
 
American Institute of Aeronautics and Astronautics 

 
 

1 

Accuracy of State-of-the-Art Actuator-Line Modeling  
for Wind Turbine Wakes 

Pankaj K. Jha1

The Pennsylvania State University, University Park, PA, 16802 
  

Matthew J. Churchfield2 and Patrick J. Moriarty3

National Renewable Energy Laboratory, CO, 80401  
 

Sven Schmitz4

The Pennsylvania State University, University Park, PA, 16802 
 

The current actuator line method (ALM) within an OpenFOAM computational fluid 
dynamics (CFD) solver was used to perform simulations of the NREL Phase VI rotor under 
rotating and parked conditions, two fixed-wing designs both with an elliptic spanwise 
loading, and the NREL 5-MW turbine. The objective of this work is to assess and improve 
the accuracy of the state-of-the-art ALM in predicting rotor blade loads, particularly by 
focusing on the method used to project the actuator forces onto the flow field as body forces. 
Results obtained for sectional normal and tangential force coefficients were compared to 
available experimental data and to the in-house performance code XTurb-PSU. It was 
observed that the ALM results agree well with measured data and results obtained from 
XTurb-PSU except in the root and tip regions if a three-dimensional Gaussian of width, ε, 
constant along the blade span is used to project the actuator force onto the flow field. A new 
method is proposed where the Gaussian width, ε, varies along the blade span following an 
elliptic distribution. A general criterion is derived that applies to any planform shape. It is 
found that the new criterion for ε leads to improved prediction of blade tip loads for a 
variety of blade planforms and rotor conditions considered. 

Nomenclature 
ABL =  Atmospheric boundary layer 
ADM =  Actuator disk method 
ALM =  Actuator line method 
AOA         =   Angle of attack [deg] 
AR         =   Blade aspect ratio 
BEM =  Blade element momentum  
c = Airfoil chord [m] 
CFD =  Computational fluid dynamics 
𝐶𝑛 = Sectional normal force coefficient 
𝐶𝑡 = Sectional tangential force coefficient 
𝐶𝑃 = Coefficient of power 
𝐶𝑇 = Coefficient of thrust 
HVM = Helicoidal vortex method 
LES =  Large-eddy simulation 
NREL = National Renewable Energy Laboratory 
RANS =  Reynolds-Averaged Navier-Stokes 
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RPM  =  Revolutions per minute [1/min] 
Vwind = Mean wind speed 

I. Introduction 
ind energy is currently one of the most readily available sources of renewable energy. Various reports1-3 state 
that high penetrations of wind-driven electrical generation, 20% and greater of the electrical demand, are 

technically feasible.  However, the wind industry faces a number of challenges today in developing wind farms both 
on shore and off shore, some of which involve the aerodynamics within the wind farm. Wind turbine wakes interact 
with turbines located downstream, with other wakes, and with the turbulent atmospheric boundary layer (ABL). The 
aerodynamic interaction between multiple wind turbines in an array is a function of the coefficient of thrust, 𝐶𝑇, the 
separation distance between rotors, the yaw angle to the incident wind, and the physics of the driving ABL flow with 
varying atmospheric stability states. Although accurate wake modeling is necessary to predict mean power 
production, the bigger challenge is to understand the details of how wakes affect transient mechanical loading and 
power production. It is here that the actuator turbine aerodynamics concept, in conjunction with CFD, offers the 
potential for accurately predicting unsteady wind turbine wakes at a feasible computational cost. This places 
actuator methods between low-fidelity engineering models4-8 and fully blade-resolved CFD simulations. The 
reduced cost of actuator simulations as opposed to fully blade-resolved simulations enables the simulation of an 
entire wind plant consisting of hundreds of turbines and subject to resolved turbulent inflow using large-eddy 
simulation (LES). At this time, fully blade-resolved simulations subject to resolved turbulent inflow are only 
possible with hybrid Reynolds-averaged Navier-Stokes (RANS)-LES, which is computationally expensive and 
precludes the simulation of an entire wind plant. 
 The lowest-order actuator-type method to model wind turbines is the actuator disk method (ADM) that was first 
developed for RANS solvers by Sørensen9, Leclerc and Masson10-11, Réthoré et al.12, and Mikkelsen13. The actuator 
disk concept allows replacing the actual wind turbine rotor by a disk of rotor-azimuth-averaged body-force that 
enters the momentum equations of the underlying flow solver. Details, such as the blade root and tip vortices, are 
not accounted for because the rotor is modeled as a disk. However, unsteady interaction of the overall wake with the 
turbulent ABL flow is accounted for. At present, a fair number of efforts are underway that use large-eddy 
simulations and the actuator disk concept to model large wind farms. Some examples are the works of Ivanell et 
al.,15 Meyers and Meneveau,16 Singer et al.,17 and Stovall et al.19   

 The actuator line method (ALM) represents each rotating blade as a line of force rotating through the flow field.  
Details such as root and tip vortices are captured, and, hence, the ALM is the next level of increased fidelity relative 
to the ADM. Most of the current state-of-the-art ALMs are rooted in the work of Sørensen and Shen20 in a RANS 
solver. Further developments followed by Troldborg et al.21-23 and Sibuet Watters and Masson.24 Some examples of 
the use of the ALM in conjunction with LES are the works of Lu and Porté-Agel,14 and Conzemius et al.18  Recently, 
the ALM of Sørensen and Shen20 has been implemented into an ABL-LES solver created with OpenFOAM27 by 
researchers at the National Renewable Energy Laboratory (NREL).28-31 The solver has demonstrated its potential to 
model large wind farms and overall wake effects.  Actuator line methods model time-varying turbine loads by a 
suitable distribution of body forces along the blade whose strengths are determined from sectional inflow conditions 
and blade-element type table lookup of airfoil properties. In order to prevent numerical instabilities, and to transform 
the line force into a volumetric force, the body-forces are projected over a finite distance around the actuator line.  
Most commonly, the projection function has a Gaussian shape.9 ,13,20,21-23  In the past few years, the ALM concept has 
been extended to actuator surface methods, some examples are the works of Dobrev et al.,25 Shen et al.,26 and Sibuet 
Watters and Masson,24 yet thus far with no apparent advancement in modeling accuracy.  

This work aims at quantifying and improving the capability of state-of-the-art ALM modeling in predicting 
spanwise blade loads along with rotor thrust and power. Though the ALM has advanced to become one of the most 
widely accepted computational methods for predicting the wakes of individual wind turbines and wake interactions 
in turbine arrays and larger wind farms, there is a need within the wind energy community for guidelines in 
choosing a suitable set of ALM parameters, for example grid spacing and stretching, the number of actuator points 
along the blade, the Gaussian radius required for the body-force projection etc., that lead to consistent results among 
various rotor designs. The wind energy community is now well aware of the fact that the atmospheric stability state 
plays an integral role in the recovery of the wake momentum deficit downstream of a wind turbine, thus having a 
profound effect on the performance of a given wind turbine array or wind farm.31,39  In principle, the ALM is suitable 
to model these effects as the required grid spacing is of the order of the blade chord and can resolve turbulent eddies 
up to that scale and their interaction with turbulent eddies that were generated and advected by the ABL flow. 
However, a rigorous study is missing that quantifies how well state-of-the-art ALM predicts sectional blade loads 
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that define all these interactions. This is largely due to the fact that blade loads data other than rotor thrust and power 
are difficult to attain and analyze from field measurement campaigns. In this work, the authors perform a rigorous 
study on assessing ALM accuracy through comparison against available data, classical lifting-line solutions, and a 
blade-element momentum (BEM) method. All simulations are conducted with steady and uniform inflow only. 

The paper is organized as follows: Section II gives a brief description of the ALM and its implementation in 
OpenFOAM. Furthermore, a method for a variable Gaussian spreading width along the blade span is presented that 
is based on the recent work of Shives and Crawford.40 Then, a more general method of a variable spreading width is 
proposed where the Gaussian spreading width is based on an equivalent elliptic blade planform of the same aspect 
ratio (AR) than the original blade. A brief introduction is given to the performance code XTurb-PSU, which is based 
on BEM and used for comparing blade loads for some of the test cases described below. Section III begins with a 
description of the grids used in the simulations. The NREL Phase VI rotor is used as a first test case to demonstrate 
current shortcomings of the ALM in predicting the blade tip loads. The paper then turns its attention to non-rotating 
(or parked) conditions and presents results obtained for the NREL Phase VI rotor and wing cases with an elliptic lift 
distribution. Various values for the Gaussian spreading width are considered, and the results obtained are discussed. 
In particular, a variable Gaussian spreading width based on an equivalent elliptic blade planform is found to give 
consistent results between various blade designs considered.  The adjusted spreading methods are applied to rotating 
conditions for the NREL Phase VI rotor and the NREL 5-MW turbine, the latter one being compared to results 
obtained from the XTurb-PSU code only. The paper concludes with some recommendations for users of the ALM 
and provides an outlook to future research. 

 

II. Numerical Methods 
 
A. Actuator-Line Method (ALM) in OpenFOAM 

The OpenFOAM (Open Field Operations and Manipulations) CFD toolbox27 is a set of C++ libraries meant for 
solving partial differential equations.  The governing equations are solved using the finite-volume method on 
unstructured meshes.  All variables are cell-centered and collocated on the grid.  To avoid the pressure-velocity 
decoupling that occurs with collocated, incompressible solvers, the velocity fluxes at the finite-volume faces are 
constructed using an interpolation similar to that of Rhie and Chow.41  All other interpolation from cell centers to 
faces is a mix of predominantly either linear (second-order central differencing) or midpoint (second-order central 
differencing with equal weighting regardless of mesh stretching) with a small amount of first-order upwinding.  The 
reason for this will be discussed below.  Time advancement uses Issa’s42 PISO (Pressure-Implicit Splitting 
Operation) algorithm, which is an implicit predictor/corrector scheme.  The implicit terms are integrated in time 
using second-order Crank-Nicolson discretization.  We use one predictor followed by three correctors.  The 
momentum transport equation is solved directly. However, to enforce the continuity equation, the divergence of the 
discrete momentum transport equation is taken, which results in an elliptic equation for the modified pressure.  The 
momentum transport equations are solved using an iterative diagonal incomplete-LU pre-conditioned biconjugate-
gradient linear system solver.  The pressure equation, which is the most expensive to solve, is solved using a 
geometric agglomerated algebraic multigrid solver.  The code is parallelized using the message-passing interface 
(MPI). 

As discussed above, the spatial interpolation used in this study is a blend of linear/midpoint and upwind 
interpolation.  As the flow encounters the actuator line body-force field, some oscillations are observed in velocity 
and pressure emanating from the actuator line if pure linear or midpoint interpolation is used, which is shown in Fig. 
1(a).  Even using Troldborg’s rule of thumb in which 𝜺/𝜟𝒓 = 2, these oscillations occur.  Troldborg, however, used 
a blend of 90% fourth-order central differencing and 10% third-order QUICK upwind differencing.  To remove 
these oscillations, we tried using a blend of 90% second-order linear / 10% first-order upwind interpolation upstream 
of the actuator line and 98% linear / 2% upwind everywhere else with a smooth transition in blending between these 
zones.  This was successful in removing the oscillations without producing excessive artificial diffusion in the 
region of interest around the actuator lines and in their wakes.  However, when we used a stretched grid (only for the 
fixed wing cases), an “imprint” of the grid stretching appeared in the flow field upstream of the actuator.  (The 
imprint can be observed in Fig. 1(a) as the deep red and blue regions ahead of the actuator point.)  Wesseling43 
explains that midpoint interpolation in which the cell face value is the simple average of the two surrounding cell 
center values regardless of grid stretching (which is identical to linear interpolation on a uniform grid) can often be 
more accurate than the weighted interpolation of the second-order linear interpolation scheme, which is sensitive to 
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grid stretching.  In short, Wesseling says that linear interpolation “is more prone to wiggles” than midpoint 
interpolation.  Therefore, in order to successfully eliminate oscillations caused by the actuator line and the “imprint” 
of the stretched mesh, we used a blend of 90% midpoint / 10% upwind upstream of the actuator and 98% midpoint / 
2% upwind everywhere else with a smooth transition in the blending between these two regions.  The oscillation and  

imprint free solution are shown in Fig. 1(b). 
 
The ALM within OpenFOAM is being actively developed and maintained by researchers at NREL.28-31 As 

mentioned in section I, the ALM is that of Sørensen and Shen20, and the underlying LES solver is capable of 
modeling both uniform and ABL flow.28-31  The ALM finds sectional lift and drag forces by determining the local 
flow velocity and angle of attack (AOA) that is then applied to an airfoil lookup table.  In this work, local velocity is 
sampled directly at the center of each actuator line element, and the angle of attack is taken to be equal to the local 
flow angle.  Since the velocity is sampled at the center of each actuator element, which is the center of the bound 
vortex circulating about the actuator line, the effects of the upwash and downwash created by the bound vortex are 
not seen.  The blade is discretized into a finite number of (typically 25-40) actuator points. The lift and drag forces 
computed at these actuator points are projected onto the background Cartesian grid as body forces in the momentum 
equation. The last term in the momentum equation (1) corresponds to the body-force term. 
 

 
𝐷𝒖
𝐷𝑡

  = RHS + 𝐅𝑝 (1) 
 

  The body-force term indirectly imposes a pressure jump across the actuator line. The projection of the body 
forces that represent the blade loads is typically achieved by a Gaussian function as shown in equation (2). 
 
 𝐅𝑝�𝑥𝑝,𝑦𝑝, 𝑧𝑝 , 𝑡� = −∑ ∑ 𝐟𝑁,𝑚(𝑥𝑁,𝑚,𝑦𝑁,𝑚, 𝑧𝑁,𝑚, 𝑡 )𝑚 𝜂𝑁,𝑚𝑁   (2) 
 

where    𝜂𝑁,𝑚 = 1
𝜀3𝜋3/2 𝑒𝑥𝑝 �− �

|𝒓|
𝜀
�
2
� (3) 

  
Here N is the blade index, m is the actuator point index, and |r| is the distance from grid cell p to the actuator 

point. A more detailed description of the solver has been presented in an earlier work. 28-31  
 
A.1 Grid-Based Gaussian Spreading Width22,33, 𝜺/𝜟𝒓  = constant 

A common rule-of-thumb states that 𝜺 should be chosen as small as possible, however a minimum threshold 
exists in order to avoid numerical instabilities that occur when the radius of the body force applied to Eqn. (1) is too 
small such that it resembles a discontinuity.  These instabilities appear as “ringing” when the convection term of the 
momentum equation is discretized using central differencing. Troldborg,22 therefore, suggests a Gaussian spreading 
width (or radius) 𝜺/𝜟𝒓 = 2 of twice the radial grid spacing 𝜟𝒓 in order to maintain numerical stability and to obtain 

 
         (a)               (b) 
Figure 1.  A contour of the streamwise velocity normalized by freestream velocity taken in a plane perpendicular to 
the actuator line and at midspan for the fixed wing stretched grid case using purely linear interpolation (a) or a 
spatially varying blend of midpoint and upwind interpolation (b).  The point where the actuator line intersects these 
contours is shown with a black dot. 
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good predictions of the rotor power to within a few percent. A detailed study of the effect of the Gaussian width 𝜺 in 
conjunction with grid resolution has been performed by Martínez et al.33 They found that at a given inflow wind 
speed and a given 𝜺, the computed rotor power converges as the grid is refined; however, as 𝜺/𝜟𝒓 is varied from 2 
to 10.5, the predicted power increases by about 25%, which is significant. 
 

A.2 Chord-Based Gaussian Spreading Width40, 𝜺/𝒄 = constant 
 It has only been recently shown that sectional blade inflow conditions have been considered in the context of 
ALM accuracy in addition to computed rotor thrust and/or power. It is the local induced flow at a section of blade 
that defines a blade section’s angle of attack (AOA) and hence local lift and drag forces. Shives and Crawford40 
performed simulations of an elliptic wing of 𝐴𝑅 = 10.2 and investigated how the Gaussian spreading width 𝜺 
affects the computed inflow, in particular the downwash, at the actuator line. They found that it is advantageous to 
choose 𝜺 based on the local blade chord 𝒄. It was found that 𝜺/𝒄 = 0.25 is suitable to compute the expected constant 
downwash distribution at an elliptically loaded lifting (or actuator) line at a high accuracy given that 𝜺 ≥ 𝟒𝜟𝒓.      
 Though their work is very promising and suggests that the Gaussian spreading width 𝜺 should be chosen relative 
to the actual blade planform, i.e. the blade chord 𝒄, one can argue that the proposed method breaks down for a 
rectangular wing that is twisted such that an elliptic lift distribution with constant downwash is achieved. In this 
case, the 𝜺/𝒄 = constant criterion results in a constant Gaussian spreading width 𝜺 along the blade span, and the 
actual grid spacing 𝜟𝒓 determines what the value for 𝜺/𝜟𝒓 will be.  
 

A.3 Elliptic Gaussian Spreading Width, 𝜺/𝒄 ∗ = constant 
 In the following section, a new method for determining the Gaussian spreading width 𝜺 is proposed that takes 
into account the lessons learned from the spreading methods described in sections A.1 and A.2. It appears that the 
Gaussian spreading width 𝜺 should be as small as possible in order to resemble accurately an actuator line while 
maintaining numerical stability. In addition, a blade-conforming 𝜺 along the span has shown to improve the blade-
inflow distribution along an elliptically loaded wing and has resulted in an improved prediction of the downwash at 
the actuator line as well as of the blade tip loads.40 

In the special case of a wing with an elliptic planform, the chord distribution resembles the actual spanwise blade 
loading. It can be hence hypothesized that the Gaussian spreading width 𝜺 should be proportional to the actual 
magnitude of the sectional blade force rather than the blade planform. This intrinsically avoids spreading beyond the 
blade tips as loads tend to zero there. Unfortunately, the blade load distribution is part of the actual solution and 
therefore unknown a priori. Furthermore, one wants to avoid a time-dependent spreading width 𝜺 at a given blade 
section as the solution evolves. This is likely to cause numerical instabilities in a time-dependent flow and would 
probably require costly sub-iterations of the solver. 

Nevertheless, we move forward the idea of an elliptic distribution being a first-order representation of a general 
blade loading. Indeed, the elliptic loading is the first mode of a general Fourier-series solution for the blade loading. 
Next, we develop a variable spreading width 𝜺 by following these steps: 

1. Determine the blade aspect ratio, 𝑨𝑹 

 𝑨𝑹 = 𝑹
𝒄�

            ;      𝒄� = 𝟏
𝑹 ∫ 𝒄(𝒓)𝒅𝒓𝑹

𝟎    (4) 

where 𝑹 is the wing span or blade radius and 𝒄� is the average blade chord. 

2. Find a ‘fictitious’ elliptic planform with the same 𝑨𝑹. 

 𝒄∗(𝒓) = 𝒄𝟎�𝟏 − �𝟐𝒓
𝑹
�
𝟐

                 ;     𝒄𝟎 = 𝟒
𝝅
𝒄�   (5) 

3. Postulate the following: 
a.  𝜺(𝒓)/𝒄∗(𝒓) = 𝜺𝟎/𝒄𝟎 = 𝒄𝒐𝒏𝒔𝒕.                      (6) 
b.  𝜺𝟎 = 𝒏𝒎𝒂𝒙𝚫𝒓                          (7) 
c.  𝜺𝑹/𝟐 = 𝒏𝒎𝒊𝒏𝚫𝒓                          (8) 
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(a) NREL Phase VI rotor                                                 (b) NREL 5-MW turbine 

Figure 3. Examples for the ‘fictitious’ elliptic planform.  
 

 
 

Figure 2. Elliptic distribution of Gaussian spreading width, ε. 
 Here 𝒏𝒎𝒊𝒏 and 𝒏𝒎𝒂𝒙 are dimensionless factors that define minimum and maximum spreading width 𝜺 for a given 

grid spacing 𝜟𝒓. Equations (5), (7), and (8) in (6) yield 

 𝜺(𝒓) = 𝑴𝑨𝑿� 𝒏𝒎𝒂𝒙 𝜟𝒓 �𝟏 − �𝟐𝒓
𝑹
�
𝟐

 ;  𝒏𝒎𝒊𝒏𝜟𝒓�  , (9a) 

which describes an elliptic distribution of the Gaussian spreading width 𝜺 with user-specified minimum and 
maximum spacing (see Figure 2 for an illustration). Alternatively, Equations (4)-(8) can be combined to obtain a 
criterion for the Gaussian spreading width 𝜺 in relation to the ‘ficticious’ elliptic planform 𝒄∗ in Equation (5), i.e. 

 𝜺/𝒄∗ = 𝟎.𝟐𝟓 𝒏𝒎𝒂𝒙
𝜟𝒓
𝑹

(𝝅𝑨𝑹) =constant   (9b) 

In Equation (9b), a general width 𝜺/𝒄∗ criterion becomes a function of a given grid resolution 𝜟𝒓/𝑹 along the 
actuator line, the blade aspect ratio 𝑨𝑹, and a single user-specified discretization parameter 𝒏𝒎𝒂𝒙. It is interesting to 
note that the 𝜺/𝒄∗ = 0.25 criterion from Shives and Crawford40 is recovered for an 𝑨𝑹 =10.2 elliptic planform and 
the grid resolution and minimum spreading width specified in their work. 
 
Figure 3 shows the ‘fictitious’ elliptic planform areas 𝒄∗ for the NREL Phase VI rotor and the NREL 5-MW turbine.  

 
B. XTurb-PSU 

 In addition to the CFD simulations described in part A above, an in-house developed wind turbine design and 
performance prediction code, XTurb-PSU,32 was used for a comparative study. XTurb-PSU uses either Blade 
element momentum (BEM) theory based on NREL’s AeroDyn code34 or a prescribed Helicoidal vortex method 
(HVM).35 It also employs a stall delay model by Du and Selig36 rooted in NREL’s AirfoilPrep worksheet.37 The 
HVM module in XTurb-PSU  is also capable of analyzing wind turbines under parked conditions and fixed wings in 
steady flow. This makes the XTurb-PSU code a flexible performance tool for both the rotating and parked test cases 
considered in this work. 
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Table 1. Operating conditions and simulation 
parameters for the NREL Phase VI rotor. 

 NREL Phase VI  
Rotor Radius, R (𝒎) 5.029 
Wind Speed, 𝑽𝒘𝒊𝒏𝒅 (𝒎/𝒔) 7.0 
Rot. Speed (RPM) 72.0 
Time Period, T (sec) 0.833 
Time Step,  Δt = T/480 (sec) 0.00173611 
𝑽𝒕𝒊𝒑(𝒎/𝒔) 37.9178 
𝑽𝒕𝒊𝒑∆𝒕 (𝒎) 0.0658 
∆𝒓𝒎𝒊𝒏(𝒎) ≈ ∆𝒃 (𝒎) 0.17 
Number of Actuator Points 27 
Root Cutout, r/R 0.121 

 

 
(a)              (b) 

Figure 4. An example of domain sizes and refinement levels for the non-stretched type of grid is shown in (a) planes 
of the stretched grid are shown in (b). 

 
 

III. Results and Discussion 
 ALM simulations were performed on two different types of grids. The first grid type has various refined zones 
within an outer baseline grid. Typically, 3 to 6 layers of refinement are used. An illustration is given in Figure 4(a). 
The outer grid dimensions span from -4D to 8D in the streamwise and -5D to +5D in the other two directions with 
the turbine location as the reference point. The innermost refinement region extends from -0.5D to 3D in the 
streamwise and -1D to +1D in the other two directions. All refinement regions contain uniform cell dimensions 
where the grid is refined by a factor of two in all directions in each successive refinement zone. The domain sizes 
used are similar to those documented in the literature.22,33 The second type of grids used for fixed wing cases only, 
are refined near the wing tips and near the actuator line and stretch out towards the mid-span and away from the 
actuator line. Such a grid is illustrated in Figure 4(b). In general, the grid stretching follows a geometric progression 
with an expansion factor in the range 1.03 to 1.06 or is determined by a cosine distribution. The resolution near the 
blade tips is approximately 1% of the blade span or radius. The grid sizes used in this work are close to 5 million 
cells. 
 The time steps used in the simulations are determined by a more stringent condition than the standard CFL 
criterion. In all cases, the time step is chosen such that the blade tip does not traverse more than one grid cell in the 
innermost refined zone close to the actuator line in one time step. 
 

 
 
A.  NREL Phase VI Rotor, 𝜺/𝜟𝒓 = 𝒄𝒐𝒏𝒔𝒕. 

 Simulations were performed for the NREL Phase VI rotor 
under rotating and parked conditions. Table 1 comprises some 
blade and solver parameters. Note that the actuator width (or 
spacing) 𝜟𝒃 was chosen slightly larger than the minimum grid 
spacing 𝜟𝒓𝒎𝒊𝒏 so that the grid can distinguish between two 
adjacent actuator points. It has been found in previous studies 
that consistent results can be obtained for 𝜟𝒃 ≤ 𝜟𝒓. Hence a 
further increase in the number of actuator points beyond this 
criterion is not worthwhile as it increases the cost of the ALM 
itself. The operating conditions and the simulation parameters 
for the NREL Phase VI rotor under rotating and parked 
conditions are presented in Table 2. Since the blades are not 
moving in the parked state, the time step Δt was chosen such 
that the wind traverses the same distance per time step as the 
blade tip under rotating conditions. 
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Table 2. Simulation parameters for NREL 
Phase  VI rotor under rotating and parked 

conditions 
NREL Phase VI Rotor Rotating Parked 
Rated Wind Speed, 𝑽𝒘𝒊𝒏𝒅 
( / ) 

7.0 20.1 
Time Step,  Δt  (sec) 0.00174 0.00327 
𝑽𝒕𝒊𝒑∆𝒕  or   𝑽𝒘𝒊𝒏𝒅 ∆𝒕   (m) 0.0658 0.0658 

 

 
Figure 5. Spanwise variation of 𝑪𝒏 for the NREL 

Phase VI rotor (Vwind = 7 m/s) 
 

 
        

                                        
 

 
Figure 7. Spanwise variation of AOA for the 

NREL Phase VI rotor (Vwind = 7 m/s)                                   
 
 

 

 The ALM simulations for the rotating condition were 
performed with and without the Glauert38 correction for 
computed blade loads. No Glauert correction was used for the 
parked condition. The Glauert correction accounts for root and 
tip losses and was originally developed for BEM-type 
computations of propeller loads. In general, there should be no 
reason to use the Glauert correction with the ALM since the 3-
D flow field containing tip and root vortices is fully resolved. It 
is used here only as a means to demonstrate some shortcomings 
of the ALM when using 𝜺/𝜟𝒓 = constant. 
 

A.1 Rotating Condition (72 RPM), Vwind = 7 m/s, 𝜺/𝜟𝒓 = constant 
 Figures 5 and 6 show the spanwise variation of normal and tangential force coefficients, 𝐶𝑛 and 𝐶𝑡, for the 
NREL Phase VI rotor at a wind speed of 7m/s where the flow is attached along the entire blade. A quantitative 
comparison with results obtained by XTurb-PSU and measured NREL data is also shown. Some of the discrepancy 
observed can be attributed to the particular choice of the Gaussian width, 𝜺. It can be noted from Table 3 that the 
predicted power increases with 𝜺. It is quite obvious, though, that the ALM seems to over-predict AOA and resultant 
blade loads near the root and tip. It is this overprediction of force that may result in overpredicted torque and hence 
power. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

      
 
 
 
 
 
 
 
 
 
 

 
 

 

 
Figure 6. Spanwise variation of 𝑪𝒕 for  the NREL 

Phase VI rotor (Vwind = 7 m/s)                                   
 

Table 3. Computed power and thrust for NREL Phase VI 
rotor (Vwind = 7 m/s) 

 
NREL Phase VI Rotor Power(W) Thrust(N) 
NREL Experiment 6030 1120 
XTurb-PSU 6100 1240 
ALM (𝜺/∆𝒃 = 4.0) [No correction] 7950 1450 
ALM (𝜺/∆𝒃 = 2.0) [No correction] 7080 1380 
ALM (𝜺/∆𝒃 = 4.0) [Glauert correction] 6450 1150 
ALM (𝜺/∆𝒃 = 2.0) [Glauert correction] 5950 1120 
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Figure 8. Spanwise variation of 𝑪𝒏 for  the NREL Phase VI 
rotor (Parked, Vwind = 20.1 m/s,  𝜺/𝜟𝒃 = 4.0)                               

 
 

         
                                     

 

Figure 9. Spanwise variation of 𝑪𝒕 for the NREL Phase VI 
rotor (Parked, Vwind = 20.1 m/s,  𝜺/𝜟𝒃 = 4.0)                                                              

 
 

         
                                     

 

 
Figure 10. Spanwise variation of AOA for the NREL Phase VI 

rotor (Parked, Vwind =  20.1 m/s,  𝜺/𝜟𝒃 = 4.0)                                                                                                  
 

 
 

 Figure 7 shows the spanwise distribution of the local AOA, which is a good indicator to how well the local 
inflow conditions at the actuator line are predicted. It can be seen that the ALM over-predicts the local AOA 
towards the blade tips, which leads to the observed over-prediction of normal and tangential force coefficients in 
Figs 5-6. Results obtained by the Glauert correction in Figs. 5-6 actually under-predict the force coefficients 
considered when compared to NREL data and results obtained by XTurb-PSU. Though the Glauert correction 
produces better comparison with rotor power and thrust in Table 3 because of the modified aerodynamic force 
coefficients, it actually hardly affects AOA. The ultimate goal is to not use it in the simulations because i) it should 
not be necessary in a computed 3-D flow field, and ii) there is no equivalent correction factor that can be used in 
non-rotating (or parked) flow conditions. 
 

A.2 Parked Condition, Vwind = 20.1 m/s, 𝜺/𝜟𝒓 = constant 
 Figures 8 and 9 show the spanwise variation of 𝐶𝑛 and 𝐶𝑡 for the NREL Phase VI rotor in a parked condition in 
comparison with NREL data and results obtained by XTurb-PSU. Improved agreement is observed when compared 
to the rotating case. Some discrepancy at the blade root and tip, however, persists. Comparing the plots for the 
rotating and parked conditions it is interesting to note that in the parked case both models and the data show 
excellent agreement in the middle part of the blade, while ALM computed force coefficients appear to be shifted for 
the rotating blade.  
 

 
 

 
 
 The same can be observed for the spanwise AOA 
distribution in Fig. 10. Up to this point, there are 
strong indications that the present ALM does not 
predict accurately the flow conditions and loads near 
the blade root and tip for a constant Gaussian 
spreading width 𝜺 for both rotating and parked 
conditions. The exact reason for this is unclear at 
present, however one can surmise that it must be 
related to the facts that the volumetric body-force 
spreading acts beyond the geometric blade edges and 
that the strong force gradients near the blade tip, for 
example, are alleviated by the force spreading at 
more inboard stations (e.g. 90% R) that leads to a 
higher-than-expected force very close to the actual 
blade tip. This is further supported by the following 
analyses involving two different wing designs both 
with an elliptical load distribution.  
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Table 4. Details of the wing designs with elliptical 
load distribution 

 
Planform Elliptic Rectangular 
Span ( 𝒎 ) 5.029 5.029 
Area (𝒎𝟐) 3.066 3.066 
Aspect Ratio 8.249 8.249 
Mid-Chord (m) 0.7763 0.6096 
Wind Speed, 𝑽𝒘𝒊𝒏𝒅 ( 𝒎/𝒔 ) 20.1 20.1 
Time Step,  Δt  (sec) 0.0033 0.0033 
𝑽𝒘𝒊𝒏𝒅∆𝒕   ( 𝒎 ) 0.0658 0.0658 
∆𝒓𝒎𝒊𝒏( 𝒎 ) 0.11 0.11 
Number of Actuator Points 41 41 
Actuator Width, ∆𝒃 ( 𝒎 ) 0.1226 0.1226 

 

B. Elliptically Loaded Wing at Vwind = 20.1 m/s, 𝜺/𝜟𝒓 = constant 
 The elliptically loaded wing is a classical optimal case in applied aerodynamics. In order to test the ALM, a wing 
with an elliptic planform was designed that has the same wing area (3.066 𝒎𝟐) and aspect ratio (8.249) as the NREL 
Phase VI rotor blade whose near-root cylindrical section (r/R < 0.25) is replaced by an extrapolation of the 
aerodynamic part. An illustration is given in Figure 11. In this case, 41 actuator points were used along the actuator 
line. The Gaussian spreading width 𝜺 was chosen to be about four times the actuator spacing 𝜟𝒃 as a baseline test 
case. The wing is exclusively equipped with the S809 airfoil. The geometric AOA was set to be 8° leading to a mid-
span circulation (𝛤0) of 6.6816 m2/s and an induced AOA (𝛼𝑖) of 1.8936° according to finite-wing theory. Two 
wings were designed with one being untwisted and having an elliptic planform (or chord) distribution, while the 
second one has a rectangular planform (constant chord) and is twisted such that it produces an elliptic lift 
distribution at a geometric AOA of 8°. Table 4 summarizes some of the geometric parameters and solver settings.  
 

                

 

     
   B.1 Elliptically Loaded Wing at Vwind = 20.1 m/s (Elliptic Planform) , 𝜺/𝜟𝒓 = constant 
 Classical lifting-line theory thus suggests a constant effective AOA of 6.1064° along the wing span.  Figures 12, 
14 and 15 show the spanwise variation of AOA, 𝐶𝑛 and 𝐶𝑡, respectively, for the designed elliptic wing planform. 
The results from XTurb-PSU match well with the theory as expected from a lifting-line model. The ALM 
predictions exhibit quite large discrepancies when compared to XTurb-PSU and the theoretical results. It can also be 
observed that as 𝜺 decreases the predicted AOA decreases, and the strong deviation from the theoretical results near 
the wing tips occurs over a smaller portion of the wing.  
 

 B.2 Elliptically Loaded Wing at Vwind = 20.1 m/s (Rectangular Planform) , 𝜺/𝜟𝒓 = constant 
 The blade twist of the rectangular wing was designed with the exact same elliptic circulation distribution as for 
the wing with elliptic planform described above. Figures 13, 16 and 17 show the spanwise variation of AOA, 𝐶𝑛 and 
𝐶𝑡, respectively, for the wing with rectangular planform and elliptical loading. The results from XTurb-PSU match 
again well with the theory with small deviations. This can be attributed to non-zero drag values used in the S809 
polar. The ALM predictions of AOA are close to the theory and XTurb-PSU results except at the wing tips. The 
force coefficients predicted by ALM exhibit some deviation compared to those computed by XTurb-PSU.  
 
 The previous observation that AOA and blade tip loads are over-predicted for 𝜺/𝜟𝒓 = constant holds true for 
both the wing designs. 

 
 
 

  

Figure 11. Wing with elliptic planform designed 
for analysis                                   
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Figure 14. Spanwise variation of 𝑪𝒏  
(Elliptic planform, Vwind = 20.1 m/s )                                 

 
 

       
        

                                 
 

Figure 15. Spanwise variation of 𝑪𝒕  
(Elliptic planform, Vwind = 20.1 m/s )                                 

 
 

       
        

                                 
 

        

              
 

 
 

 
    
 

              

                    
         
 

Figure 17. Spanwise variation of 𝑪𝒕 
(Rectangular planform, Vwind = 20.1 m/s )                                 

 
 

       
                                        

 

Figure 16. Spanwise variation of 𝑪𝒏 
(Rectangular planform, Vwind = 20.1 m/s )                                 

 
 

       
                                        

 

Figure 13. Spanwise variation of AOA 
(Rectangular planform, Vwind = 20.1 m/s )                                 

 
 

       
                                        

 

Figure 12. Spanwise variation of AOA 
 (Elliptic planform, Vwind = 20.1 m/s )                                 
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C.  NREL Phase VI Rotor, 𝜺/𝒄∗= constant 
In this section, the new method described in section II.A.3 for a variable Gaussian spreading width 𝜺 is tested for 

the NREL Phase VI rotor. Given an aspect ratio of 𝑨𝑹 = 10.455 for the blade from Fig. 3a, the 𝜺/𝒄∗ criterion in 
Equation (9b) for the fictitious elliptic planform 𝒄∗ can be computed for 𝜟𝒓 and 𝑹 from Table 1 and by choosing a 
user-specified 𝒏𝒎𝒂𝒙. In this work, we considered 𝒏𝒎𝒂𝒙 = 𝟒  (𝜺/𝒄∗ = 𝟏.𝟎 ∗ 𝜟𝒓 ∗ 𝜋 ∗ AR/b) and 𝒏𝒎𝒂𝒙 = 𝟑  (𝜺/𝒄∗ =
𝟎.𝟕𝟓 ∗ 𝜟𝒓 ∗ 𝜋 ∗ AR/b) along with 𝒏𝒎𝒊𝒏 = 𝟎,𝟏,𝟐. Table 5 comprises the parameters associated with the test cases 
for the problem under consideration. For comparison with the results for the methods in II.A.1 and II.A.2, the 
relevant parameters are also presented. The same set of parameters has been used for both rotating and parked 
conditions. The integrated values of thrust and power, after the solutions become stationary, have also been 
documented for each of these cases for the rotating condition and are presented in Table 5. 

 
Table 5: Parameters for constant and variable Gaussian spreading width for NREL Phase VI rotor 

(Actual planform as well as fictitious elliptic planform) 
ε - 

Method 
Fictitious 

Chord, 
𝒄𝟎 (m) 

Grid 
Resolution, 
𝜟𝒓  (m) 

 
𝒏𝒎𝒂𝒙 

 
𝒏𝒎𝒊𝒏 

 
𝜺 (m) 

𝜺/𝒄∗ 
or 
𝜺/𝒄 

𝜺𝑹/𝟐 (m ) 
or 

𝜺𝒎𝒊𝒏(m) 

Integrated 
Thrust 

(N) 

Integrated 
Power 

(W) 
II.A.1 NA 0.17 NA NA 0.7025 ≠ const. 0.7025 1450 7950 
II.A.2 NA 0.17 4 1 ≠ const. 1.1103 0.1750 1425 7640 

 
II.A.3 

0.6124 0.17 4 2 ≠ const. 1.1103 0.3500 1415 7545 
0.6124 0.17 4 1 ≠ const. 1.1103 0.1750 1395 7350 
0.6124 0.17 4 0 ≠ const. 1.1103 0.0000 1390 7340 
0.6124 0.17 3 1 ≠ const. 0.8327 0.1750 1365 6970 

 
C.1 Rotating Condition (72 RPM), Vwind = 7 m/s, 𝜺/𝒄∗= constant 
The results obtained for the proposed method described in II.A.1-II.A.3 are presented below for the NREL 

Phase VI rotor. Figures 18, 19 and 20 show the spanwise variation of AOA, 𝐶𝑛 and 𝐶𝑡. It can be observed that 
compared to the case of 𝜺/𝜟𝒓 = constant, 𝜺/𝒄 = constant (with actual planform) produces slightly better results. 
However, it is the 𝜺/𝒄 ∗ = constant case that produces substantially better results, particularly for the tip loads. It is 
worth noting that the Glauert correction is not needed to obtain improved results for the blade tip loads. Comparing 
the various cases for the proposed methods, it appears that 𝒏𝒎𝒂𝒙= 3 and 𝒏𝒎𝒊𝒏= 1 work quite well for the rotating 
case. 

Apart from the sectional loads, the integrated thrust and power were also analyzed. It can be noted from Table 5 
that the new method alleviates the over-prediction of thrust and power. The integrated thrust and power for 𝒏𝒎𝒂𝒙= 3 
and 𝒏𝒎𝒊𝒏= 1 are 1365 N and 6970 W respectively. These values are much closer to the measured data, as listed in 
Table 3, compared to when a constant 𝜺/𝜟𝒓 is used.  

 

 
 (a)                (b) 

Figure 18. Spanwise variation of AOA for the NREL Phase VI rotor (Vwind = 7 m/s, ε/c=const. or ε/c*=const.) 
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 (a)                (b) 

Figure 19. Spanwise variation of 𝑪𝒏 for the NREL Phase VI rotor (Vwind = 7 m/s, ε/c=const. or ε/c*=const.) 
 

 
(a)                (b) 

Figure 20. Spanwise variation of 𝑪𝒕 for the NREL Phase VI rotor (Vwind = 7 m/s, ε/c=const. or ε/c*=const.) 
 
 C.2 Parked Condition, Vwind = 20.1 m/s, 𝜺/𝒄∗= constant 
 The results for the NREL Phase VI rotor under parked conditions are presented below. Figures 21, 22 and 23 
show the spanwise variation of AOA, 𝐶𝑛 and 𝐶𝑡. The observations here are similar to those made for the 
rotating case. It can be noticed that the proposed method produces improved results and that 𝒏𝒎𝒂𝒙= 3 and 
𝒏𝒎𝒊𝒏= 1 work again well for the parked case. 
 

 
(a)                (b) 

Figure 21. Spanwise variation of AOA for the NREL Phase VI rotor (Parked, ε/c*=const.) 
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(a)                (b) 

Figure 22. Spanwise variation of 𝑪𝒏 for the NREL Phase VI rotor (Parked, ε/c*=const.) 
 

 
(a)                (b) 

Figure 23. Spanwise variation of 𝑪𝒕 for the NREL Phase VI rotor (Parked, ε/c*=const.) 
 
D. Elliptically Loaded Wing at Vwind = 20.1 m/s, 𝜺/𝒄∗= constant 

Having observed that the proposed method described in section II.A.3 for a variable Gaussian spreading width 𝜺 
shows improved results for the NREL Phase VI rotor, the classical aerodynamics problem of an elliptically loaded 
wing was studied with the newly proposed spreading method. Here only the elliptic planform was considered as the 
rectangular planform of the same AR results in the same fictitious elliptic planform 𝒄∗. The criterion in Equation 
(9b) for the fictitious elliptic planform 𝒄∗ can be computed in the same manner as for NREL Phase VI rotor. Table 6 
comprises the parameters associated with the test cases.  

  
Table 6: Parameters for constant and variable Gaussian spreading width for an elliptically loaded wing 

(elliptical planform, uniform grid) 
ε - 

Method 
Fictitious 

Chord, 
𝒄𝟎 (m) 

Grid 
Resolution, 
𝜟𝒓  (m) 

 
𝒏𝒎𝒂𝒙 

 
𝒏𝒎𝒊𝒏 

 
𝜺 (m) 

𝜺/𝒄∗ 
or 
𝜺/𝒄 

𝜺𝑹/𝟐 (m ) 
or 

𝜺𝒎𝒊𝒏(m) 
II.A.1 NA 0.1118 NA NA 0.5026 ≠ const. 0.5026 

 
II.A.3 

0.7762 0.1118 4 2 ≠ const. 0.5761 0.2300 
0.7762 0.1118 4 1 ≠ const. 0.5761 0.1150 
0.7762 0.1118 4 0 ≠ const. 0.5761 0.0000 
0.7762 0.1118 3 1 ≠ const. 0.4321 0.1150 

 
Figures 24, 25 and 26 show the spanwise variation of AOA, 𝐶𝑛 and 𝐶𝑡obtained on a uniform grid described in 

section II. It can be observed that, compared to the case of 𝜺/𝜟𝒓 = constant, the cases with 𝜺/𝒄 ∗ = constant  show 
an under-prediction of the blade tip loads except for one case. Comparing the various cases for the proposed method, 
it appears that 𝒏𝒎𝒂𝒙= 4 and 𝒏𝒎𝒊𝒏= 1 work quite well for the wing. It can also be seen that 𝒏𝒎𝒂𝒙= 4 and 𝒏𝒎𝒊𝒏= 0 
leads to some instability. 
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Figure 24. Spanwise variation of AOA 

 (Elliptic planform, Vwind = 20.1 m/s, 
ε/c*=const.) 

 
 

 

 
Figure 27. Spanwise variation of AOA 

 (Elliptic planform, Vwind = 20.1 m/s, ε/c*=const.) 
Stretched grid 

 
 

 

Figures 27, 28 and 29 show the spanwise variation of AOA, 𝐶𝑛 and 𝐶𝑡 for the elliptic wing problem using a 
stretched grid. The grid used had a smallest resolution of 1% of span (0.05029 m) with the refined region around the 
actuator line and near the tips extending over 20% span. An expansion factor of 1.05 was used. The resulting radial 
spacing was 0.1242 m at the mid-span. Table 7 comprises the parameters associated with the test cases for the 
stretched grid. Considering the resolutions at the tip as well as mid-span, the 𝜺/𝒄 ∗ criterion in Equation (9b) was 
computed with 𝒏𝒎𝒂𝒙= 4 and 𝒏𝒎𝒊𝒏= 1. The cases for 𝜺/𝜟𝒓 = constant were also considered for comparison. The 
Gaussian spreading width 𝜺 was chosen such that 𝜺/𝒄𝟎 was the same as 𝜺/𝒄 ∗ from above for each of the two grid 
resolutions considered. Comparing the various cases for the proposed method, it appears that 𝒏𝒎𝒂𝒙= 4 and 𝒏𝒎𝒊𝒏= 1 
along with the 𝜺/𝒄 ∗ criterion based on the grid resolution at the mid-span produces the best result. Thus, it can be 
concluded that grid stretching has a positive effect on the computed inflow distribution.  

 
Table 7: Parameters for constant and variable Gaussian spreading width for an elliptically loaded wing 

(elliptical planform, stretched grid) 
ε - 

Method 
Fictitious 

Chord, 
𝒄𝟎 (m) 

Grid 
Resolution, 
𝜟𝒓  (m) 

 
𝒏𝒎𝒂𝒙 

 
𝒏𝒎𝒊𝒏 

 
𝜺 (m) 

𝜺/𝒄∗ 
or 
𝜺/𝒄 

𝜺𝑹/𝟐 (m ) 
or 

𝜺𝒎𝒊𝒏(m) 
II.A.1 NA 0.05029 NA NA 0.2011 ≠ const. 0.2011 

NA 0.12420 NA NA 0.4968 ≠ const. 0.4968 
II.A.3 0.7762 0.05029 4 1 ≠ const 0.2591 0.0500 

0.7762 0.12420 4 1 ≠ const 0.6400 0.1250 
 

 
 

 

 

 
Figure 26. Spanwise variation of 𝑪𝒕 

(Elliptic planform, Vwind = 20.1 m/s, ε/c*=const.) 
 

 
 

 
Figure 25. Spanwise variation of 𝑪𝒏 

(Elliptic planform, Vwind = 20.1 m/s, ε/c*=const.) 
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Figure 28. Spanwise variation of 𝑪𝒏 

 (Elliptic planform, Vwind = 20.1 m/s, ε/c*=const.) 
Stretched grid 

 
 

 

 
Figure 29. Spanwise variation of 𝑪𝒕 

 (Elliptic planform, Vwind = 20.1 m/s, ε/c*=const.) 
Stretched grid 

 
 

 

 
Figure 30. Spanwise variation of AOA 

 (NREL 5-MW turbine, Vwind = 8 m/s, ε/c*=const.) 
 

 
 

Table 9. Operating conditions and 
simulation parameters for the NREL Phase 
VI rotor. 

 NREL Phase VI  
Rotor Radius, R (𝒎) 63 
Wind Speed, 𝑽𝒘𝒊𝒏𝒅 (𝒎/𝒔) 8.0 
Rot. Speed (RPM) 9.156 
Time Period, T (sec) 6.55 
Time Step,  Δt (sec) 0.03 
𝑽𝒕𝒊𝒑(𝒎/𝒔) 60.4052 
𝑽𝒕𝒊𝒑∆𝒕 (𝒎) 1.8122 
∆𝒓𝒎𝒊𝒏(𝒎)  1.96875 
Number of Actuator Points 64 
Root Cutout, r/R 0.1 

 

 E. NREL 5-MW turbine at Vwind = 8 m/s, 𝜺/𝒄∗= constant 
It was noted that the method described in section II.A.3 for a variable Gaussian spreading width 𝜺 shows 

improved results for the NREL Phase VI rotor as well as elliptically loaded wing both with a uniform and a 
stretched grid. The 𝜺/𝒄∗ criterion in Equation (9b) was computed in a similar manner for the NREL 5-MW turbine. 
Table 8 comprises the parameters associated with the test cases for the problem under consideration. The operating 
conditions for the NREL 5-MW turbine are presented in Table 9. 

Figures 30, 31 and 32 show the spanwise variation of AOA, 𝐶𝑛 and 𝐶𝑡. Only a uniform grid was used for the 
simulations. Here also, compared to the case of 𝜺/𝜟𝒓 = constant, the cases of 𝜺/𝒄 ∗ = constant produce better 
results, particularly for the tip loads. Comparing the various cases for the proposed method, it appears that 𝒏𝒎𝒂𝒙= 4 
and 𝒏𝒎𝒊𝒏= 1 work quite well. Integrated power and thrust are also documented for the sake of completeness. 

The observations suggest that the proposed method in II.A.3 can be applied to a utility-scale turbine as well. 
 

Table 8: Parameters for constant and variable Gaussian spreading width for NREL 5-MW turbine 
(Actual planform as well as fictitious elliptic planform) 

ε - 
Method 

Fictitious 
Chord, 
𝒄𝟎 (m) 

Grid 
Resolution, 
𝜟𝒓  (m) 

 
𝒏𝒎𝒂𝒙 

 
𝒏𝒎𝒊𝒏 

 
𝜺 (m) 

𝜺/𝒄∗ 
or 
𝜺/𝒄 

𝜺𝑹/𝟐 (m ) 
or 

𝜺𝒎𝒊𝒏(m) 

Integrated 
Thrust 
(kN) 

Integrated 
Power 
(kW) 

II.A.1 NA 1.96875 NA NA 3.93750 ≠ const. 3.93750 390 1970 
 

II.A.3 
4.4376 1.96875 4 2 ≠ const. 1.7746 3.93750 409 2110 
4.4376 1.96875 4 1 ≠ const. 1.7746 1.96875 425 2165 
4.4376 1.96875 4 0 ≠ const. 1.7746 0.00000 416 2150 
4.4376 1.96875 3 1 ≠ const. 1.3309 1.96875 400 2035 
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Figure 31. Spanwise variation of 𝑪𝒏 

 (NREL 5-MW turbine, Vwind = 8 m/s, ε/c*=const.) 
 

 
 

 
Figure 32. Spanwise variation of 𝑪𝒕 

 (NREL 5-MW turbine, Vwind = 8 m/s, ε/c*=const.) 
 

 
 

 
 

IV. Summary and Conclusions 
The objective of this work was to assess and improve the accuracy of the state-of-the-art actuator-line method 

ALM in predicting rotor blade loads. The ALM was applied within an OpenFOAM computational fluid dynamics 
(CFD) solver to various blade planform geometries including the NREL Phase VI rotor in rotating and parked 
conditions, two wing designs with an elliptic load distribution, and the NREL 5-MW turbine. Results obtained for 
sectional AOA as well as normal and tangential force coefficients were compared to data, when available, and to 
results obtained by the wind turbine design and analysis code XTurb-PSU.  

It was found that the current ALM shows a consistent overprediction in rotor tip loads for all blade planforms 
considered when using a constant spreading radius (or width) 𝜺/𝜟𝒓 = 𝒄𝒐𝒏𝒔𝒕. of the Gaussian within the ALM 
discretization. Consequently, integrated rotor thrust and power (or torque) are overpredicted accordingly, which is 
likely to have an effect on the recovery process of the wake momentum deficit in the rotor wake, which will be a 
subject of future studies. Furthermore, it was noted that increasing the constant 𝜺/𝜟𝒓 further increases the integrated 
rotor loads. A new method was developed for a variable spreading width 𝜺 along the blade span that is based on a 
‘fictitious’ elliptic planform 𝒄∗ with the same aspect ratio 𝑨𝑹 as the actual blade. The proposed 𝜺/𝒄∗ = 𝒄𝒐𝒏𝒔𝒕. 
criterion is a function of the blade 𝑨𝑹, the grid resolution 𝜟𝒓/𝑹, and free parameters 𝒏𝒎𝒂𝒙 and 𝒏𝒎𝒊𝒏 that describe 
the maximum and minimum spreading with at the mid-blade and tip locations, respectively, in multiples of the grid 
spacing 𝜟𝒓 along the blade. It was demonstrated that the proposed 𝜺/𝒄∗ = 𝒄𝒐𝒏𝒔𝒕. criterion gives improved 
predictions of computed rotor loads for all blade designs considered. In addition, choosing 𝒏𝒎𝒂𝒙 = 𝟑,𝟒 and 
𝒏𝒎𝒊𝒏 = 𝟏 consistently gave the best predictions for all cases. A stretched grid with refinement at the blade tips of 
about 𝜟𝒓/𝑹 = 𝟎.𝟎𝟏 further improved the prediction of the local inflow in terms of AOA.  

 

V. References 
1 “20% Wind Energy by 2030,” US Department of Energy Executive summary, DOE/GO-102008-2578, December 2008. 
2 ”Eastern Wind Integration and Transmission Study,” prepared for the National Renewable Energy Laboratory by the EnerNex 

Corporation, NREL/SR-5500-47078, February 2011. 
3 ”Western Wind and Solar Integration Study,” prepared for the National Renewable Energy Laboratory by GE Energy, 

NREL/SR-550-47434, May 2010. 
4 Katic, I., Hoejstrup, J., Jensen, N. O., “A Simple Model for Cluster Efficiency,” Proceedings of the European Wind Energy 

Association, Rome, Italy, 1986. 
5 Rathmann, O., Frandsen, S. T., Barthelmie, R. J., “Wake Modelling for Intermediate and Large Wind Farms,” Proceedings of 

the European Wind Energy Conference and Exhibition, Milan, Italy, 2007. 
6 “WAsP – The Wind Atlas Analysis and Application Program,” Risoe National Laboratory for Sustainable Energy, Roskilde, 

Denmark. [Online]. Available: http://www.wasp.dk/Products/WAsP.html [Accessed July 17th 2011]. 

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

M
ar

ch
 2

9,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
60

8 

http://www.wasp.dk/Products/WAsP.html�


 
American Institute of Aeronautics and Astronautics 

 
 

18 

7 Crespo, A., Hernandez, J., Fraga, E., Andreu, C., “Experimental validation of the UPM computer code to calculate wind turbine 
wakes and comparison with other models,” Journal of Wind Engineering and Industrial Aerodynamics, 27, 77-88, 1988 

8 Hassan, U. A., “A Wind Tunnel Investigation of the Wake Structure within Small Wind Turbine Farms,” Rep. ETSU WN 5113, 
1993. 

9 Sørensen,  J. N., Shen, W. Z., Munduate, X., “Analysis of Wake States by a Full-Field Actuator Disc Model,” Int. J. Numer. 
Meth. Fl., 1, 73-78, 1998. 

10 Leclerc, C., Masson, C., “Toward Blade-Tip Vortex Simulation with an Actuator-Lifting Surface Model,” AIAA-2004-0667, 
2004. 

11 Leclerc, C., Masson, C., “Wind Turbine Performance Predictions Using a Differential Actuator-Lifting Disk Model,” J. Sol. 
Energ.Engin. Transactions of the ASME, 127, 200-208, 2005. 

12 Réthoré, P. E., Sørensen, N. N., Zahle, F., “Validation of an Actuator Disc Model,” EWEC, 2010. 
13 Mikkelsen, R., “Actuator Disc Methods Applied to Wind Turbines. Technical University of Denmark,” PhD Thesis, 2003. 
14 Lu, H., Porté-Agel, F., “Large-Eddy Simulation of a Very Large Wind Farm in a Stable Atmospheric Boundary Layer,” Physics 

of Fluids, 23, 065101, 2011. 
15 Ivanell, S., Mikkelsen, R., Sørensen, J., Henningson, D., “ACD Modelling of Wake Interaction in the Horns Rev Wind Farm,” 

In Extended Abstracts for Euromech Colloquim 508 on Wind Turbine Wakes, European Mechanics Society, Madrid, Spain, 
2009. 

16 Meyers, J., Meneveau, C., “Large Eddy Simulations of Large Wind-Turbine Arrays in the Atmospheric Boundary Layer,” 
AIAA-2010-0827, 2010. 

17 Singer, M., Mirocha, J., Lundquist, J., Cleve, J. “Implementation and assessment of turbine wake models in the Weather 
Research and Forecasting model for both mesoscale and large-eddy simulation,” 2010. 

18 Conzemius, B., Lu, H., Chamorro, L., Wu, Y.-T., Porte-Agel, F. “Development and testing of a 21 wind farm simulator at an 
operating wind farm,” Presentation from AWEA 2010 WindPower Conference and Exhibition, Dallas, TX. 

19 Stovall, T.  D., Pawlas, G., Moriarty, P. J., “Wind farm wake simualtions in OpenFOAM,” AIAA-2010-0825, 2010. 
20 Sørensen, J. N., Shen, W. Z., “Numerical modeling of Wind Turbine Wakes,” ASME Journal of Fluids Engineering, 124, 393-

399, 2002. 
21 Troldborg, N., Sørensen, J. N., Mikkelsen, R., “Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent 

Inflow,” Journal of Physics: Conference Series, The Science of Making Torque from Wind, Technical University of Denmark, 
Lyngby, Denmark, 2007. 

22 Troldborg, N., “Actuator Line Modeling of Wind Turbine Wakes,” Technical University of Denmark, PhD Thesis, 2008. 
23 Troldborg, N., Sørensen, J., Mikkelsen, R., “Numerical Simulations of Wake Characteristics of a Wind Turbine in Uniform 

Flow,” Wind Energy, 13, 86-99, 2010. 
24 Sibuet Watters, C., Masson, C., “Modelling of Lifting-Device Aerodynamics Using the Actuator Surface Concept,” Int. J. 

Numer. Meth. Fl., 62(11), 1264-1298, 2010. 
25 Dobrev, I., Massouh, F., Rapin, M., “Actuator surface hybrid model,” Journal of Physics Conference Series, The Science of 

Making Torque from Wind, Technical University of Denmark, Lyngby, Denmark, 2007. 
26 Shen, W. Z., Zhang, J. H., Sorensen, J. N., “The Actuator Surface Model: A New Navier-Stokes Based Model for Rotor 

Computations,” J. Sol. Energy Eng. Trans. ASME, 131(1), doi:10.1115/1.3027502., 2009. 
27 OpenFOAM, Ver. 2.0.x, [available online] ESI Group-OpenCFD, URL: http:// www.openfoam.org/git.php [accessed 13 

December 2012]. 
28 Churchfield, M. J., Moriarty, P. J., Vijayakumar, G., Brasseur, J., “Wind Energy-Related Atmospheric Boundary-Layer Large-

Eddy Simulation Using OpenFOAM,” NREL/CP-500-48905, 2010. 
29 Churchfield, M. J., “Wind Energy / Atmospheric Boundary Layer Tools and Tutorials,” Training Session at the 6th OpenFOAM 

Workshop, The Pennsylvania State University, 2011. 
30 Churchfield, Matthew J., Lee, S., Moriarty, Patrick J., Martínez, Luis A., Leonardi, S., Vijayakumar, G. and Brasseur, J. G., "A 

Large-Eddy Simulation of Wind-Plant Aerodynamics,”  AIAA 2012-0537,  Nashville, TN. 
31 Churchfield, Matthew J., Lee, S., Michalakes, J., and Moriarty, Patrick J., "A Numerical Study of the Effects of Atmospheric 

and Wake Turbulence on Wind Turbine Dynamics,” Journal of Turbulence, Vol. 13, No. 12, 2012. 
32 Jha, Pankaj K., Brillembourg, D., and Schmitz, S., "Wind Turbines under Atmospheric Icing Conditions - Ice Accretion 

Modeling, Aerodynamics, and Control Strategies for Mitigating Performance Degradation,” AIAA 2012-1287-868, 50th AIAA 
Aerospace Sciences Meeting, 09 - 12 January 2012, Nashville, TN. 

33 Martínez, Luis A., Leonardi, S., Churchfield, Matthew J., and Moriarty, Patrick J., "A Comparison of Actuator Disk and 
Actuator Line Wind Turbine Models and Best Practices for Their Use,”  AIAA 2012-0900,  Nashville, TN. 

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

M
ar

ch
 2

9,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
60

8 

http://www.openfoam.org/git.php�
http://www.openfoam.org/git.php�


 
American Institute of Aeronautics and Astronautics 

 
 

19 

34 Moriarty, P.J. and Hansen, A.C., “AeroDyn Theory Manual,” NREL/TP-500-36881, January 2005, URL: 
http://www.nrel.gov/docs/fy05osti/36881.pdf. 

35 Chattot, J.J., “Design and Analysis of Wind Turbines Using Helicoidal Vortex Model,” Computational Fluid Dynamics Journal, 
Vol. 11, No. 1, April 2002, pp. 50-54. 

36 Du, Z. and Selig, M.S., “A 3-D Stall-Delay Model for Horizontal Axis Wind Turbine Performance Prediction,” AIAA-98-0021, 
36th AIAA Aerospace Sciences Meeting and Exhibit, 1998; ASME Wind Energy Symposium, Reno, NV, USA, January 12-15, 
1998. 

37 Hansen, C., AirfoilPrep, NWTC Design Code, Ver. 2.0, [available online] National Renewable Energy Laboratory, Golden, CO, 
2005, URL: http://wind.nrel.gov/designcodes/preprocessors/airfoilprep/ [last modified 9 March 2010, accessed 7 December 
2012]. 

38 Glauert, H., Airplane Propellers, Dover, New York, 1985, pp. 251-268. 
39 Jensen, L. E., “Array Efficiency at Horns Rev and the Effect of Atmospheric Stability,” Dong Energy Presentation, 2007. 
40 Shives, M., Crawford, C., "Mesh and Load Distribution Requirements for Actuator Line CFD Simulations", Wind Energy, Vol. 

15, August 2012. 
41 Rhie, C. M., and Chow W. L., “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation,” AIAA 

Journal, Vol. 21, No. 11, 1983, pp. 1525–1532. 
42 Issa, R. I., “Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting,” Journal of Computational 

Physics, Vol. 62, 1985, pp. 40–65. 
43 Wesseling, P., “Elements of Computational Fluid Dynamics,” Lecture Notes WI4011 TU Delft, 2001. 

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

M
ar

ch
 2

9,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
60

8 

http://www.nrel.gov/docs/fy05osti/36881.pdf�
http://wind.nrel.gov/designcodes/preprocessors/airfoilprep/�

