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Can Exascale Solve the UQ Challenge?

• UQ means many things
– Best estimate + uncertainty, model validation, model calibration, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin, 

…

• Key challenge:
– Accurately quantifying rare events and localized behavior in high-

dimensional uncertain input spaces
– Can easily require O(104-106) expensive forward simulations
– Often can only afford O(102) on today’s petascale machines



Emerging Architectures Motivate New 
Approaches to Predictive Simulation

• UQ approaches traditionally implemented as an outer loop:

• Increasing UQ performance will require
– Speeding-up each sample evaluation, and/or
– Evaluating more samples in parallel

• Many important scientific simulations will struggle with upcoming architectures
– Irregular memory access patterns (e.g., indirect accesses resulting in long latencies)
– Inconsistent vectorization (e.g., complex loop structures with variable trip-count)
– Poor scalability to high thread-counts (e.g., poor cache reuse results in ineffective hardware threading)

• Investigate improving performance and scalability through embedded UQ approaches that 
propagate some UQ information at lowest levels of simulation

– Improve memory access patterns and cache reuse
– Expose new dimensions of structured fine-grained parallelism
– Reduce aggregate communication

http://dakota.sandia.gov 

http://trilinos.sandia.gov


// CRS Matrix for an arbitrary floating-point type T

template <typename T>

struct CrsMatrix {

int num_rows;     // number of rows in matrix

int num_entries;  // number of nonzeros in matrix

int *row_map;     // starting index of each row, [0,num_rows+1)

int *col_entry;   // column indices for each nonzero, [0,num_entries)

T   *values;      // matrix values of type T, [0,num_entries)

};

// Serial CRS matrix-vector product for arbitrary floating-point type T

template <typename T>

void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

sum += A.values[entry] * x[col];

}

y[row] = sum;

}

}

Sparse CRS-Format Matrix-Vector Product



Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

– Spatial DOFs for each sample stored consecutively



// Ensemble matrix-vector product

template <typename T, int m>

void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int e=0; e < m; ++e) {

for (int row=0; i<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}

y[row + e*A.num_rows] = sum;

}

}

}

Ensemble Matrix-Vector Product



Simultaneous ensemble propagation

• Commute Kronecker products:

– m sample values for each DOF stored consecutively



// Ensemble matrix-vector product using commuted layout

template <typename T, int m>

void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; i<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum[m];

for (int e=0; e < m; ++e)

sum[e] = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

for (int e=0; e < m; ++e) {

sum[e] += A.values[entry*m + e] * x[col*m + e];

}

}

for (int e=0; e < m; ++e)

y[row*m + e] = sum[e];

}

}

• Automatically reuse non-sample dependent data
• Sparse access latency amortized across ensemble
• Communication latency amortized across ensemble
• Math on ensemble naturally maps to vector arithmetic

Commuted, Ensemble Matrix-Vector Product



// Ensemble scalar type

template <typename U, int m>

struct Ensemble {

U val[m];

Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }

Ensemble& operator=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] = a.val[m];

return *this;

}

Ensemble& operator+=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] += a.val[m];

return *this;

}

// ...

};

template <typename U, int m>

Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {

Ensemble<U,m> c;

for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];

return c;

}

// ...

C++ Ensemble Scalar Type



// Serial Crs matrix-vector product for arbitrary floating-point type T

template <typename T>

void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

sum += A.values[entry] * x[col];

}

y[row] = sum;

}

}

Ensemble Matrix-Vector Product Through 
Operator Overloading

• Original matrix-vector product routine, instantiated with T = 
Ensemble<double,m> scalar type:



Stokhos:  Trilinos Tools for Embedded 
UQ Methods

• Provides ensemble scalar type
– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic programming
– Template C++ code on scalar type

– Instantiate template code on ensemble scalar type

• Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map vectorization parallelism 

across ensemble

• Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
– Exploits templating on scalar type

– Krylov solvers (Belos)

– Algebraic multigrid preconditioners (MueLu)

– Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers 
(Ifpack2)

– Sparse-direct solvers (Amesos2)

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL truncation of exponential random field model for diffusion coefficient
– Trilinos-couplings package

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE matrix/RHS assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and 
solve

– Samples generated via Smolyak sparse grids

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Ensemble PDE Matrix/RHS Assembly Speed-Up

• Speed-up results from
– Reuse of mesh, 

discretization data 
structures

– Replacement of 
sparse gather with 
contiguous load

– Perfect vectorization
of math
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Ensemble Sparse Matrix-Vector Product 
Speed-Up

• Speed-up results from
– Reuse of matrix 

graph (20%)
– Replacement of 

sparse gather with 
contiguous load

– Perfect vectorization
of multiply-add
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Interprocessor Halo Exchange

• Speed-up results from reduced 
aggregate communication latency

– Fewer, larger MPI messages
– Communication volume is the same
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AMG Preconditioned CG Solve

• Smoothed-
aggregation algebraic 
multigrid
preconditioning 
(MueLu)

– Chebyshev
smoothers

– Sparse-direct coarse-
grid solver 
(Amesos2/Basker)

– Multi-jagged parallel 
repartioning (Zoltan2)
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Ensemble Propagation for More Challenging 
Problems

• Assuming number of CG iterations doesn’t vary significantly 
from sample to sample
– True for problems with tame diffusion coefficient on regular 

meshes

– Implies number of CG iterations for ensemble does not increase

• For general problems, number of iterations will increase for 
ensemble system
– Spectrum of ensemble matrix must spread out

– Need to group samples to group matrices with similar spectra

• Note:  Do not require smoothness (of matrix, RHS, solution) 
between samples!



Ensemble Grouping for Anisotropic 
Diffusion Problems

• Model problem:

• Strong anisotropy induces large variation of PCG iterations from sample to 
sample

– Want to group samples with similar #iterations

• Anisotropy level strongly correlated with #iterations:

Anisotropy level: 

64x64 finite element mesh

AMG (ML) Preconditioned CG



Ensemble Grouping for Anisotropic 
Diffusion Problems

• Strategy:  Order based on anisotropy level, group into 
ensembles of size S

ITS: #its for the ith ensemble

its: #its for the kth sample

RF covariance S R (anisotropy 
ordering)

R (no-ordering)

Gaussian 8 1.374 1.793

Gaussian 16 1.469 2.197

Gaussian 32 1.652 2.852

Exponential 8 1.274 1.448

Exponential 16 1.337 1.673

Exponential 32 1.427 1.847

γ-Exponential 8 1.217 1.503

γ-Exponential 16 1.272 1.794

γ-Exponential 32 1.384 2.223



Summary

• Embedded sampling approach improves aggregate UQ 
performance by
– Eliminating sparse memory accesses
– Amortizing communication/access latency
– Perfect fine-grained vector/Cuda-thread parallelism

• Applying technique through C++ templates greatly facilitates 
implementation
– Alleviate code developers from having to worry about UQ

• Smart grouping of samples into ensembles required for more 
challenging problems:
– Effective strategies require understanding dependence of 

computational cost on uncertain parameter variations
– Can we do this more generally? 

• A variety of approaches to consider



Extra Slides



Computer Architectures Are Changing 
Dramatically

• Historically (super)computers have gotten 
faster by

– Increasing clock frequency
– Adding more compute nodes that 

communicate through an interconnect

• Power requirements make this approach 
untenable for future performance increases

• Instead performance increases are now 
achieved through increases in node-level 
fine-grained parallelism

– Many, many threads executing 
simultaneously

– Memory access, arithmetic on wide vectors
– Complex memory hierarchies that require 

processing units to share data

Herb Sutter, “The Free Lunch Is Over: A 
Fundamental Turn Toward Concurrency in 
Software”, Dr. Dobb’s Journal 



Application & Library Domain Layer

Kokkos: A Manycore Device Performance Portability Library for 
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core:  multidimensional arrays, parallel execution, atomic operations
– Containers:  Thread-scalable implementations of common data 

structures (vector, map, CRS graph, …)
– LinAlg:  Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce 
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)

– Memory spaces (Host memory, GPU memory, scratch-pad, texture 
cache, …)

– Layout of multidimensional data in memory

– Scalar type

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

http://trilinos.sandia.gov 

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

http://trilinos.sandia.gov


Tpetra: Foundational Layer / Library for Sparse Linear 
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for 
distributed memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of 

Kokkos library
– Distributed memory vectors, multi-vectors, and sparse 

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-

vector multiply, ...
– Templated on “scalar” type: float, double, automatic 

differentiation, polynomial chaos, ensembles, …

 Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2, 

ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov 

*M. Heroux, M. Hoemmen, et al (SNL)

http://trilinos.sandia.gov


• Kokkos views of UQ scalar type internally stored as views of 1-higher rank
– UQ dimension is always contiguous, regardless of layout

• Facilitates
– Fine-grained parallelism over UQ dimension
– Efficient allocation and initialization
– Specialization of kernels
– Transfering data between host and device and MPI communication

• Requires specialized kernel launch for CUDA to map warp to UQ dimension to 
achieve performance

Kokkos Integration

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view(“v”, 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view(“v”, 10);


