
Embedded Ensemble Propagation for
Improving Performance, Portability and

Scalability of Uncertainty Quantification on
Emerging Computational Architectures

Eric Phipps (etphipp@sandia.gov),
Marta D’Elia, H. Carter Edwards, Mark Hoemmen,

Jonathan Hu, and Siva Rajamanickam
Sandia National Laboratories

14th Copper Mountain Conference on Iterative Methods
March 20-25, 2016

SAND2016-XXXX C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2016-2545C

mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov

Can Exascale Solve the UQ Challenge?

• UQ means many things
– Best estimate + uncertainty, model validation, model calibration, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin,

…

• Key challenge:
– Accurately quantifying rare events and localized behavior in high-

dimensional uncertain input spaces
– Can easily require O(104-106) expensive forward simulations
– Often can only afford O(102) on today’s petascale machines

Emerging Architectures Motivate New
Approaches to Predictive Simulation

• UQ approaches traditionally implemented as an outer loop:

• Increasing UQ performance will require
– Speeding-up each sample evaluation, and/or
– Evaluating more samples in parallel

• Many important scientific simulations will struggle with upcoming architectures
– Irregular memory access patterns (e.g., indirect accesses resulting in long latencies)
– Inconsistent vectorization (e.g., complex loop structures with variable trip-count)
– Poor scalability to high thread-counts (e.g., poor cache reuse results in ineffective hardware threading)

• Investigate improving performance and scalability through embedded UQ approaches that
propagate some UQ information at lowest levels of simulation

– Improve memory access patterns and cache reuse
– Expose new dimensions of structured fine-grained parallelism
– Reduce aggregate communication

http://dakota.sandia.gov

http://trilinos.sandia.gov

// CRS Matrix for an arbitrary floating-point type T

template <typename T>

struct CrsMatrix {

int num_rows; // number of rows in matrix

int num_entries; // number of nonzeros in matrix

int *row_map; // starting index of each row, [0,num_rows+1)

int *col_entry; // column indices for each nonzero, [0,num_entries)

T *values; // matrix values of type T, [0,num_entries)

};

// Serial CRS matrix-vector product for arbitrary floating-point type T

template <typename T>

void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

sum += A.values[entry] * x[col];

}

y[row] = sum;

}

}

Sparse CRS-Format Matrix-Vector Product

Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

– Spatial DOFs for each sample stored consecutively

// Ensemble matrix-vector product

template <typename T, int m>

void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int e=0; e < m; ++e) {

for (int row=0; i<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}

y[row + e*A.num_rows] = sum;

}

}

}

Ensemble Matrix-Vector Product

Simultaneous ensemble propagation

• Commute Kronecker products:

– m sample values for each DOF stored consecutively

// Ensemble matrix-vector product using commuted layout

template <typename T, int m>

void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; i<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum[m];

for (int e=0; e < m; ++e)

sum[e] = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

for (int e=0; e < m; ++e) {

sum[e] += A.values[entry*m + e] * x[col*m + e];

}

}

for (int e=0; e < m; ++e)

y[row*m + e] = sum[e];

}

}

• Automatically reuse non-sample dependent data
• Sparse access latency amortized across ensemble
• Communication latency amortized across ensemble
• Math on ensemble naturally maps to vector arithmetic

Commuted, Ensemble Matrix-Vector Product

// Ensemble scalar type

template <typename U, int m>

struct Ensemble {

U val[m];

Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }

Ensemble& operator=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] = a.val[m];

return *this;

}

Ensemble& operator+=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] += a.val[m];

return *this;

}

// ...

};

template <typename U, int m>

Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {

Ensemble<U,m> c;

for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];

return c;

}

// ...

C++ Ensemble Scalar Type

// Serial Crs matrix-vector product for arbitrary floating-point type T

template <typename T>

void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

sum += A.values[entry] * x[col];

}

y[row] = sum;

}

}

Ensemble Matrix-Vector Product Through
Operator Overloading

• Original matrix-vector product routine, instantiated with T =
Ensemble<double,m> scalar type:

Stokhos: Trilinos Tools for Embedded
UQ Methods

• Provides ensemble scalar type
– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic programming
– Template C++ code on scalar type

– Instantiate template code on ensemble scalar type

• Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map vectorization parallelism

across ensemble

• Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
– Exploits templating on scalar type

– Krylov solvers (Belos)

– Algebraic multigrid preconditioners (MueLu)

– Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers
(Ifpack2)

– Sparse-direct solvers (Amesos2)

http://trilinos.sandia.gov

http://trilinos.sandia.gov

Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL truncation of exponential random field model for diffusion coefficient
– Trilinos-couplings package

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE matrix/RHS assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and
solve

– Samples generated via Smolyak sparse grids

http://trilinos.sandia.gov

http://trilinos.sandia.gov

Ensemble PDE Matrix/RHS Assembly Speed-Up

• Speed-up results from
– Reuse of mesh,

discretization data
structures

– Replacement of
sparse gather with
contiguous load

– Perfect vectorization
of math

0

1

2

3

4

5

6

4 8 12 16 20 24 28 32

Sp
e

ed
-U

p

Ensemble Size

Matrix/RHS Assembly
(1 MPI Rank, 64x64x64 Spa al Mesh)

Sandy Bridge
(1 NUMA, 16 threads)

Blue Gene/Q
(64 threads)

Cray XK7
(1 NUMA, 8 threads)

NVIDIA K80 GPU

Xeon Phi Accelerator
(240 Threads)

0

1

2

3

4

5

6

4 8 12 16 20 24 28 32

Sp
e

ed
-U

p

Ensemble Size

Matrix/RHS Assembly
(1 MPI Rank, 64x64x64 Spa al Mesh)

Sandy Bridge
(1 NUMA, 16 threads)

Blue Gene/Q
(64 threads)

Cray XK7
(1 NUMA, 8 threads)

NVIDIA K80 GPU

Xeon Phi Accelerator
(240 Threads)

Ensemble Sparse Matrix-Vector Product
Speed-Up

• Speed-up results from
– Reuse of matrix

graph (20%)
– Replacement of

sparse gather with
contiguous load

– Perfect vectorization
of multiply-add

0

0.5

1

1.5

2

2.5

4 8 12 16 20 24 28 32

Sp
e

e
d

-U
p

Ensemble Size

Matrix-Vector Product
(1 MPI Rank, 64x64x64 Spa al Mesh)

Sandy Bridge
(1 NUMA, 16 threads)

Blue Gene/Q
(64 threads)

Cray XK7
(1 NUMA, 8 threads)

NVIDIA K80 GPU

Xeon Phi Accelerator
(240 threads)0

0.5

1

1.5

2

2.5

4 8 12 16 20 24 28 32

Sp
e

e
d

-U
p

Ensemble Size

Matrix-Vector Product
(1 MPI Rank, 64x64x64 Spa al Mesh)

Sandy Bridge
(1 NUMA, 16 threads)

Blue Gene/Q
(64 threads)

Cray XK7
(1 NUMA, 8 threads)

NVIDIA K80 GPU

Xeon Phi Accelerator
(240 threads)

Interprocessor Halo Exchange

• Speed-up results from reduced
aggregate communication latency

– Fewer, larger MPI messages
– Communication volume is the same

0

5

10

15

20

25

4 8 12 16 20 24 28 32

Sp
e

ed
-U

p

Ensemble Size

Halo Exchange -- Blue Gene/Q
(1 MPI Rank/Node, 64 Threads/Rank,

64x64x64 Mesh/Node)

64 Nodes

128 Nodes

256 Nodes

512 Nodes

Fit

0

5

10

15

20

25

4 8 12 16 20 24 28 32

Sp
e

ed
-U

p

Ensemble Size

Halo Exchange -- Blue Gene/Q
(1 MPI Rank/Node, 64 Threads/Rank,

64x64x64 Mesh/Node)

64 Nodes

128 Nodes

256 Nodes

512 Nodes

Fit

0

5

10

15

20

25

4 8 12 16 20 24 28 32

Sp
e

ed
-U

p

Ensemble Size

Halo Exchange -- Cray XK7
(2 MPI Ranks/Node, 8 Threads/Rank,

64x64x64 Mesh/Node)

64 Nodes

128 Nodes

256 Nodes

512 Nodes

1024 Nodes

Fit

0

5

10

15

20

25

4 8 12 16 20 24 28 32

Sp
e

ed
-U

p

Ensemble Size

Halo Exchange -- Cray XK7
(2 MPI Ranks/Node, 8 Threads/Rank,

64x64x64 Mesh/Node)

64 Nodes

128 Nodes

256 Nodes

512 Nodes

1024 Nodes

Fit

AMG Preconditioned CG Solve

• Smoothed-
aggregation algebraic
multigrid
preconditioning
(MueLu)

– Chebyshev
smoothers

– Sparse-direct coarse-
grid solver
(Amesos2/Basker)

– Multi-jagged parallel
repartioning (Zoltan2)

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

1 4 16 64 256 1024

Sp
ee

d
-U

p

Compute Nodes

Mul grid Precondi oned CG Solve
(64x64x64 Mesh/Node, Ensemble Size = 32)

Sandy Bridge

Blue Gene/Q

Cray XK7

NVIDIA K80 GPU

Xeon Phi Accelerator

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

1 4 16 64 256 1024

Sp
ee

d
-U

p

Compute Nodes

Mul grid Precondi oned CG Solve
(64x64x64 Mesh/Node, Ensemble Size = 32)

Sandy Bridge

Blue Gene/Q

Cray XK7

NVIDIA K80 GPU

Xeon Phi Accelerator

Ensemble Propagation for More Challenging
Problems

• Assuming number of CG iterations doesn’t vary significantly
from sample to sample
– True for problems with tame diffusion coefficient on regular

meshes

– Implies number of CG iterations for ensemble does not increase

• For general problems, number of iterations will increase for
ensemble system
– Spectrum of ensemble matrix must spread out

– Need to group samples to group matrices with similar spectra

• Note: Do not require smoothness (of matrix, RHS, solution)
between samples!

Ensemble Grouping for Anisotropic
Diffusion Problems

• Model problem:

• Strong anisotropy induces large variation of PCG iterations from sample to
sample

– Want to group samples with similar #iterations

• Anisotropy level strongly correlated with #iterations:

Anisotropy level:

64x64 finite element mesh

AMG (ML) Preconditioned CG

Ensemble Grouping for Anisotropic
Diffusion Problems

• Strategy: Order based on anisotropy level, group into
ensembles of size S

ITS: #its for the ith ensemble

its: #its for the kth sample

RF covariance S R (anisotropy
ordering)

R (no-ordering)

Gaussian 8 1.374 1.793

Gaussian 16 1.469 2.197

Gaussian 32 1.652 2.852

Exponential 8 1.274 1.448

Exponential 16 1.337 1.673

Exponential 32 1.427 1.847

γ-Exponential 8 1.217 1.503

γ-Exponential 16 1.272 1.794

γ-Exponential 32 1.384 2.223

Summary

• Embedded sampling approach improves aggregate UQ
performance by
– Eliminating sparse memory accesses
– Amortizing communication/access latency
– Perfect fine-grained vector/Cuda-thread parallelism

• Applying technique through C++ templates greatly facilitates
implementation
– Alleviate code developers from having to worry about UQ

• Smart grouping of samples into ensembles required for more
challenging problems:
– Effective strategies require understanding dependence of

computational cost on uncertain parameter variations
– Can we do this more generally?

• A variety of approaches to consider

Extra Slides

Computer Architectures Are Changing
Dramatically

• Historically (super)computers have gotten
faster by

– Increasing clock frequency
– Adding more compute nodes that

communicate through an interconnect

• Power requirements make this approach
untenable for future performance increases

• Instead performance increases are now
achieved through increases in node-level
fine-grained parallelism

– Many, many threads executing
simultaneously

– Memory access, arithmetic on wide vectors
– Complex memory hierarchies that require

processing units to share data

Herb Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in
Software”, Dr. Dobb’s Journal

Application & Library Domain Layer

Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core: multidimensional arrays, parallel execution, atomic operations
– Containers: Thread-scalable implementations of common data

structures (vector, map, CRS graph, …)
– LinAlg: Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)

– Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, …)

– Layout of multidimensional data in memory

– Scalar type

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

http://trilinos.sandia.gov

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

http://trilinos.sandia.gov

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for
distributed memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of

Kokkos library
– Distributed memory vectors, multi-vectors, and sparse

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-

vector multiply, ...
– Templated on “scalar” type: float, double, automatic

differentiation, polynomial chaos, ensembles, …

 Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2,

ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov

*M. Heroux, M. Hoemmen, et al (SNL)

http://trilinos.sandia.gov

• Kokkos views of UQ scalar type internally stored as views of 1-higher rank
– UQ dimension is always contiguous, regardless of layout

• Facilitates
– Fine-grained parallelism over UQ dimension
– Efficient allocation and initialization
– Specialization of kernels
– Transfering data between host and device and MPI communication

• Requires specialized kernel launch for CUDA to map warp to UQ dimension to
achieve performance

Kokkos Integration

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view(“v”, 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view(“v”, 10);

