
Final Report, “Exploiting Global View for Resilience”∗

Andrew A. Chien, University of Chicago and Argonne National Laboratory
Pavan Balaji, Argonne National Laboratory

Final Report DOE-UCHICAGO-SC0008603
Award DE-SC0008603 and Contract DE-AC02-06CH11357

Reporting Period: Sept 1, 2012 - August 31, 2016
March 29, 2017

1 Executive Summary

The GVR project aims to create a new approach to portable, resilient applications. The GVR
approach builds on a global view data model,, adding versioning (multi-version), user control of
timing and rate (multi-stream), and flexible cross layer error signalling and recovery. With a
versioned array as a portable abstraction, GVR enables application programmers to exploit deep
scientific and application code insights to manage resilience (and its overhead) in a flexible, portable
fashion.

We have established the GVR model as a viable gentle-slope path to exascale resilisnce [3, 4].
In five demonstrations on application code bases ranging from 30K to 500K lines of code, drawn
from co-design center applications and full-blown DOE science applications, we have shown that
GVR can be used to add flexible resilience with modest code change (generally < 1% code change)
and modest performance impact (< 1%). Furthermore, this small added structure creates a sound
foundation to scale from today’s low error rates to the high potential error rates, and growing
breadth of potential hardware and software of the future. In short, a robust path for resilience to
Exascale systems and applications.

Our study of versioniong approaches, detail several low-cost methods to achieve frequent ver-
sioning. And, experiments with burst buffers, both to reduce versioning costs even further, and to
engage lifetime management all show how efficient GVR versioning can be. Specific accomplish-
ments include:

• Define GVR Model - api, and use (include versioning, multi-stream, and Open resilience)
[24,25]

• Latent Error modelling (bonus) [18]

• GVR Software - architecture, implementation, and research on key implementation challenges
(efficient versioning) [2, 7, 14]

∗Funded by Ofce of Advanced Scientic Computing Research, Ofce of Science, U.S. Department of Energy, under
Award DE-SC0008603 and Con- tract DE-AC02-06CH11357.

1

• Extensive application studies with mini-apps to assess design and resilience opportunities
[10,22]

• Extensive application studies with full-applications to assess design and resilience opportuni-
ties [10]

• In-depth study with rich Trilinos libraries using GVR with full-applications to assess design
and resilience opportunities [26]

• Work on ULFM which will enable GVR to be used to tolerate process failures [2]

• Extensive application studies with full-applications to GVR versioning costs [3, 4],

• Extensive implementation studies of versioning techniques, using OS support, application
information [12,13],

• Versioning optimization using burst buffers in large-scale production systems, and even life-
time management of SSDs [8, 9, 11].

• Extensive studies of application studies with full-applications to GVR versioning costs [3–6]

• Definition of a new approach for application-based fault resilience, Space-Time, that enables
a disciplined approach to runtime correction/adaptation, and continuous execution. This
enables creation of systems support for efficient parallel implementation.

• Partner software releases (2014), Open Source releases (2015, 2016) - see http://gvr.cs.

uchicago.edu/

• Publication of 16 research papers and technical reports, and one two MS Thesis (Rubenstein,
Fang) [2–14,18,22,26]

With the one noted bonus exception, these accomplishments correspond directly to planned
project objective and deliverables.

Additional project information can be found at http://gvr.cs.uchicago.edu/.

2 Establish GVR Model: API, Semantics, and Usage

2.1 Multi-version, Consistency, and Recovery

GVR provides a globally-visible, distributed array to applications, as in Global Arrays [19]. One of
the most novel features in GVR is that it provides multi-version global array. As the computation
evolves, the contents of the array keeps changing. GVR preserves multiple snapshots of these array
contents, and provides random access to these snapshots. Multiple versions allow applications to
enable various correction or approximation techniques to recover from complex errors.

Snapshot creations are controlled by applications – applications control when snapshots are
safely taken. This also means that applications control consistency. Applications are supposed to
take a snapshot at the moment where the contents of the array becomes consistent across all the
users (e.g. processes) of the array. Although applications tell the library when to take a snapshot, we
defined that the GVR library could ultimately decide whether to preserve that version in a memory
or storage. Also the GVR library can dispose an old version if it seems unlikely to be useful anymore.
In this way GVR can provide a portable runtime environment for applications, because the optimal
number of versions to preserve heavily depends on several environment-dependent factors such as
available memory/storage resources as well as expected failure rate.

2

GVR provides several APIs to create and navigate multiple versions. GDS version inc creates
a version and increments the current version number. GDS move to prev and GDS move to next
updates an array handle so that it points to previous/next version.

2.2 Multi-stream

Figure 1: Multi-stream versioning in the Preconditioned Conjugate Gradient method (PCG) (each
rectangle is version). The key structures are versioned at different cadences. The A matrix im-
mutable, so only a single version is created. The x and p vectors are smaller and change each
iteration, so we use periodic versioning with a higher frequency for x, customized to the PCG
algorithmic error sensitivies.

One key feature of GVR is that every GDS object is independently managed. The applications
can choose when to perform synchronization operations, when to take new versions, and how to
handle errors on a per-object basis. This fine-grained error handling is important because different
objects have different resilience characteristics. For example, some objects might be read-only,
some objects might be difficult or easy to recalculate, or some objects may take up a lot of space in
memory or a little space in memory. All of these characteristics imply particular ways that these
objects should be made error-tolerant. For example, a read-only object needs only be preserved
once, an object that is easy to calculate may not need to be preserved at all, and objects that take
up less memory can be efficiently preserved at a greater frequency than objects that take up more
memory.

In Figure 1 is an example of how we might preserve some of the objects in an implementation
of Preconditioned Conjugate Gradient method. The large, read-only A matrix is only preserved
once, while the smaller vectors are preserved more often. Of the vectors, the more vulnerable x
vector is preserved more often than the less vulnerable p vector.

2.3 Open reliability – Cross layer, Unified Error Events

Program execution can encounter a variety of errors – a node crash, memory error, network error,
sanity check error in a library, etc. To maximize the range of errors that an application can survive,
GVR enables the use of hardware system, runtime, application, or even domain semantics. GVR
provides a unified interface for error signaling and handling interface, enabling a single application

3

Figure 2: Open resilence supports cross-layer partnership for error recovery. Unified error types
and signalling/recovery mechanisms aid portability and generality of application investment. Blue
arrows between denote error signaling; black arrows error recovery. Blue circles reflect that com-
ponents may handle errors internally.

handler to manage multiple classes or errors and customize that handling to application seman-
tics. When an error happens, the GVR library invokes the appropriate handler, passing an error
descriptor object with error information. The types of these objects organize an error taxonomy,
making it convenient for applications to create custom (and general error handling logic. Figure 2
illustrates this cross-layer partnership for error handling.

This year we have designed and implemented the error handling APIs, and used them to im-
plement a range of L1 cache, DRAM error, application-signaled errors, and other error handling
scenarios. Future work will include additional system software error signal support.

2.4 Latent Error Modeling work (BONUS work)

While not proposed as part of the original project, we explored the implications of latent errors
– commonly called “silent errors” – on the effectiveness of checkpoint-restart based reliability,
comparing it to version-based resilience under a variety of assumptions of error rate, error detection
rate, as well a version/version cost and recovery cost. These studies were based on a queueing theory
analytical model and a set of simulation experiments.

Our work begins with the notion that errors may be latent for signicant period- s of time (in
the limit truly silent), and develop a new system model for selecting checkpoint intervals in this
new environment. Our multi-version scheme comple- ments this model, persisting multiple versions
to enable recovery from latent errors. We use the new system model to explore the design space
for future multi-version systems, characterizing opportunities to increase resilience in this new
world, and how to do so how many versions might be fruitful, critical error detection and error
rates, version cost, etc. These results not only shows that multi-version checkpoints increase error
resilience, but that they may do so in realistic cost and error scenarios.

Our specific contributions and findings in this work include:

1. Definition of a system model that models latent errors and derivation of optimal checkpoint
intervals.

2. Study of the new system model which shows that in a range of potential error rate and
detection scenar- ios, 2 versions of checkpoint will be needed to achieve acceptable error cov-

4

Figure 3: In presence of latent errors, K-version delivers much higher system efficiency than either
SCR and retuned Daly Checkpoint restart.

erage, the specic coverage ben- ets of each additional checkpoint, and over a dozen checkpoint
versions in more extreme cases.

3. Study of the eciency of multi-version shows 3 versions are generally sucient to achieve high
eciency. But ten versions can be necessary to achieve high eciency in low detection rate
scenarios, even with low error rates.

4. A comparison of our results to those based on a sim- pler fail-stop error model, showing
that such models cannot achieve acceptable eciency in low detection rate or high error rate
scenarios. In fact, the sim- pler models appear to overestimate the capabilities of single-
checkpoint approaches.

5. Explore realistic exascale machine scenarios for error rate, and show that even with improved
checkpoint- ing, multiple versions may give signicant benets. As many as seven checkpoints
are benecial even in low error rate scenarios.

The full results [18] were published in FTXS ’13.

3 Software Architecture and Implementation

3.1 Efficient Versioning

A critical challenge for the GVR is achieving efficent implementation of multi-version arrays. We
are exploring several approaches. The first implements arrays as “logs” of changes, and the second
uses hardware and operating system change tracking techniques.

One approach we have been developing builds a log-structured representation, capturing a se-
quence of modifications as they’re made, so that when a new version is needed, its essentially
already created. Each update is appended to an in-memory log, allowing more efficient representa-
tion if only a fraction of the array is modified in each version, increasing efficiency and reducing the
size of the version. Our studies show that such is true for several application/data structures such

5

Metadata Data

Version 0 Version 1
Initial
Data

Log head Log tail

Tail pointer

Figure 4: In-memory Data Structure of the Log-structured Array

OpenMC PCG Canneal
0

50

100

Flat Log

(a) Log-array performance vs. Flat array.

OpenMC PCG Canneal
0

50

100

Flat Log Log (maximum saving)

(b) Version size (memory) vs. Flat array. “Log” is
configured for the best runtime performance while
“Log (maximum saving)” is configured for maxi-
mum memory savings.

Figure 5: Evaluation results of the log-structured array

as canneal (a part of the PARSEC benchmark suite [1]) or OpenMC tally data structure. GVR
creates versions with a GDS version inc() call.

Global arrays are implemented by dividing them chunks that are assigned to nodes/processes.
Each chunk has internal structure as shown in Figure 4 and is exposed to other processes via one-
sided remote memory access (RMA) operations. The log area consists of tail pointer, data blocks,
and metadata blocks. The tail pointer points to the tail of the log. A data block contains application
program data. Metadata blocks work as an index, pointing to the corresponding location of the
data block. When a new version is created, the GVR library creates a new set of metadata blocks,
copying them, and writes them at the tail.

Because we are only interested in high performance implementations, we assume RDMA (Re-
mote Direct Memory Access) hardware, and carefully design the log-structured array so that most
of the fundamental data access (e.g. put/get/acc) can be performed only using one-sided commu-
nication. For example, we chose fixed-size block in order to make it easy to address the metadata
block from the remote side. To optimize the performance, if the target data block is already
updated, succeeding updates to the same block are overwritten to the existing block.

We applied the log-structured array to several applications (OpenMC, a Monte Carlo simulation
code [20] for nuclear reactor simulation, PCG, a linear equation solver with the Preconditioned

6

Conjugate Gradient method using Trilinos [15], and canneal, a simulated annealing code in the
PARSEC benchmark suite [1]), comparing to a flat array representation.

Figure 5 shows the runtime performance and memory usage of each application on 32 nodes.
Figure 5(a) shows that versioning runtime overheads can be negligible (3.7% for PCG, 4.7% for
OpenMC), and manageable for the other (26% canneal). The block size of the log-structured
array was configured so that it can achieve best runtime performance. Our results show that the
log-structured array achieves a comparable performance for all three applications.

Figure 5(b) shows the relative memory consumption of each application. We also measured the
maximum memory savings available when the block size of the log-structured array is set to the
message size. The result shows that the log-structured array saves as much as 97.7% memory for
preserving versions. This means that the log-structured array can extend the lifetime of NVRAM
devices which have write endurance limitations, by up to 42.7x, if versions are written to NVRAM.
Full results for the log-structured array study can be found in [14].

3.2 Operating System and Hardware-based Change Tracking for Versions

Low-overhead identification of memory areas modified by the application is critical to efficient
versioning. Such “change tracking” or “dirty bit tracking” is critical for applications where a non-
negligible part of memory is not dirtied between version snapshots. A number of approaches can be
employed to achieve that goal. The most basic scheme involves making a complete memory copy
of the multiversioned memory region and comparing against it byte-by-byte at the next version
increment. For applications with large memory footprint, however, the runtime overhead would be
significant and the memory overhead would be unacceptable.

In GVR, we designed three approaches for managing change tracking between versions: (1)
user-supplied dirty-bit tracking, (2) kernel-level page-based memory tracking, and (3) hardware
accelerated dirty bit tracking.

User-supplied Dirty-bit Tracking. The most basic practical approach for dirty-bit tracking
involves maintaining a bitmap for tracking changed memory areas based on user-provided hints.
Being entirely userspace based, this has a relatively low overhead; however, the overhead accu-
mulates with increasing memory access count as, in the worst-case scenario, every access to the
multiversioned region must be registered. The bitmap resolution (block size) is a compile-time
option that currently defaults to 64 bytes per bit, or a single 64-bit word per standard 4K memory
page.

Kernel-level Page-based Memory Tracking. The second approach we investigated is based
on kernel-level, page-based memory protection. On version increment, the multiversioned region is
write-protected, subsequently resulting in page faults on write accesses. Our signal handler marks
the faulting page in the bitmap as changed and unprotects it. The advantage of this scheme is
that it is transparent to regular memory accesses from the application – the application code does
not need to be instrumented. There are, however, a few disadvantages to this approach. First, if a
write-protected region is passed to a memory-modifying system call, such as read(2), the call will
fail. Thus, the memory must be unprotected before the call. Second, the overhead of a page fault
can be quite high. Since we use the page fault only to mark dirty pages, only the first call after a
version increment has this overhead; subsequent writes are overhead-free. But depending on how
frequently the versions are incremented, this overhead might or might not be amortized. Third,
the resolution of change tracking is at the granularity of a page size. This is typically 4 KB, forcing

7

change tracking at a smaller granularity not feasible with this approach. Furthermore, for systems
with large pages, the granularity might be too coarse to be valuable.

Hardware Accelerated Dirty-bit Tracking. The third approach we investigated is based on
hardware dirty page bit tracking. Unfortunately, this feature is currently only available on the ia64
and x86 architectures, but we fully expect more future architectures to support similar functionality
as well. This approach has most of the advantages of the kernel-based memory protection discussed
above, without the overheads and limitations of page faults. Specifically, the updates of the dirty
bits stored in the page tables are carried out independently by the CPU itself without any software
intervention. Such capability makes this approach completely transparent to software (with the
exception of (R)DMA transfers). A minor issue with this approach is that the dirty bit information
is not conveniently exposed by operating systems to userspace, and no interfaces are provided to
reset the page table dirty bit (which we need to do on version increment). Hence, modifications to
the operating system are needed. We took advantage of the work of NCSU’s team led by Frank
Mueller, which in turn was based on an earlier work by HP for Itanium. We updated the patches to
the latest Linux kernel version and added missing support for regular and transparent huge pages.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000 10000 100000 1e+06

G
U

P
/s

Snapshot interval

Hardware
Kernel

User

(a) Performance for different versioning intervals (ex-
pressed as a number of application iterations between
snapshots).

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

G
U

P
/s

iterations

No LRDS
Hardware

Kernel
User

(b) Performance with versioning disabled, for differ-
ent total number of application iterations.

Figure 6: Performance comparison of different change-tracking schemes.

We conducted a series of experiments to compare the three approaches under different conditions
and even on different hardware; Figure 6 provides a sample. The benchmark used here is the
RandomAccess kernel from the HPC Challenge suite – a random walk over a 128 MB memory
buffer (32K memory pages), versioned to a 1 GB ring buffer in DRAM (to avoid the highly variable
overheads of I/O to more permanent storage). The experiments were run on dual quad-core Xeon
Nehalem E5520 node.

The left plot shows the overall performance of the benchmark (in Giga-Updates Per Second)
when varying the change tracking scheme and the frequency of versioning (from once every 10
random walk iterations to once every million). As can be observed, the first approach (“User”)
performs surprisingly well over a wide range of versioning intervals. In comparison, the second
approach (“Kernel”) performs rather poorly, being the worst or close to the worst performer over
the whole range shown. This is, of course, due to the high cost of a page fault on first access to each

8

page (measured in a separate set of experiments at around 7000 CPU cycles). While the percentage
overhead reduces when consequent versions are more than 100,000 memory accesses apart, the
performance of this approach even with a million interations between versions is underwhelming.
The third approach (“Hardware”) reduces the overhead to some 450 CPU cycles per first page
access. This significantly reduces the overhead, but still needs around 100,000 iterations between
versions to hide the extra cost.

These findings are confirmed by the plot on the right, which compares the performance of the
three approaches with change tracking enabled, but memory versioning disabled. Here, the X axis
shows the overall number of iterations. As can be observed, the benchmark must run for over
100,000 iterations for “Hardware” to overtake “User”, and for over 1 million for “Kernel” to do the
same. The plot also includes a line showing the peak performance of the benchmark with change
tracking disabled (“No LRDS”). Both “Hardware” and “Kernel” eventually reach that performance
level, but the “User” approach never does since its overheads increase linearly with the number of
iterations.

A second source of overhead for “Kernel” and “Hardware” is the system call overhead experi-
enced when resetting the change tracking after each versioning operation. That cost is in fact a bit
higher for our “Hardware” implementation than for the “Kernel” one, hence the lower performance
of Hardware for the highest versioning frequency of every 10 iterations.

Hardware dirty-bit tracking on page tables is a somewhat obscure feature that is not extensively
used by the mainstream operating systems, so its overheads are rather poorly documented. From
what we were able to ascertain, it is implemented in the CPUs using locked read-modify-write
cycles, which are fairly expensive. Similarly, the explicit reset of dirty bits that we need to conduct
on version increment requires a TLB flush, resulting in another temporary slowdown. We have
observed significant differences in the overhead between Intel and AMD CPUs, and even between
different generations of CPUs from the same manufacturer.

Our overall conclusion though is that the “User” approach cannot be beaten in case of frequent
versioning, although it does require the application code to be instrumented. The “Kernel” ap-
proach suffers from high overheads and is not as transparent as we initially thought, so it should
best be avoided. Instead, the “Hardware” approach should be used in situations where instrument-
ing the application is impractical and the multiversioned memory region is large, provided that it
is possible to run a custom operating system kernel on the machine. The memory access pattern
of the application must also be sufficiently localized that the same memory pages are written to on
average at least some 3 times between versioning operations in order to hide the extra overhead of
the first access.

3.3 Tolerating Process Failures

As fault tolerance has become an increasingly important area of research in the push toward ex-
ascale, it has become just as important to be able to evaluate the effectiveness and performance
of new fault tolerance techniques with tools that are efficient, representative of real-world appli-
cations, and easy to modify to demonstrate computer science research. The CESAR mini-apps
provide such a tool which we have used to evaluate two new libraries which provide fault tolerance
in MPI applications. By using these apps, we have been able to quickly refine the correctness and
performance of fault tolerance libraries in relation to the GVR project.

The first such library is MPIXFT, an MPI-3 based library which provides automatic fault
tolerance, transparently detects and recovers from process failures. MPIXFT captures MPI calls

9

via the PMPI interface and translates them to use an underlying communication mapping that can
be dynamically regenerated when a failure is detected. By converting the application’s MPI calls
into new calls, the library can use its own MPI objects, such as communicators, remap ranks to
match the new communicators, and convert blocking calls into non-blocking calls to employ failure
propagation.

Using Mira and other, smaller clusters, we are able to determine the efficiency of our methods
at a more representative scale of the type of machine where such failures are expected to occur.
To effectively reach such a scale, we modified the Monte Carlo Communication Kernel (MCCK)
mini-app to recover from process failures by re-executing failed iterations before committing the
results to memory. MCCK is a domain decomposition style application that uses 3D halo exchange
to move particles between domains. In our modifications, we check whether an MPI call was
successful by examining its return code. If a call is unsuccessful, then the result of that iteration
is discarded and the entire iteration is repeated (after running to completion to avoid improper
MPI call matching). This means that before the transferred particles are committed to memory
and the previous particle counts are overwritten, the counts are stored in a second buffer which
then replaces the original buffer after all of the MPI calls return successfully. Another important
modification to the MCCK mini-app is to allow the application to complete with fewer processes
than what it began with. When a process failure occurs, MPIXFT does not replace the failed
process, but allows the application to easily avoid the failed process in future communication. We
modified the MCCK mini-app to divide the failed process’s domain amongst its 6 neighboring
processes. Particles which would have been sent to the failed process are instead sent “through”
the process to the next neighbor in the communication topology.

Another fault tolerance library that has benefited from the CESAR mini-apps is the MPI
library itself. The MPI Forum is developing the next version of the MPI Standard, and as part
of that effort, is evaluating how fault tolerance in MPI might be specified. The current proposal
under consideration is called User Level Failure Mitigation (ULFM) [2]. This proposal puts failure
recovery in the hands of the application (or libraries which work on its behalf) by providing the
foundational API calls necessary to stabilize the MPI library and reconstruct any communication
interfaces. ULFM specifies the general class of failure detector that is required and the interaction
between the library and application in order to report such failures to the application in a timely and
efficient manner via return codes and error handlers. After reporting such a failure, the application
can use failure discovery APIs to query the group of failed processes and communicator object
reconstruction calls to re-create MPI communicators, windows, and files. ULFM also includes
a new type of API called MPI COMM REVOKE which allows the application to enforce global
knowledge of failures by destroying an exiting communication object. The API for ULFM has been
defined by the MPI Forum’s Fault Tolerance Working Group and now evaluation of its effectiveness
and performance are ongoing.

While this new API targets large applications that run at exascale, more immediate evaluation
requires more manageable representative applications such as those available from CESAR. Evalu-
ation in this area is ongoing and therefore details of such work are not yet available, but the current
plan is to modify one or more of the CESAR mini-apps (including MCCK and possibly Nekbone)
to use such an API. These modifications will be less extensive than were necessary for MPIXFT as
they will not require the application to run with fewer processes after a failure. Instead, the failed
process can be re-spawned and patched back into the communication topology using existing MPI
dynamic processing APIs and the new ULFM proposal.

10

As these libraries are completed, we have been designing interaction between them and GVR,
primarily with ULFM. By combining the process resilience of ULFM and the data resilience of
GVR, we can provide a more complete model of fault tolerance for applications. We have been
beginning work collaborating with Lawrence Berkeley National Laboratory to add GVR+ULFM
to their Chombo project (more information in Section ??).

3.4 Storage Hierarchy and Redundant Encodings

We have explored two additional implementation opportunities. First, we have studied the integra-
tion of GVR versioning with the scalable checkpoint-restart (SCR) system. Second, we developed
an in-memory redundant encoding scheme (XOR and erasure codes) that allows versions to be
persisted reliably in memory. Note that this type of redundancy can be supported at reasonable
cost in versions because the data does not change. All GVR versions older than the current one
are immutable.

4 Application studies: Version-based Recovery in mini-Apps, co-
Design Apps, and full Applications

To ensure a robust, usable API design, and to explore the utility of GVR with HPC applications,
we have done studies using GVR’s multi-versioning approach to add resilience to a number of
applications. Some of these studies were based on released mini-apps, but significantly several
involved large-scale applications and were done in partnership with a computational science team.
Learnings include insights into the ease with which GVR was added, its ability to flexibly add a
spectrum of resilience approaches and to adjust overhead as needed to acceptable levels. In all
cases, our experience has been positive, with only modest code changes required, the resilience
scheme flexibly adapted to both match application structure and exploit application semantics,
and acceptable low overheads. In the following we discuss our studies of miniMD, ddcMD, miniFE,
PCG with Trilinos, and GMRES with Trilinos.

4.1 miniMD

MiniMD is one of the Sandia National Laboratories Mantevo mini-apps [15], a miniature version
of molecular dynamics (MD) application LAMMPS.

Like LAMMPS, MiniMD uses spatial decomposition MD, where individual processors in a clus-
ter own subsets of simulation box and perform atoms computation with problem size, atom density,
temperature, timestep size, particle interaction cutoff distance and other parameters specified by
users. It also has force models for binding forces, electrostatic forces, and so on typical to MD
applications. MiniMD computes the evolution of a set of particles by a series of timesteps. Each
timestep includes

1. update velocity using forces

2. update position using velocity

3. build neighbor lists

4. compute force using position

11

5. apply constraints & boundary conditions on force

6. update velocity using new force

7. output

The state of the simulation is capted in three parameters for each of the molecules – position,
velocity, and force. To make MiniMD resilient using GVR, each of these parameters is stored and
versioned in a global array; three global arrays in all. Upon error detection, MiniMD simply reads
the most recently saved version of each of these three arrays (position, velocity, and force), and
restarts the computation. Obviously if only one array is corrupted and the application allows, a
single array can be restored. Alternatively, as we see in ddcMDC forward error correction may be
possible.

To exercise the resilient miniMD and GVR, and application-level error checking, we performed
the error-injection experiments. Errors were injected into random locations in the position, velocity
and force vectors in the runtime. Application level checks based on molecule loss (checksum),
particle movement continuity, and some energy conservation constraints were explored. When
errors were detected, MiniMD restored the computation and generated the correct results.

4.2 ddcMD

Domain-decomposition molecular dynamics (ddcMD) is a collection of atomistic simulation pro-
grams developed by Lawrence Livermore National Laboratory. It is designed to achieve scalability
and efficiency. The existing implementation of ddcMD tolerates L1 cache parity errors on BG/L
by using a “simply rally” checkpoint/restart scheme. We used GVR to broaden the fault tolerance
capabilities of ddcMD.

The way that ddcMD models physics is much more complicated than the model used in MiniMD.
We first analyzed the data structures in ddcMD and identified a set of variables that are essential
for computation and recovery, then applied GVR global arrays to preserve these variables. We
designed two error detection methods. We found that the capabilities of fault tolerance depends on
error detection methods [10] since the recovery procedure could only be invoked upon errors being
detected.

Furthermore, we conducted error-injection experiments in two steps. First, we injected errors
into different variables. Second, we varied the magnitude of of errors. Using these different sce-
narios, we tested the correctness of recovery and compared the sensitivities of our error-detection
methods. Application level checks based on molecule loss (checksum), particle movement conti-
nuity, and some energy conservation constraints were explored. Full details of this studay can be
found in [10]:

Results Following the ddcMD code changes made to tolerate hardware unrecoverable L1 cache
parity errors, we replicated these recovery capabilities with only adding 310 lines of GVR library
calls to original 10,935 lines of source code. Our next step was to use this base to explore a range of
application-specific error detection and recovery schemes that generalize the classes of errors that
can be detected and recovered without application interruption. This broader class of errors includes
general memory system errors (L2, L3, DRAM, bus, controller, etc), hardware computation errors,
communication errors, software bugs, and others. The error checks are conveniently expressed in
the application source code in terms of application data structures, and enable flexible, application-
controlled recovery from these errors. We find that GVR enables convenient broadening of error

12

coverage and resilience. To evaluate the capabilities of error detection schemes, we performed
error injection experiments. The results show that application-specific error detection schemes can
detect certain magnitudes of errors, but leave some errors silent. Our GVR provides opportunities
to recover from silent errors

4.3 miniFE

MiniFE is a Mantevo miniapp [16] that simulates solving a structured mesh problem with finite
element method. A large proportion of computational time is spent inside a linear solver kernel–
in particular, Preconditioned Conjugate Gradient method (PCG).

Finite element solvers have two primary phases of computation. The first phase generates a
system of linear equations to solve based on the decomposition of the domain and the problem to
be solved. The second phase solves the system of linear equations. Making the first phase fault-
tolerant is a different problem than making the second phase fault-tolerant. We focused on making
the second phase fault-tolerant [22] and left the first for future work.

Results For miniFE, we used GVR to preserve critical elements of the state of computation
and then restore them in the event of drastic increase in the distance between the approximate
answer and the correct answer. We expanded our work with PCG in a further study, described in
Section 4.4.

We performed an exploratory error-injection experiment in which we severely corrupted every
element of the critical r vector in PCG. We then used GVR to periodically take snapshots of critical
variables, and then, in the event of a drastic norm residual increase, restore the solver to its previous
state. After an error was injected, norm residual returned to its value at the last snapshot rather
than drastically growing.

4.4 PCG/Trilinos

The Trilinos project [15] is a C++ library that provides scalable primitives for linear algebra
operations, linear and nonlinear solvers, and other useful scientific computing algorithms. In this
study, we utilized Trilinos’ linear algebra primitives in order to implement a PCG solver and expand
on the work discussed in 4.3.

Preconditioned conjugate gradient is a common iterative solution method fore linear systems
Ax = b. In addition, it is the simplest of the class of Krylov subspace solvers which solve linear
systems by moving the approximate answer in one dimension of Krylov subspace at a time. It is not
clear how errors in PCG should be efficiently detected. Even when an error is detected, there are a
number of conceivable ways to recover, including restoring old state, ignoring errors and depending
on numerical resilience, or replacing corrupted data with some approximation of the correct value.

Results - GVR and Effective Error Detection We exploited core Trilinos abstractions
for vectors and matrices (petra) to build GVR-provided resilience into linear algebra primitives
rather than requiring the application developer to interact with memory directly. We decorated
Trilinos vector objects with methods to snapshot and restore state on demand with GVR [22].
These methods were then used in conjunction with application-directed error detection in order to
find errors and restore to a previous application state as appropriate. This GVR-enhancement of
the trilinos system required changes to only a very small fraction of the Trilinos source code [26].

GVR enabled convenient expression of application-level error checks connected to application-
driven recovery. Our experiments with the PCG solver show that the choice of detection methods

13

make a good deal of difference when correcting errors in PCG. Inexpensive methods based on moni-
toring the norm residual and more expensive, algorithm-aware methods that performed extra linear
algebra operations to verify PCG-specific invariants were implemented and explored empirically.

We found that: 1) Though inexpensive, residual-based detection performs poorly. To achieve
acceptably low false negative rates, high (30x number of mitigated false negatives) false positives
rates are required. 2) Though more expensive, algorithm-based detection performs better overall,
achieving much lower false negative rates at one seventh the false positive rate. Even this relatively
expensive error detection is inexpensive compared to a single solver iteration, and therefore is viable
for linear solvers—particularly in high error-rate systems.

4.5 GMRES/Trilinos

Like PCG, Generalized Minimal Residual Method (GMRES) is a Krylov subspace method for
solving systems of linear equations. A variation of GMRES that is particularly interesting to
the realm of fault tolerance is Flexible GMRES [23] (FGMRES) or the similar Fault-Tolerant
GMRES [17] (FTGMRES). In this variation, each iteration of GMRES utilizes an inner solver to
solve a linear system that is simpler than the system that FGMRES is ultimately trying to solve.
In principal, FGMRES will eventually return correct results regardless of the results of the inner
solve. In addition, about 90% of execution time is spent in the inner solver [26]. Consequently,
we can afford to employ light-weight fault-tolerance methods on the inner solver and employ more
heavy-weight fault-tolerance methods on the outer solver, and still converge to correct results with
good performance.

As in the PCG project, this work utilized Trilinos library. The work employed both Trilinos’
implementation of linear algebra primitives and Trilinos’ GMRES implementation.

We used GVR to preserve critical data structures in FGMRES and restore them in the event
in the event that an error was detected [26]. One scheme used GVR to preserve multiple versions
of critical objects during the inner solve so that, if an error was detected after the completion of an
inner solver, the inner solver could be resumed from the version before the error occurred rather
than having to restart the entire inner solver.

We found that, even though FGMRES is inherently resilient to inner solver errors, performance
in a faulty environment could be significantly improved by utilizing GVR for fault tolerance. In
addition, utilizing even very expensive Dual-modular redundancy in the outer solver significantly
improves performance over restarting.

4.6 OpenMC

OpenMC is a open source production code for conducting direct full-core reactor simulation by
using Monte Carlo methods [20]. OpenMC is able to scale up to tens of thousands of processors
by using several novel techniques, enabling high fidelity, large-scale reactor simulations on modern
and future computer systems. It was originally developed by the Computational Reactor Physics
Group at the MIT in 2011 and now is being used for reactor studies at the Center for Exascale
Simulation of Advanced Reactors (CESAR) at ANL.

We have been actively working with CESAR group to leverage the application knowledges to
help us design and apply global view and resilience architectures to OpenMC. We found that global
view and multiversion are promising alternatives to improve the scalability, programmability, and

14

resilience in OpenMC, and our approaches can be extended to a variety of Monte Carlo applications.
To this end, we apply GVR to two major data structures in OpenMC: cross sections and tally data.

• Global view helps OpenMC decompose large cross sections (˜100 GB) and tally data(˜10 TB)
that can not be fit in on-node memory in realistic simulations by data partition and dis-
tribution using global view arrays. The global view approach also provides much better
programmability for particle-based parallelization in OpenMC.

• Multiversion is especially useful for protecting accumulate-only tally data in Monte Carlo
methods from errors. At the end of each repeated stage of simulation, tally data is snapshotted
as a version Ti, composing a history of tally data T1 . . . Tn. Since the tally scoring is Monte
Carlo accumulation, if one latent error happened in stage i, then we are able to recover the
Tn with error to correct T

′
n by

T
′
n = Tn − (Ti − Ti−1) + Recompute(batchi) (1)

This approach is more efficient than checkpointing/restart because we preserve the compu-
tation effort from batch i + 1 to batch n, while checkpoint/restart needs to roll back and
start over from batch i + 1. It also enables fine-grained recovery from multiple concurrent
accumulation streams.

We have successfully applied global view approach to tally data by integrating GVR into
OpenMC [7]. Our evaluation shows that the global view approach achieves better scalability than
other data decomposition approaches in terms of both memory cost and parallel performance. In
particular, using RMA-based global view arrays achieve 60% of efficiency of ideal scaling and scales
well up to 256 processes (see Figure 7). Note that global view approach without buffering gains at
least 1.3× speedup than another data decomposition approach using tally servers. In tally server
approach [21], among total p processes, a portion of s processes are dedicated to receiving tally
scores from other c = p − s compute processes. In our experimental environments, the optimal
tally server ratio is c/s = 3 as shown in Figure 7. The loss in efficiency of tally server is mainly
due to only c processes are available to simulate particles when all p processes are available for
computation in global view case. Besides above preliminary performance achievement, a prototype
implementation of using multiversion tally data also demonstrates the effectiveness of our resilience
model.

Our next step includes: 1) implement the fine-grained recovery hierarchy for multiversion tally
data and evaluate the recovery efficiency of the multiversion scheme comparing to other C/R
approaches, and 2) design and implement a caching scheme in global view for read-only cross
sections and compare it with other optimization for cross sections reference performance.

4.7 Summary of Application Code Change Required

We have shown that GVR can provide portable, flexible resilience applied at the code architecture
level. However, for resilience code changes to be viable, they must be localizable (don’t require
changes in architecture), simple, and have leverage as error rates increase and recovery approaches
proliferate to cover increasingly faulty hardware and software.

Our studies (summarized in Figure 8) show that in general, the GVR approach is practical for
application to large-scale DOE applications and scaling forward to exascale systems. Because the
required effort is incremental and small, GVR represents a viable “gentle slope” path for exascale
resilience.

15

1 2 4 8 16 32 64 128 256

104

105

106

Number of processes, p

C
al

cu
la

ti
on

ra
te

(n
eu

tr
on

s/
se

co
nd

)

Ideal scaling

Global view w/o buffering

Global view w/ buffering

Tally server, c/s = 3

Fig. 10. Performance comparison of non-buffering and buffering accumulation.

8. Summary and Future Work

We demonstrate that global view array with RMA is a prominent alternative for tally data decomposition and
accumulation in Monte Carlo particle transport simulations. Besides better expressiveness and programmability, a
distributed array is highly scalable to decompose large tally data into small blocks fitting into limited on-node
memory of computer nodes. By this approach, users are allowed to seamlessly shift to exascale computer systems
to conduct full core analysis. The implications of our study include the effectiveness of using other RMA enabled
global address space languages/libraries for data decomposition in Monte Carlo transport simulations. Coupled
with RMA, global view array can achieve higher performance and scalability comparing to other message-based
approaches including tally server implementation.

Another advantages of using shared global arrays over the tally server algorithm is that it can transparently
employs on-node threading parallelism via OpenMP. The tally server algorithm complicates the use of threading
because it requires each thread to send messages to tally servers.

In future work, we will first exploit the chance to improve the throughput by reducing the overhead due
to the data distribution. We will also study the effectiveness of other potential optimizations described in the
tally server paper [3], such as buffering successive scoring events and topology-aware mapping. Then we
will further investigate how RMA global view arrays can be applied to decompose large cross section data,
where replicating/caching and online evaluation of effective cross section at arbitrary temperature are potential
optimization strategies.

Acknowledgments

This work was supported by the Office of Advanced Scientific Computer Research, Office of Science, U.S. De-
partment of Energy, under Award DE-SC0008603 and Contract DE-AC02-06CH11357. We gratefully acknowledge
the computing resources provided on Midway, high-performance computing cluster operated by the Research
Computing Center at The University of Chicago.

References

[1] W. R. Martin, Challenges and prospects for whole-core Monte Carlo analysis, J. Nucl. Eng. Technol. 44 (2) (2012) 151–160.
[2] A. R. Siegel, K. Smith, P. K. Romano, B. Forget, K. Felker, The effect of load imbalances on the performance of Monte Carlo codes in LWR

analysis, Journal of Computational Physics 235 (2013) 901–911. doi:10.1016/j.jcp.2012.06.012.

15

Figure 7: OpenMC performance with global view arrays for tally data decomposition. The per-
formance scales close to linearly up to 32 processes and shows a degradation beyond. Adding a
buffering technique to reduce RMA contention improves scaling efficiency by an additional 1.5x to
60% efficiency.

5 Software Releases

5.1 Partner releases

The GVR software includes a full implementation of the versioned global array API, cross-layer
error signalling and recovery, and a variety of implementations of each of these API’s. To date,
the GVR software has been distributed in bi-lateral engagements focused on particular codes and
experiments. These include:

• 4Q2013, Partner release to David Richards and Ignacio Laguna of LLNL for resilience studies
of GVR with the ddcMD molecular dynamics code.

• 4Q2013 Partner release with Andrew Siegel and John Tramm of the CESAR co-design center
and ANL for resilience and scaling studies of the OpenMC monte carlo neutronics code.

• 1Q 2014 Partner release with Brian van Straalen and Anshu Dubey of LBNL for resilience
studies of GVR with the Chombo adaptive mesh refinement code.

• 4Q 2014 Open Source Release from http://gvr.cs.uchicago.edu/. Platforms supported include
x86-64 Linux cluster, Cray XC30 and IBM Blue Gene/Q.

• 3Q 2015 Open Source Release from http://gvr.cs.uchicago.edu/. Improved scalability, support
for hierarchical storage management, and compatible with SCR.

16

Figure 8: Application studies and the scale of required code changes to add GVR-based resilience.
In all cases, the code changes are small and localized. In all cases, no software architecture changes
are required.

5.2 Performance characterization and improvement

5.2.1 Communication

For one-sided operations over Ethernet, GVR has comparable or better performance to GA for the
two-node and multiple-client distributed array access operations and for the multiple-target get
operation, while GA has better performance for the multiple-target put and accumulate operations
and for the high-load distributed array access operations. GVR also shows faster local access (when
the data size transferred exceeds 8,192 bytes) and smaller non-blocking initiation overhead than
GA.

For one-sided operations over RDMA (e.g., Infiniband), previous implementation had a non-
trivial performance penalty due to the busy waiting (from implementation in MVAPICH2/IB),
in communication thread. To this end, we reimplemented the message waiting loop by using a
MPI Testany() and spin approach, which significantly improved the performance. As a result,
current implementation delivers comparable performance (less than 10% overhead) to native MPI
one-sided operations, and thus enables good performance and scalability for applications such as
OpenMC.

5.2.2 Versioning Using Burst Buffers

Resilience has become a major concern in high-performance computing (HPC) systems. Addressing
the increasing risk of latent errors (or silent data corruption) is one of the biggest challenges. Multi-
version checkpointing system, which keeps multi-version of the application states, has been proposed
as a solution and has been implemented in Global View Resilience (GVR). The resulting more
sophisticated management of data introduces overheads and the resulting impact on performance
need to be investigated. In this paper we explore the performance of GVR for an HPC system
with integrated non-volatile memories, namely Blue Gene Active Storage (BGAS). Our empirical
study shows that the BGAS system provides a significantly more efficient basis for flexible error
recovery by using GVR multi-versioning features compared to using a standard external storage
system attached to the same Blue Gene/Q installation. Using BGAS especially achieves at least

17

10x performance boost for random traversal across multiple versions due to significantly better
performance for small random I/O operations [8]

5.2.3 Burst Buffer Lifetime Management

We consider the use of non-volatile memories in the form of burst buffers for resilience in super-
computers. Their cost and limited lifetime demand effective use and appropriate provisioning. We
develop an analytic model for the behavior of workloads on systems with burst buffers, and use it
to explore questions of cost-effective provisioning, and mission-directed allocation of burst-buffer
(SSD) lifetime.

First, our results show that system efficiency can be increased by as much as 14% by considering
a global perspective (workload mix, job size) for SSD lifetime allocation. Second, with size-based
and system-efficiency based lifetime allocation, large jobs suffer as much as 40% job efficiency loss;
job-efficiency based allocation must increase their allocations by 50% to eliminate this disparity.
Finally, further results suggest that under provisioning SSD lifetime (only 10-20% of the “optimum”
as defined by per-job requirements without resource constraint) is sufficient to produce 90% system
efficiency at failure rates three times that of current systems.

For more information see [9, 11]

6 Publications

References

[1] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

[2] Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and
JackJ. Dongarra. An evaluation of User-Level Failure Mitigation support in MPI. Computing,
95(12):1171–1184, 2013.

[3] A. Chien, P. Balaji, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein, Z. Zheng, J. Ham-
mond, I. Laguna, D. Richards, A. Dubey, B. van Straalen, M Hoemmen, M. Heroux, K. Teran-
ishi, and A. Siegel. Versioned distributed arrays for resilience in scientific applications: Global
view resilience. In Proceedings of the International Conference on Computational Science
(ICCS), 2015. Reykjavik, Iceland.

[4] A. Chien, P. Balaji, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein, Z. Zheng, J. Ham-
mond, I. Laguna, D. Richards, A. Dubey, B. van Straalen, M Hoemmen, M. Heroux, K. Teran-
ishi, and A. Siegel. Versioned distributed arrays for resilience in scientific applications: Global
view resilience. IJHPCA, September 2016.

[5] Anshu Dubey, Hajime Fujita, Daniel T. Graves, Andrew Chien, and Devesh Tiwari. Gran-
ularity and the cost of error recovery in resilient amr scientific applications. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’16, pages 42:1–42:10, Piscataway, NJ, USA, 2016. IEEE Press.

18

[6] Anshu Dubey, Hajime Fujita, Zachary Rubenstein, Brian Van Straalen, and Andrew A. Chien.
A Case Study of Application Structure Aware Resilience Through Differentiated State Saving
and Recovery, pages 619–630. Springer International Publishing, Cham, 2015.

[7] Nan Dun, Hajime Fujita, John Tramm, Andrew A. Chien, and Andrew R. Siegel. Data de-
composition in Monte Carlo particle transport simulations using global view arrays. IJHPCA,
March 2015.

[8] Nan Dun, Dirk Pleiter, Aiman Fang, Nicolas Vandenbergen, and Andrew A. Chien. Multi-
versioning Performance Opportunities in BGAS System for Resilience, pages 486–504. Springer
International Publishing, Cham, 2016.

[9] Aiman Fang. How much ssd is useful for resilience in supercomputers. Master’s thesis, Uni-
versity of Chicago, Department of Computer Science, 2015.

[10] Aiman Fang and Andrew A. Chien. Applying gvr to molecular dynamics: Enabling resilience
for scientific computations. Technical Report TR-2014-04, Department of Computer Science,
University of Chicago, April 2014.

[11] Aiman Fang and Andrew A. Chien. How much ssd is useful for resilience in supercomputers.
In Proceedings of the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale, FTXS ’15,
pages 47–54, New York, NY, USA, 2015. ACM.

[12] H. Fujita, K. Iskra, P. Balaji, and A. A. Chien. Empirical comparison of three versioning
architectures. In 2015 IEEE International Conference on Cluster Computing, pages 456–459,
Sept 2015.

[13] H. Fujita, K. Iskra, P. Balaji, and A. A. Chien. Versioning architectures for local and global
memory. In 2015 IEEE 21st International Conference on Parallel and Distributed Systems
(ICPADS), pages 515–524, Dec 2015.

[14] Hajime Fujita, Nan Dun, Zachary A. Rubenstein, and Andrew A. Chien. Log-structured global
array for efficient multi-version snapshots. In Submitted for publication, 2014.

[15] Michael A Heroux, Roscoe A Bartlett, Vicki E Howle, Robert J Hoekstra, Jonathan J Hu,
Tamara G Kolda, Richard B Lehoucq, Kevin R Long, Roger P Pawlowski, Eric T Phipps, et al.
An overview of the trilinos project. ACM Transactions on Mathematical Software (TOMS),
31(3):397–423, 2005.

[16] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring, H Carter
Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thornquist, and Robert W
Numrich. Improving performance via mini-applications. Sandia National Laboratories, Tech.
Rep. SAND2009-5574, 2009.

[17] Mark Hoemmen and M Heroux. Fault-tolerant iterative methods via selective reliability. In
Proceedings of the 2011 International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC). IEEE Computer Society, 2011.

[18] Guoming Lu, Ziming Zheng, and Andrew A. Chien. When is multi-version checkpointing
needed? In Proceedings of the 3rd Workshop on Fault-tolerance for HPC at extreme scale,
FTXS ’13, pages 49–56, New York, NY, USA, 2013. ACM.

19

[19] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar Krishnan, Harold Trease, and
Edoardo Apr+. Advances, applications and performance of the Global Arrays shared memory
programming toolkit. International Journal of High Performance Computing Applications,
20(2):203–231, Summer 2006.

[20] Paul K. Romano and Benoit Forget. The OpenMC Monte Carlo particle transport code.
Annals of Nuclear Energy, 51:274–281, 2013.

[21] Paul K. Romano, Andrew R. Siegel, Benoit Forget, and Kord Smith. Data decomposition
of Monte Carlo particle transport simulations via tally servers. Journal of Computational
Physics, 252:20–36, 2013.

[22] Zachary Rubenstein, Hajime Fujita, Ziming Zheng, and Andrew Chien. Error checking and
snapshot-based recovery in a preconditioned conjugate gradient solver. Technical Report TR-
2013-11, Department of Computer Science, University of Chicago, November 2013.

[23] Youcef Saad. A flexible inner-outer preconditioned gmres algorithm. SIAM Journal on Scien-
tific Computing, 14(2):461–469, 1993.

[24] GVR Team. Gvr documentation, release 0.8.1-rc0. Technical Report 2014-06, University of
Chicago, Department of Computer Science, 2014.

[25] GVR Team. How applications use gvr: Use cases. Technical Report 2014-05, University of
Chicago, Department of Computer Science, 2014.

[26] Ziming Zheng, Andrew A. Chien, and Keita Teranishi. Fault tolerance in an inner-outer
solver: A gvr-enabled case study. In 11th International Meeting High Performance Computing
for Computational Science-VECPAR 2014, 2014.

20

