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Pulsed power: Sandia Z-machine

(currently uses gas discharge switches)
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100 kV switches
may eventually be
possible using an
UWBG material
such as AlGaN!
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After-Next Material for Power Electronics
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BT WBG and UWBG Materials
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Data UWB_diode_V7_9_Rings_OPT_15_DrainV_target -5000),

Edge Termination for High

Tl

TH

Effective edge
termination is
required to avoid
premature lateral
breakdown

J. Dickerson, M. King
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GaN PiN Diode Results

Passivation p - contact
\ mmmpt=GaNTn Edge term. |
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bulk GaN substrates
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e Start with 30% AlGaN
* Siis ashallow dopant
Mg is a deep acceptor (¥*320 meV), but thermal
ionization is still sufficient to achieve p-type conductivity

* Working towards higher Al compositions
J. Dickerson
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Fig. 12.12. Bandgap energy versus lattice constant of [II-V nitride semiconductors at
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AlGaN Growth on Patterned Templates (K Cross) [ PERTRETTmmm—rm"
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®» Method reduces TTD over entire range of AIGaN compositions!
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* n-contacts on the front

p-contact surface of the wafer
g torm. - Al yGag N [ * Aly3Gag;N grown by MOCVD

on thick sapphire
* Threading dislocation density
~1-2x10° cm™
n-contact * Drift region thickness ~4.3 um
p RGN EERERINE iy - orift region doping 10 cmr?
AlGaN template * Expect spreading resistance
due to lateral carrier

Sapphire transport in the n* contact
layer

n - Al, ;Ga, ;N (drift region)

A. Fischer
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A. Allerman, M. Crawford, A. Fischer, J. Dickerson, M. King
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Channel Al Composition > 70%
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» To our knowledge, this is the first demonstration of a 2DEG in
Al Ga, N/Al,Ga, N heterostructure fory > x > 0.7

A. Allerman, A. Armstrong
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Challenge: Ohmic contacts
Focus on re-grown contacts
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’.. N Summary

*  UWBG materials such as AlGaN have potential to push
the state-of-the-art in power electronics for specialized
DoD applications

* Demonstrated world-record GaN PiN diodes (Vg*/R,, ,
~ 18 GW/cm?)

 Demonstrated Al, ;,Ga, ;N PiN diodes with Vg ~ 1.5 kV

*  First demonstration of 2DEG in Al Ga, N/Al,Ga; N
heterostructure fory > x> 0.7

*  Successful demonstration of working AIN/Al, ;:Ga, ;N
HEMT

The contributions of the entire Sandia Ultra-Wide-Bandgap Grand Challenge
team and the support of Sandia’s LDRD program are gratefully acknowledged




