EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-727102

Ul Review Results and NARAC
Response

J. Fisher, B. Eme, S. Kim, K. Fischer, J. Donetti

March 17, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Inter-Program Design Review of User Interface
Frameworks for the NARAC Modernization Project

John Fisher, Bill Eme, Sei Jung Kim, Kathleen Fischer, John Donetti
National Atmospheric Release Advisory Center (NARAC), Lawrence Livermore National Laboratory

LLNL-TR-727102

March 8th, 2017

Table of Contents

T A oo [V 4[] o HUUUO ORI PTPPPPPPPPP 1
=] oToT a1y o 2 @] o 0] 411 =T 2
Appendix 1: Feedback from Review CommIttee........uuuueiiiiii i et e e e e 3
APPENAIX 2: THE REVIBWETS....ceiiiiiiiee e e e e ettt e e e ettt eee e e e eeeeeeettt e eeeeasstsaaasaaeessssssssnnnseeessssnnnnnaaeaaanens 6
DiSCIAIMEr AN AUSPICES ..eeiiiiiiiiiee e e e ee ettt e e e ettt ereeeeeeeeeeat b e e eeeeastanaaaeaaeesesessssnnnassesssssnnnnseaeesssssnsen 6

Introduction

This report describes the results of an inter-program design review completed February 16, 2017,
during the second year of a FY16-FY18 NA-84 Technology Integration (Tl) project to modernize the core
software system used in DOE/NNSA's National Atmospheric Release Advisory Center (NARAC,
narac.linl.gov). This review focused on the graphical user interfaces (GUI) frameworks. Reviewers
(described in Appendix 2) were selected from multiple areas of the LLNL Computation directorate, based
on their expertise in GUI and Web technologies.

An FY14 DOE NA-42 (now NA-84) Technology Integration (Tl) Scoping Study, and an independent
Schubert committee project review, documented the urgent need to modernize the NARAC software
system [Larsen et al., 2014a; Larsen et al., 2014b; Sugiyama et al., 2014; Schubert et al., 2014]. The
detailed multi-year work plan to implement NARAC software modernization was favorably reviewed by
the external Schubert review committee, made up of members from multiple agencies, and also
internally in LLNL by non-NARAC personnel representing scientific, and computational disciplines in
LLNL. As part of this modernization software architecture (see Design of the Modernized NARAC
Software Control Framework [LLNL-TR-702854]), the GUI framework is going through a ground-up
rewrite.

Response to Committee

The specific comments provided by the inter-program design review committee are provided in
Appendix 1. Below is NARAC's response:

e We agree that the significant changes from Angular 1 to Angular 2 was of concern. But, our
conclusion is that Google has made a strong commitment to minimal breaking changes, with the
revised APIs. For example, the next version (Angular 4) will be backward compatible with
Angular 2 (https://www.genuitec.com/angular-4/). Time will tell of course, but for now, we feel
our use of Angular 2 is an acceptable risk. Developers on the team who have used both Angular
1 and Angular 2 found the APl changes to be a huge improvement. We’ve posted several
StackOverflow questions, and immediately received answers back.

e After considering the review committees feedback, we’ve decided to NOT go with Electron, and
instead go with a more traditional client/server model using the Express web server to server up
web pages, and a RESTful interface. This has the following benefits:

e We were continuing to encounter compatibility problems with Electron and Angular CLI, as
well as Electron and node-java. These problems go away entirely when using Express.js as a
service architecture.

e By using a more traditional REST-based separation of client and server, we will better
encapsulate our node-java bridge, which the committee (rightly) expressed concerns about.
If node-java goes away, we can leverage a Java EE server (e.g. WildFly, Tomcat, etc) to
provide the same REST APIs to our Java codebase, without impact to our client codebase.

e We can take advantage of Websocket APIs to inform users of changes being made in the
system, in real time. The ws library (https://www.npmjs.com/package/ws) appears to be a
good option.

e By using a more traditional client/server web solution, this will simplify the transition of
technologies and capabilities from the Central System to the external Enterprise System.

This approach does introduce some drawbacks that we had been avoiding with the Electron-
based approach:

e Additional dependence on a web server process that may introduce complexity or problems
when running our GUIs on LC systems (if we wanted to provide that).

e We will somehow need to allow users to bring up legacy GUIs, until all GUIs are converted
over. Many of the GUIs are started in a particular “context” (for example, when using the
Event Viewer, a user would “drill down” to the Report Generator GUI). With a browser-only
interface, it’s much harder to bring up the Java-based legacy GUIs directly from the Web
GUIs. We're discussing possible solutions.

e We agree with the committee that we need to develop a testing infrastructure. As part of our
move away from Electron, we employed Angular CLI (https://cli.angular.io/), which

automatically generates scaffolding for Karma (http://karma-runner.github.io) and Jasmine
(https://jasmine.github.io/).

We do have Continuous Integration (Cl) and code review processes in place for the
modernization effort, actively used by developers of the Java code. The user interface codebase
will use the same processes very soon (once we get a bit more stable). The early code we have is
going through *extra* code review at the moment, to make sure we have the code patterns
right.

We appreciate the recommendation of the geoxml|3 package. When we explore a more
complete visualization system using this angular/Typescript architecture we will certainly look
into this package for our visualization system.

Appendix 1: Feedback from Review Committee

The NARAC team presented a technology stack and prototype for the replacement of several NARAC
tool user interfaces. Upgrading the Ul is expected to be a multi-year task and represent a significant
investment from the sponsor. Feedback from GS-CAD staff was sought. The proposed technology stack
is most succinctly summarized as Angular2 with TypeScript in Electron utilizing a networked file system
and possibly the Node-Java bridge. A prototype Ul was briefly demonstrated. The prototype contained
workflow features that appeared to address issues with the existing Ul. Layout controls and general look
and feel appeared modern and clean. Reviewers had several questions addressed during the meeting
and the demonstration generated interaction and feedback.

NARAC developers presented the following justifications for their technology choices:

Using modern web technologies will ease talent retention and acquisition.

Electron allows the Ul to remain a thick client while utilizing web technologies and code that are
rapidly developing and largely adopted.

A non-functional goal is to avoid all licensed technologies and maximize leveraging open source
software.

Critical technologies are supported or maintained by significant corporations. E.g. Angular2 by
Google.

Several risk factors associated with the new design were identified.

Rapid evolution of JavaScript frameworks:

The new Ul is all-in on Angular2. Angular is vastly popular, but fractured between incompatible
versions 1 and 2. StackOverflow contains 220,000 questions on angularjs, but only 37,000
guestions on angular2. Questions on angular2 are comparable to reactjs, a competing
framework. Google has a recent history of deprecating and abandoning products. Google’s
commitment to maintaining backwards compatibility with Angular2 is understandably
guestionable.

Testing and testability:

Based on responses to questioning, testing and testability had not yet been investigated.
Testable code is typically more well designed and cost-effective to maintain. Applicability of

testing frameworks and overall testability should be a critical element of planning before
committing to the new technology. The CAPS team has begun using Jasmine.

Multi-user concurrency via network filesystem interactions:

The commitment to a thick client comes at the expense of potential concurrency enforcement
through backend services. Utilizing a networked filesystem for concurrency and communication
may prove challenging or ineffective. A distributed synchronization utility may still be needed.
Node-Java bridge:

The Node-Java project is still in beta releasing under version 0.*. The project describes several
peculiarities and requires additional steps for Java 8 code. Relying on Node-Java in the design
may be an unacceptable risk for a large multi-year redesign project.

Ul usability and user metrics:

The prototype Ul included the ability to customize layout and windowing of widgets. Workspace
customization features offer power users extensive control of the application to maximize
personal efficiency. To be effective the scientific staff may need training and workspace
customizations may need to be persisted. A preliminary review with the application users may
provide valuable guidance on the level of effort that should be invested. Ul metrics tools can
help provide continued usage insights.

The second-system effect:

Developing a second system may lead to feature creep and bloat in the new system while
simultaneously abandonment of commitment to maintain the existing system. NARAC
developers have lived with often painful issues in the existing system. Designing a new system
may lead to a desire to add new features that are not critical.

Map APlIs:

Openlayers was prototyped as the chosen mapping API. Reviewers from the BKC have
integrated NARAC generated KML into the BKMS application and chose OpenlLayers. Openlayers
v2 and v3 do not support all KML tags. OpenLayers source had to be downloaded and modified
to support GroundOverlay and LatLonBox. Several additional standard KML tags are not
supported by Openlayers. Google Maps API requires all KML be publicly accessible. The geoxml3
library for Google Maps allows rendering KML without making it publicly available, but will not
work with the deprecated Google Earth Enterprise/Google Fusion maps on private networks.

The reviewers have the following general recommendations:

Links:

Reconsider using a services architecture and serving the Ul as a “thin client”

Establish a Cl process

Investigate testing and establish test tools in a Cl process

Adopt a Git workflow model

Utilize code review as a semi-formal process

Identify language or component experts to maximize knowledge sharing in the code review
process

Avoid beta technologies that would not be easily replaced (e.g. Node-Java)

https://developers.google.com/maps/documentation/javascript/kml
https://github.com/geocodezip/geoxml3
https://github.com/openlayers/openlayers/issues/2941
https://github.com/joeferner/node-java

https://jasmine.github.io/

http://stackoverflow.com/questions/tagged/angularijs
http://stackoverflow.com/questions/tagged/angular2
http://stackoverflow.com/questions/tagged/reactjs

Appendix 2: The Reviewers

The following people participated as inter-program, subject matter expert reviewers:

Analytics and Informatics Management Systems (AIMS) project, in the

Sam Fries Climate Program

Daniel Howell Biodefense Knowledge Center (BKC) Program

Tim Bender Biodefense Knowledge Center (BKC) Program

Kyle Dickerson Counterproliferation & Operational Intelligence Support (CPOIS)
Eric Pernice National Ignition Facility (NIF)

lan Lee Livermore Computing (LC)

Emily De Santis Global Security E Program Chief Engineer

Disclaimer and Auspices

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes. Lawrence Livermore National Laboratory is operated by Lawrence Livermore
National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration
under Contract DE-AC52-07NA27344.

