces and compared this with the time required to partition the same mesh through
the iMesh interface. We found the overhead ranged from under 1% for small problem sizes to
about 2% for larger problems sizes. Similarly, when building a stiffness matrix associated with

SciDAC 2009,, , LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

5

a simple finite element solver, the overhead costs associated with the use of iMesh ranged from
2% to 11% depending on the access pattern chosen.

Table 1. iMesh and iMeshP Implementations
Implementation Emphasis Parallel Capability Applicaitons
FMDB: Flexible Mesh Adaptively changing Scalable to 32K fusion, accelerators
Database [1, 2] meshes (entity addition procs; 2B elements CFD, solid mechanics
(iMesh/iMeshP) or removal) multiphase flow
MOAB: Mesh Oriented Low memory usage Up to 64 procs nuclear reactors,
dAtaBase [3] first; then CPU accelerators, rad.
(iMesh/iMeshP) time transport, inertial

confinement fusion
GRUMMP: Generation Fast adjacency retrieval In development CFD, biological
and Refinement of for mesh generation and systems, structural
Mixed-Element Meshes improvement, adaptation mechanics
in Parallel [4] (iMesh)
NWGrid: Northwest Simplicial meshes; Parallelism based CFD, subsurface
Grid Generation parallel generations of on Global Arrays; transport, biological
Code [5] (iMesh) unstructured, hybrid, Scalable to at least systems

meshes 10K procs

3. Scalability of ITAPS software
In this section, we hightlight recent results on the scalability of ITAPS tools that use the iMeshP
interface. In particular, in this paper we focus on the combintation of the FMDB mesh database,
Zoltan dynamic load balancing, and MeshAdapt services used in implicit finite element and finite
volume applications. We are interested in both strong and weak scaling to minimize run time
and maximize resolution, respectively. This has driven the need to research new load balancing
technologies and communication tools; particularly as we scale to O(100,000) processors and
beyond. We describe these research efforts in some detail and highlight the resulting scalability
of our tools and solvers that use our tools on a number of different leadership class computers.

The ability to scale implicit finite element and finite volume computations such as those
used in the accelerator and fusion SciDAC application efforts, requires ensuring both the system
formulation and solution are effectively load balanced. Graph-based partitioners are well known
to produce a partitioning of the mesh into parts that are well balanced in terms of the specified
partition object type while also minimizing inter-part communications. However, traditional
graph-partitioners consider a single objective optimization subject to a single balance constraint.
In the case of mesh-based analysis, the defined graph nodes are often mesh regions. This selection
does an excellent job of balancing the number of regions (elements) and therefore the workload for
the construction of the part-level finite element system. However, in the case of C0 interpolating
basis functions, for example, the workload balance for the iterative solution (e.g. matrix vector
product and vector norms) of the resulting system is proportional to the number of mesh vertices
per part. Since mesh vertices are not the objects in the original partitioning, the balance may
not be optimal, particularly when the numbers of mesh entities per part is relatively low (e.g.,
a few thousand). We are developing two multiple compute-object based partition improvement
algorithms to reduce the vertex imbalance thereby improving the overall balance of two mesh
entities as required by a scalable implicit solve. They are referred to as local iterative inter-part
boundary modification (LIIPBMod) and heavy part split (HPS).

• The LIIPBMod Algorithm. LIIPBMod locally migrates small numbers of mesh regions from
parts that are relatively heavily loaded with respect to mesh vertices to neighboring parts

SciDAC 2009,, , LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

6

which are relatively lightly loaded with respect to mesh entities. On the heavily loaded
part, the mesh vertices on the part boundary are traversed and the ones bounding a small
number of elements are identified. If the neighboring part is lightly loaded, the whole
“cavity” (all the adjacent elements of the picked vertex) is migrated to the neighboring
part. By this minor inter-part boundary adjustment, the vertex imbalance is improved
while only modestly perturbing the good element balance. This procedure may need to be
repeated for several iterations to achieve desired vertex balance.

• The HPS Algorithm, Our studies of the mesh partitions given by a graph-based partitioner
show that the percentage of heavily loaded parts (more than 10% imbalance) is usually less
than 1%. The idea of HPS is that, if the desired number of parts is numP, first distribute
the mesh to 99%*numP parts by a graph-based partitioner and leave the other 1%*numP
parts empty. Then, select the 1%*numP parts with the highest vertex load and split them
into two parts (i.e. migrate roughly half of the mesh entities from them to one of the empty
parts). The splitting makes the heavily loaded parts become lightly loaded. Since the peak
of the imbalance determines the scalability, HPS lowers the peak and hence improves the
performance.

Figure 3 shows the results of applying the two algorithms to a 16.7M element anisotropically
adapted mesh used in the simulation of an abdominal aorta aneurism (left image). The two
graphs (center for LIIPBmod and right graph for HPS) indicate the number of vertices per
part divided by the average per part before (red dots) and after (blue dots) application of the
algorithms. Note in both cases the spikes (red dots in the upper parts of the graphs) that reduce
scalability are dramatically lowered after the algorithms have been applied.

Figure 3. Vertex imbalance before and after LIIPBMod and HPS.

Using the results of the multi-compute object load balancer, we showed that unstructured
mesh solvers based on implicit methods can scale to very large numbers of processors [18]. Table
2 illustrates the parallel efficiency of PHASTA, a parallel, unstructured and implicit flow solver
developed at RPI on up to O(100,000) cores of IBM BG and Cray XT systems [19]. PHASTA
uses FMDB and the MeshAdapt service for refinement on up to 32K processors and iMeshP
and iZoltan to partition the resulting meshes into 128K parts for distribution to almost the
full machine for the analysis step. Near-perfect (linear) strong scaling of the analysis step over
multiple doublings of cores can be clearly seen on various systems with a slight decrease in
parallel efficiency on the largest core counts due to the fact that computational load per core
becomes insignificant (for a fixed-size problem). More information on PHASTA’s scaling studies
can be found in [20].

We have also examined the scaling of the MeshAdapt service in both the weak and strong
sense. Mesh adaptation is characterized by small, but variable, work per operation which implies
that achieving “perfect scaling” can be very costly. In particular, our research has found that

SciDAC 2009,, , LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

7

Table 2. Strong scaling results of PHASTA up to O(100,000) cores on IBM BlueGene (BG)
and Cray XT systems (1 implies perfect scaling with 100% parallel efficiency)

.

105 Million Elements 1 Billion Elements
Core BGL-CCNI BGP-ALCF XT4-NERSC Core BGP-ALCF
Count RPI ANL LBNL Count ANL
512 1.00 1.00 1.00 16,384 1.00
1,024 1.01 1.02 1.03 32,678 0.99
2,048 1.00 0.99 1.16 65,536 0.97
4,096 0.99 0.99 1.00 131,072 0.89
8,192 1.02 0.95 0.77
16,384 1.03 0.95
32,768 0.93 0.88

we can run adaptive mesh refinement algorithms on the large numbers of parts typically used
in a simulation analysis, and the overall time will still be a small percentage of the overall
total solution time. For example, for the weak scaling results shown in Table 3 for uniform
adaptive refinement, the time required by the adaptivity algorithms for the largest case on
32768 processors is only 0.04% of the total time.

That said, the scaling efficiency is clearly decreasing as the number of processors increases,
and to improve the scaling characteristics of the MeshAdapt and other services, we are
developing a new general-purpose, MPI-based communication package called the Inter-Processor
Communication Manager (IPComMan). This package aims to reduce data exchange costs by
exploiting communications in a local neighborhood for each processor. The neighborhood is
the subset of processors exchanging messages with each other during a specific communication
round, which in many applications is bounded by a constant, typically under 40, independent of
the total number of processors. Strong scaling of uniform adaptive mesh refinement using the
IPComMan Message Passing library for a mesh starting with 4.3M elements and ending with
2.2B elements is shown in the right of Table 3. Significant improvements in scaling efficiency
compared to the weak scaling case are evident due to decreased communication costs.

Table 3. Uniform adaptive mesh refinement: weak scaling using the AutoPack Message Passing
library and strong scaling using the IPComMan library

Weak Scaling Strong Scaling
Number of Initial Adapted Time Scaling Number of Time Scaling

Parts Mesh Mesh (s) Factor Parts (s) Factor
2048 17M 128M 5.0 1.0 2048 21.5 1.0
4096 34M 274M 4.8 1.05 4096 11.2 0.96
8192 65M 520M 5.1 0.97 8192 5.67 0.95
16384 520M 1.1B 6.1 0.82 16384 2.73 0.99
32768 274M 2.2B 7.4 0.68

4. Use of ITAPS parallel adaptive software in SciDAC applications
ITAPS technologies have impacted DOE applications in a number of ways including direct
use of the services and software described in this paper (adaptive algorithms, mesh quality
improvement, partitioning, front tracking), technology advancement through the demonstration
and insertion of key new technology areas (shape optimization and petascale mesh generation),
and by looking ahead and anticipating the needs of application teams through the development

SciDAC 2009,, , LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

8

of new services (mesh to mesh transfer for coupling multiphysics applications). In this section
we highlight a few key examples of the use of ITAPS software in SciDAC applications. While
we focus on our interactions with accelerator and fusion applications to insert adaptivity into
their codes in this paper, more extensive interactions funded under the auspices of the SciDAC
and other DOE programs include work with multiple accelerator and fusion teams along with
subsurface flow and nuclear energy application teams.

Accelerator Design. The ITAPS team is working extensively with the “Community Petascale
Project for Accelerator Science and Simulation (COMPASS)” SciDAC project, and in particular
researchers at the SLAC National Accelerator Laboratory, to provide high-order mesh generation
and adaptive control methods to improve the processes for the design and optimization of
accelerator cavities. For example, in calculating the short-range wakefield inside an accelerator
structure, only the small region in the vicinity of the moving particle beam is required to have
a highly refined mesh in the simulation. The moving curved mesh adaptation procedure, which
refines a small region of interest near the beam (see Figure 4), greatly reduces the computational
effort required for a given level of accuracy. In particular, using such techniques has resulted in
a tenfold reduction in the computational cost of these simulations [21, 22].

Figure 4. The electric fields on tree-refined curved meshes around the moving beam

Fusion. The SciDAC-funded “Center for Extended MHD modeling (CEMM)” has extensively
used a 3D MHD code to simulate global instabilities in magnetic fusion devices. The ITAPS
team is working with CEMM fusion scientists to extend the MHD high-order finite element
software (M3D-C1) to interface with unstructured mesh adaptation technologies. This enables
them to gain the efficiencies of using adaptive meshes (see Figure 5 for isotropic and anisotropic
adapted meshes [23, 24]) and allows them to model general curved reactor domains (see the
rightmost image in Figure 5).

Figure 5. Isotropic and anisotropic mesh adaptation to increase computational efficiency in
fusion applications. On the far right we show the vorticity contours in a curved reactor domain.

SciDAC 2009,, , LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

9

More information about ITAPS
More information on the ITAPS project including detailed descriptions of the ITAPS services,
interfaces, software, and interactions with SciDAC application teams can be found at http:
//www.itaps-scidac.org.

Acknowledgments
This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344; the Canadian Natural
Sciences and Engineering Research Council under Special Research Opportunities Grant SRO-
299160; by Rensselaer Polytechnic Institute under DOE grant number DE-FC02-01ER25460 and
the NSF PetaApps project OCI-0749152, and by Sandia National Laboratory; a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000. Computing Resources used in this paper include the Rensselaer Computational
Center for Nanotechnology Innovations (BG/L) and DOE INCITE (Intrepid - BG/P).
LLNL-PROC-413879
References
[1] Remacle J F and Shephard M 2003 International Journal for Numerical Methods in Engineering 58 349–374
[2] Seol E and Shephard M 2006 Engineering with Computers 22 197–213
[3] Tautges T J, Meyers R E, Merkley K, Stimpson C and Ernst C 2004 Sandia report SAND 2004-1592 (Sandia

National Laboratories)
[4] Ollivier-Gooch C F 1998–2005 GRUMMP — Generation and Refinement of Unstructured, Mixed-element

Meshes in Parallel http://tetra.mech.ubc.ca/GRUMMP
[5] Trease H 2006 The NWGrid mesh generation system Pacific Northwest National Laboratory -

http://www.emsl.pnl.gov/nwgrid
[6] Collela P 2009 Chombo home page Tech. Rep. https://seesar.lbl.gov/anag/chombo Lawrence Berkeley

National Laboratory
[7] Garaizar X, Hornung R and Kohn S 1999 Structured adaptive mesh refinement applications infracture Tech.

Rep. http://www.llnl.gov/casc/SAMRAI Lawrence Livermore National Laboratory
[8] Bill Henshaw 2009 Overture home page Tech. Rep. http://www.llnl.gov/CASC/Overture.html Lawrence

Livermore National Laboratory
[9] 2009 Mesquite download page http://www.cs.sandia.gov/ web9200/9200 download.html

[10] Freitag L A and Ollivier-Gooch C F 1997 International Journal for Numerical Methods in Engineering 40
3979–4002

[11] Bo W, Fix B, Glimm J, Li X, , Liu X, Samulyak R and Wu L 2007 Proceedings in Applied Mathematics and
Mechanics

[12] Li X, Shephard M and Beall M 2005 to appear Comp. Meth. Appl. Mech. Engng.
[13] Devine K, Boman E, Heaphy R, Hendrickson B and Vaughan C 2002 Computing in Science and Engineering

4 90–97
[14] Dahlgren T, Epperly T, Kumfert G and Leek J 2005 Babel User‘s Guide CASC, Lawrence Livermore National

Laboratory Livermore, California version 0.10.10
[15] iMeshP Interface Documentation 2009 http://www.itaps-scidac.org/software/imeshp html/index.html
[16] Luo X, Shephard M, O’Bara RMand Rocco R and Beall M 2004 Engineering with Computers 20 273–285
[17] Childs H, Brugger E S, Bonnell K S, Meredith J S, Miller M, Whitlock B J and Max N 2005 Proceedings of

IEEE Visualization 2005 pp 190–198
[18] Shephard M, Jansen K, Sahni O and Diachin L 2007 Journal of Physics: Conference Series vol 78-012053
[19] Whiting C H and Jansen K E 2001 International Journal of Numerical Methods in Fluids 35 93–116
[20] Sahni O, Carothers C, Shephard M and Jansen K 2009 Scientific Programming
[21] Luo X J, Shephard M, Lee L, Ge L and Ng C 2008 17th International Meshing Roundtable Conference

(Pittsburgh, PA)
[22] Lee L, Akcelik V, Ng C and Ko K 2008 Journal of Physics: Conference Series 125
[23] Jardin S C, Ferraro N, Breslau J, Bauer A and Shephard M 2007 European Physical Society meeting on

Plasma Physics
[24] Jardin S, Ferraro N, Luo X, Chen J, Breslau J, Jansen K and Shephard M 2008 Journal of Physics:Conference

Series vol 125

SciDAC 2009,, , LLNL-PROC-413879 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012011 doi:10.1088/1742-6596/180/1/012011

10

miller86
Inserted Text

