SAND2016- 2545C

Embedded Ensemble Propagation for
Improving Performance, Portability and
Scalability of Uncertainty Quantification on
Emerging Computational Architectures

Marta Erliicliz,h Le%aﬁéerlﬁigsvg’s&as?%éemmen,

Jonathan Hu, and Siva Rajamanickam
Sandia National Laboratories

14th Copper Mountain Conference on Iterative Methods
March 20-25, 2016

SAND2016-XXXX C
U.S. DEPARTMENT OF Oﬁ'Ce Of .
'ENERGY s Equinox
2 Science
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Sandia National Laboratories
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. ﬂ‘

mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov

Can Exascale Solve the UQ Challenge?

- UQ means many things
— Best estimate + uncertainty, model validation, model calibration, ...

* A key to many UQ tasks is forward uncertainty propagation
— Given uncertainty model of input data (aleatory, epistemic, ...)
— Propagate uncertainty to output quantities of interest

* There are many forward uncertainty propagation approaches
— Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin,

* Key challenge:

— Accurately quantifying rare events and localized behavior in high-
dimensional uncertain input spaces

— Can easily require O(104-10¢) expensive forward simulations
— Often can only afford O(102) on today’s petascale machines

117! Sandia National Laboratories

Emerging Architectures Motivate New
Approaches to Predictive Simulation

« UQ approaches traditionally implemented as an outer loop:

Dakota
sensitivity analysis
uncertainty quantification

optimization
response
metrics

parameter estimation

{ approximation/surrogate

user application
(simulation)

http://dakota.sandia.gov

* Increasing UQ performance will require
— Speeding-up each sample evaluation, and/or
— Evaluating more samples in parallel

* Many important scientific simulations will struggle with upcoming architectures
— Irregular memory access patterns (e.g., indirect accesses resulting in long latencies)
— Inconsistent vectorization (e.g., complex loop structures with variable trip-count)
— Poor scalability to high thread-counts (e.g., poor cache reuse results in ineffective hardware threading)

* Investigate improving performance and scalability through embedded UQ approaches that
propagate some UQ information at lowest levels of simulation

— Improve memory access patterns and cache reuse
— Expose new dimensions of structured fine-grained parallelism
— Reduce aggregate communication

117! Sandia National Laboratories

http://trilinos.sandia.gov

Sparse CRS-Format Matrix-Vector Product

/I CRS Matrix for an arbitrary floating-point type T
template <typename T>
struct CrsMatrix {
int num_rows; // number of rows in matrix
int num_entries; // number of nonzeros in matrix
int *row_map; // starting index of each row, [0,num_rows+1)
int *col_entry; // column indices for each nonzero, [0,num_entries)
T *values; /I matrix values of type T, [0,num_entries)

|5

Il Serial CRS matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}

y[row] = sum;

LEJ-,..,...,.,-...,..‘Inal Laboratories

Simultaneous ensemble propagation

* PDE:
f(u,y) =0

* Propagating m samples — block diagonal (nonlinear) system:

- = i oF b
FU,Y)=0, U=) eQu;, Y =) e®yi, F=) e@f(ui,y), ==Y eie]® /
1=1 =1 =1 é)l]- i=1 é)QLi

00 5?0 1000 1?00 2000

500
1000

L]
2 *, 1500
L]

2000

— Spatial DOFs for each sample stored consecutively

ENERGY SZ?;’EC‘S 1) Sandia National Laboratories

Ensemble Matrix-Vector Product

/I Ensemble matrix-vector product
template <typename T, int m>
void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int e=0; e < m; ++e) {
for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}

y[row + e*A.num_rows] = sum;

117! Sandia National Laboratories

Simultaneous ensemble propagation

« Commute Kronecker products:

Fc(UcaYc) =0, U. = Zui®ei’ Y. = Zyi®ei9 F. = Z f(uiayi)®ei, E = Z 3’U,'®ei6f
=1 i=1 i=1 c i—=1 i

0 500 1000 1500 2000
T 1 T

———‘——————————————‘ q

500

1000}

1500

2000} . TN

— m sample values for each DOF stored consecutively

ENERGY SZ?;’EC‘S 1) Sandia National Laboratories

Commuted, Ensemble Matrix-Vector Product

/I Ensemble matrix-vector product using commuted layout
template <typename T, int m>
void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum[m];
for (int e=0; e < m; ++e)
sumie] = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
for (int e=0; e < m; ++e) {
sum[e] += A.values[entry*m + e] * x[col*m + e];
}
}
for (int e=0; e < m; ++e)
y[row*m + e] = sum[e];

}
}

« Automatically reuse non-sample dependent data

» Sparse access latency amortized across ensemble

« Communication latency amortized across ensemble

* Math on ensemble naturally maps to vector arithmetic () . National taboratores

C++ Ensemble Scalar Type

/I Ensemble scalar type
template <typename U, int m>
struct Ensemble {
U val[m];
Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }
Ensemble& operator=(const Ensemble& a) {
for (int e=0; e<m; ++e) val[m] = a.val[m];
return *this;
}
Ensemble& operator+=(const Ensemble& a) {
for (int e=0; e<m; ++e) val[m] += a.val[m];
return *this;

I ...
5

template <typename U, int m>

Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {
Ensemble<U,m> c;
for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];
return c;

...

|m| Sandia National Laboratories

Ensemble Matrix-Vector Product Through
Operator Overloading

» Original matrix-vector product routine, instantiated with T =
Ensemble<double,m> scalar type:

Il Serial Crs matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}

y[row] = sum;

117! Sandia National Laboratories

Stokhos: Trilinos Tools for Embedded
UQ Methods

Provides ensemble scalar type
— Uses expression templates to fuse loops

d=axb+c={a1 Xbi+ci,...,am X by +cm}

http://trilinos.sandia.qgov

Enabled in simulation codes through template-based generic programming
— Template C++ code on scalar type
— Instantiate template code on ensemble scalar type

Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism

— Specializes Kokkos data-structures, execution policies to map vectorization parallelism
across ensemble

Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
— Exploits templating on scalar type
— Krylov solvers (Belos)
— Algebraic multigrid preconditioners (MuelLu)

— Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers
(Ifpack2)

— Sparse-direct solvers (Amesos2)

117! Sandia National Laboratories

http://trilinos.sandia.gov

Techniques Prototyped in FENL Mini-App

Simple nonlinear diffusion equation

—V . (k(z,y)Vu) +u* =0

— 3-D, linear FEM discretization
— 1x1x1 cube, unstructured mesh

— KL truncation of exponential random field model for diffusion coefficient

— Trilinos-couplings package

Hybrid MPI+X parallelism

— Traditional MPI domain decomposition using threads within each domain

Employs Kokkos for thread-scalable
— Graph construction
— PDE matrix/RHS assembly

Employs Tpetra for distributed linear algebra
— CG iterative solver (Belos package)

— Smoothed Aggregation AMG preconditioning (MueLu)

http://trilinos.sandia.qgov

Supports embedded ensemble propagation via Stokhos through entire assembly and

solve
— Samples generated via Smolyak sparse grids

i

Sandia National Laboratories

http://trilinos.sandia.gov

Ensemble PDE Matrix/RHS Assembly Speed-Up

Speed-Up

E~ T ¥ 1 B <))

© = N W

Matrix/RHS Assembly
(1 MPI Rank, 64x64x64 Spatial Mesh)

=@~Sandy Bridge
(1 NUMA, 16 threads)

=Blue Gene/Q
(64 threads)

Cray XK7
(1 NUMA, 8 threads)

a i ! &8 - \vipiaksoGPU
A |

=®=Xeon Phi Accelerator
(240 Threads)

4 8 12 16 20 24 28 32
Ensemble Size

» Speed-up results from

— Reuse of mesh,
discretization data
structures

— Replacement of
sparse gather with
contiguous load

— Perfect vectorization
of math

Ensemble size X Time for single sample

Speed-Up =

Time for ensemble

Sandia National Laboratories

Ensemble Sparse Matrix-Vector Product

Speed-Up

Speed-Up

2.5

[T

0.5

Matrix-Vector Product
(1 MPI Rank, 64x64x64 Spatial Mesh)

<i~Sandy Bridge
(1 NUMA, 16 threads)

==Blue Gene/Q
(64 threads)

Cray XK7
(1 NUMA, 8 threads)

NVIDIA K80 GPU

=@=Xeon Phi Accelerator
(240 threads)

4 8 12 16 20 24 28 32
Ensemble Size

» Speed-up results from
— Reuse of matrix
graph (20%)
— Replacement of

sparse gather with
contiguous load

— Perfect vectorization
of multiply-add

Ensemble size X Time for single sample

Speed-Up =

Time for ensemble

i

Sandia National Laboratories

Interprocessor Halo Exchange

Speed-Up

25

20

15

10

5

1]

Halo Exchange -- Blue Gene/Q Halo Exchange -- Cray XK7
(1 MPI Rank/Node, 64 Threads/Rank, (2 MPI Ranks/Node, 8 Threads/Rank,
64x64x64 Mesh/Node) 64x64x64 Mesh/Node)
25
=-64 Nodes =-64 Nodes
-#-128 Nodes 20 <128 Nodes
Q.
256 Nodes 215 256 Nodes
==512 Nodes § ==512 Nodes
-Fit a10 ~<1024 Nodes
5 -*-Fit
0
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
Ensemble Size Ensemble Size

Time ~

Speed-Up =

Q

a+ bm
Ensemble size X Time for single sample

Time for ensemble

M » Speed-up results from reduced
a + bm aggregate communication latency
— Fewer, larger MPI messages
— Communication volume is the same

117! Sandia National Laboratories

AMG Preconditioned CG Solve

Multigrid Preconditioned CG Solve
(64x64x64 Mesh/Node, Ensemble Size = 32)

4 16

64 256 1024
Compute Nodes

=@~Sandy Bridge

=-Blue Gene/Q
Cray XK7
NVIDIA K80 GPU

=@-Xeon Phi Accelerator

Speed-Up =

« Smoothed-
aggregation algebraic
multigrid
preconditioning
(MueLu)

— Chebyshev
smoothers

— Sparse-direct coarse-
grid solver
(Amesos2/Basker)

— Multi-jagged parallel
repartioning (Zoltan2)

Ensemble size X Time for single sample

Time for ensemble

117! Sandia National Laboratories

Ensemble Propagation for More Challenging
Problems

« Assuming number of CG iterations doesn’t vary significantly
from sample to sample

— True for problems with tame diffusion coefficient on regular
meshes

— Implies number of CG iterations for ensemble does not increase

* For general problems, number of iterations will increase for
ensemble system

— Spectrum of ensemble matrix must spread out
— Need to group samples to group matrices with similar spectra

* Note: Do not require smoothness (of matrix, RHS, solution)
between samples!

117! Sandia National Laboratories

Ensemble Grouping for Anisotropic
Diffusion Problems

* Model problem:
—V - (A(x,y))Vu) = f Alxy) = diag(a(x,y), az, a3)
a(x,y) = a+ aexp { gjl \/xbn(x)yn}
« Strong anisotropy induces large variati;n_ of PCG iterations from sample to

sample
— Want to group samples with similar #iterations

» Anisotropy level strongly correlated with #iterations:

250

® anisotropy level

= jterations

{ Anisotropy level:
200+ ’ 7

‘ Amax (A(x.3)) H
Amin (AG5Y)) || oo

150¢ 64x64 finite element mesh

AMG (ML) Preconditioned CG

number of iterations

100+

50

‘ ordered samples ;
0 50 100 150 200 250 '11

Sandia National Laboratories

Ensemble Grouping for Anisotropic
Diffusion Problems

« Strategy: Order based on anisotropy level, group into

ensembles of size S

S
S S ITS;
1=1

R=—

Z itSk

k=1

ITS: #its for the it" ensemble
its: #its for the kth sample

RF covariance

Gaussian
Gaussian
Gaussian
Exponential
Exponential
Exponential
y-Exponential
y-Exponential

y-Exponential

S

16
32

16
32

16
32

R (anisotropy R (no-ordering)

ordering)
1.374

1.469
1.652
1.274
1.337
1.427
1.21¢
1.272
1.384

1. £98
2.197
2.852
1.448
1.673
1.847
1.503
1.794
2.223

Sandia National Laboratories

Summary

- Embedded sampling approach improves aggregate UQ
performance by

— Eliminating sparse memory accesses
— Amortizing communication/access latency
— Perfect fine-grained vector/Cuda-thread parallelism

* Applying technique through C++ templates greatly facilitates
implementation

— Alleviate code developers from having to worry about UQ

« Smart grouping of samples into ensembles required for more
challenging problems:

— Effective strategies require understanding dependence of
computational cost on uncertain parameter variations

— Can we do this more generally?
A variety of approaches to consider

117! Sandia National Laboratories

Extra Slides

Computer Architectures Are Changing
Dramatically

 Historically (super)computers have gotten
faster by

Increasing clock frequency

— Adding more compute nodes that

communicate through an interconnect

* Power requirements make this approach
untenable for future performance increases

* Instead performance increases are now
achieved through increases in node-level
fine-grained parallelism

Many, many threads executing
simultaneously

Memory access, arithmetic on wide vectors

Complex memory hierarchies that require
processing units to share data

10,000,000

1,000,000

Dual-Core Itanium 2 = /

100,000

Intel CPU Trends 5

(sources: Intel, Wikipedia, K. Olukotun} =

10,000

1,000

100

10

B Transi: (000) -

0

| 1 Il
T T T T
o ® @ Clock Speed (MHz)

oo A Power (W)
® Perf/Clock (ILP)

1970

1975 1980 1985 1990 1995 2000 2005 2010

Herb Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in
Software”, Dr. Dobb’s Journal

117! Sandia National Laboratories

Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications’

« Standard C++ library, not a language extension
— Core: multidimensional arrays, parallel execution, atomic operations
— Containers: Thread-scalable implementations of common data

structures (vector, map, CRS graph, ...) @—!9 .

— LinAlg: Sparse matrix/vector linear algebra

* Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty http://trilinos.sandia.gov

— Execution spaces (CPU, GPU, ...)

— Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, ...)

— Layout of multidimensional data in memory

— Scalar type "H.C. Edwards, D. Sunderland, C. Trott (SNL)

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ... |uois

http://trilinos.sandia.gov

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures’

» Tpetra: Sandia’s templated C++ library for
distributed memory (MPI) sparse linear algebra

Builds distributed memory linear algebra on top of
Kokkos library

Distributed memory vectors, multi-vectors, and sparse | ./ilinos.sandia.qov

matrices
Data distribution maps and communication operations

Fundamental computations: axpy, dot, norm, matrix-
vector multiply, ...

Templated on “scalar” type: float, double, automatic
differentiation, polynomial chaos, ensembiles, ...

= Higher level solver libraries built on Tpetra

Preconditioned iterative algorithms (Belos)
Incomplete factorization preconditioners (Ifpack2,
ShyLU)

Multigrid solvers (MuelLu)

All templated on the scalar type

M. Heroux, M. Hoemmen, et al (SNL)

i

Sandia National Laboratories

http://trilinos.sandia.gov

Kokkos Integration

« Kokkos views of UQ scalar type internally stored as views of 1-higher rank

— UQ dimension is always contiguous, regardless of layout

 Facilitates
— Fine-grained parallelism over UQ dimension
— Efficient allocation and initialization
— Specialization of kernels
— Transfering data between host and device and MPlI communication

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view(“v”, 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view(“v”,

10);

* Requires specialized kernel launch for CUDA to map warp to UQ dimension to

achieve performance

i

Sandia National Laboratories

