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Why count donors?

Two qubit experiments require deterministic control over number of donors
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B.E. Kane, Nature 393, 133 (1998)

How to count donors:

T. Shinada et al., Nanotechnology 19, 345202 (2008)
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J. A. Seamons et al., APL 93, 043124 (2008)
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=== Making devices with counted no. of donors

Counting the ion implants
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=== oes the SET work/see the donors?
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== TyUNNeling Time Measurement on Counted Donors
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s TUNNEliNG Time Measurement on Counted Donors
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Others are very fast

1. With focused ion beam system and lithography,
we can control lateral position to ~ 10 nm

2. By thinning oxide to 7 nm in the implantation
region, we can use lower energy ions and reduce
depth straggle
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Results

THIS WORK:
Correlation between no. of donors implanted and no. of charge offsets in transport
measurement is seen (APL 108, 6, 062101 (2016))
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Additional Information
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Single ion detection and functional SET

Single ion detection
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integrated with functional SETs,
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Dit (g/cm”2*eV) Qf (q/cm”2)

Sample Synthesis: 7 nm oxide

Interface trapped charge (D;) and fixed
charge (Qy) are concerns for dots and
donors near the SiO,/Si interface

Thinner oxides lead to higher fixed charge

Dit and Qf vs. Oxide Thickness
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We require deterministic control over:

1. Placement of donors: needs thin
oxide

2. Number of donors

However, we are able to
obtain stable single dots in
these systems
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Beam Current (pA)

AuSISb Mass Spectrum
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hydrogen helium
1 2
H He
1.0079 4.0026
lithium beryllium boron carbon nitrogen oxygen fluorine neon
3 4 5 6 7 8 9 10
Li | Be B| C|N|O| F |Ne
G.941 90122 10.811 12.011 14.007 15.999 18.998 20.180
sodium madnesium aluminium silicon phosphorus sulfur chlorine argon
11 12 ’ 13 14 15 16 17 18
Na Mg & Al | Si| P | S |CIl|Ar
22,950 243505 28 088 32.065 35453 39.948
potassium calcium scandium titanium vanadium chromium | manganese iron caobalt nickel gatlium salenium bromine krypton
19 20 21 22 23 24 25 26 27 28 34 35 36
K | Ca Sc|Ti| V|Cr| Mn|Fe|Co| Ni Se | Br | Kr
39.098 40.078 44,956 47 BET 50,942 51,996 54938 55,845 58,933 58,603 78.96 79.904 83.80
rubidium strontium yitrium Froonium niohium molvbdenumi technelium | ruthenium rhocdium patladium cadmium tellurium iodine Xenon
37 38 39 40 41 42 43 44 45 46 48 52 53 54
Rb | Sr Y | Zr |[Nb|Mo| Tc | Ru|Rh | Pd Cd Te| | | Xe
85.468 a7.62 £88.906 91.234 92,908 95.94 98] 10107 102849 106,42 11241 1B 127.60 126.90 121.29
caesium barium lutetium hafnium tantalum tungsten rhenium osmium iridium platinurm mercury thalliim lead polonium astatine radon
55 56 57-70 a! 72 73 74 75 76 77 78 80 81 82 84 85 86
CsBa| * |Lu|Hf [ Ta| W |Re|Os| Ir Tl | Pb Po| At | Rn
122.91 137.33 174.97 178.49 180.95 183.84 186.21 190.23 192.22 200.59 204,38 2077 [209] [210] [222]
francium radium lawrencium | rutherfordium| — dubnium seaborgium bohrium hassium meitnerium ununbium ununquadium
87 88 89-102 103 104 105 106 107 108 109 112 114
Fr|{Ra|xx| Lr| Rf | Db| Sg | Bh| Hs | Mt Uub Uuq
[223] [226] [262] [261] [262] [266] [264] [269] [268] [277] [2589]
lanthanum cerium prasecdymiumy neodymium | promethium | samarium europium gadolinium terbium dysprosium holmium erbium thulium yiterbium
*Lanthanide series 57 58 59 60 61 62 63 64 65 66 67 68 69 70
La|{Ce| Pr | Nd(Pm|Sm|Eu|Gd|Tb |Dy |(Ho| Er | Tm| Yb
128.91 140,12 140.91 144 .24 [145] 150,36 151,96 157.25 158,92 162.50 164,93 167.26 168,93 173.04
actinium thoriurm protactinium uranium neptunium plutonium americiurm ourium berkelium californium | einsteinium fermium  Jmendslevium]  nobelium
** Actinide series 89 99 91 92 93 94 95 96 97 08 99 100 101 102
Ac Th|Pa| U |INp|Pu|Am|Cm|Bk| Cf | Es Fm|Md| No
[£27] 232,04 231.04 238,03 [237] {2441 (243 [247] [247] [£51] [252] [£57] [258] [259]

Capable of Generating lon Beams from~1/; of the Periodic Table




