
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Parallel Preconditioners and Solvers
for Modern Architectures

Erik Boman
Mehmet Deveci, Siva Rajamanickam

Sandia National Labs

March 21, 2016

SAND2016-2539C

▪ Current parallel solvers on distributed memory systems are
quite successful in many areas
▪ Challenge: Reduce global communication (not in this talk)

▪ Architecture trend: Node count does not grow

▪ Main challenge is greater concurrency on the node
▪ Accelerators: GPU, MIC

▪ Concurrency on node is now O(100-1000)

Extreme-Scale Computing Challenges

Common Types of Parallelism

Coarse-grained:

▪ Divide-and-conquer

▪ Nested Dissection

Fine-grained:
• Independent Sets
• Graph Coloring

Trade-off: Reordering for greater concurrency often gives slower
convergence.

Example: Multicolor Gauss-Seidel.

▪ Update all vertices within each color class in parallel.

▪ #synchronization points = #colors

▪ Slow convergence, use as preconditioner in Krylov.

Concurrency vs. convergence

Matrix Method Natural Multicolor

Wathen120 CG/SGS 20 iter. 23 iter.

Bcsstk18 CG/SGS 323 iter. 322 iter.

Torso2 GMRES/GS 22 iter. 19 iter.

Audikw1 CG/SGS 2512 iter. 2780 iter.

Multicolor Gauss-Seidel

CPU:

Compare serial vs. parallel
precondioner.

Multithreading pays off after
only ~4 threads.

SGS 1 thr. 4 thr. 16 thr.

Serial 2.84 1.31 1.07

Parallel 4.66 1.43 0.73

▪ Optimal coloring is NP-hard

▪ Fast greedy coloring works well in practice

▪ But is sequential

▪ Parallel greedy methods

▪ Jones-Plassmann ’90: independent sets

▪ Gebremedhin-Manne ‘99: speculative/optimistic method

▪ May have conflicts, need several rounds to resolve

▪ Deveci, B. Devine, Rajamanickam ‘16:

▪ Edge-based speculative/optimistic method for manycore

▪ Faster and better quality (4X geom. mean) than cuSparse

Parallel Graph Coloring

▪ New coloring algorithm and Gauss-Seidel are now available in
the KokkosKernels package

▪ Reduces the overall CG solve time by ~33% compared to
cuSparse.

▪ Shows that coloring quality matters!

GPU: Coloring-based Symmetric Gauss-Seidel

1
8

5

5
0

3
3 4

4

7
4

3
2

1
6
0

9
6

1
2
8

0

20

40

60

80

100

120

140

160

180

FENL_180 G3_Circuit audikw_1 Bump_2911 Queen_4147

#
C

o
lo

rs

KK

cuSPARSE

1.
2

5

1
.9

4

1
.3

2

1
.2

3

1
.1

71
.0

9

1
.4

8

1
.1

1

1
.0

7

1.
0

8

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

FENL_180 G3_Circuit audikw_1 Bump_2911 Queen_4147

SG
S

an
d

P
C

G
Sp

ee
d

u
p

w
.r

.t
cu

SP
A

R
SE SGS Speedup

PCG Speedup

Chow & Patel 2015: New way to compute incomplete A~LU.
▪ Solve larger, bilinear system for each entry in L, U

▪ “Gauss-Seidel” on factors converges quickly (5-10 sweeps)

▪ Asynchronous version works fine, no coloring needed.

▪ Highly parallel: Can use one thread per nonzero.

▪ Triangular solves become the bottleneck, but can solve iteratively.

▪ Well suited for GPU: Anzt et al. (2015)

▪ Software implementations in Magma and Trilinos/ShyLU.

Other Methods: Fine-Grain Parallel ILU

Row projection methods are very old:

▪ Kaczmarz (1937)

▪ Cimmino (1938)

Rediscovered several times, e.g. as ART and CIRT.

Can be used as solver or preconditioner. Several advantages:

▪ Work on single row at a time, so fine grained.

▪ No global communication.

Kaczmarz: For each row i

Row Projections: Kaczmarz

xk  xk 
bi  ai, xk 

| ai |
ai

Traditional method is sequential, but two options:

1. Multicolored Kaczmarz

▪ Update independent rows in parallel.

2. Asynchronous Kaczmarz

▪ Use most recent values, changes the algorithm

▪ Essentially becomes hybrid Kaczmarz-Cimmino

Randomized Kaczmarz:

▪ Pick random row to update (no “sweeps”)

▪ Convergence is linear (“exponential”) [Strohmer & Vershynin]

▪ Gives hope asynchronous execution will behave similarly.

Parallel Kaczmarz

Challenge: How to write portable multi-threaded code for many
different platforms?

▪ CPU, Xeon Phi (MIC), GPU, etc.

Kokkos is a C++ library for performance-portable manycore
programming.

▪ Supports parallel patterns (for, reduce, etc.)

▪ Optimized layout of multidimensional arrays

▪ Hierarchical parallelism (leagues, teams, threads)

▪ Developer productivity: Write once, run anywhere!

▪ Talk by Christian Trott, Wed. AM

Solvers using Kokkos: Rajamanickam talk, Wed. PM

Software: Kokkos

Many row projection options:

▪ Kaczmarz, Cimmino, CAV, CARP, …

Block Row Projection Methods are superior:

▪ Better convergence

▪ Better memory access?

Challenge: For each block, we need to solve a rectangular system

▪ Underdetermined system, want min-norm solution

▪ Options: sparse QR, normal equations, augmented system

▪ Suitable for 2-level parallelism

▪ No sparse QR that works at the “thread team” level

▪ ABCD (Zenadi et al.) uses MUMPS on augmented system

Future Work: Block Row Projections

▪ Highly parallel architectures are disruptive

▪ Require us to revisit algorithms.

▪ Old ideas may come back to life?

▪ Coloring is powerful concept

▪ Exposes fine-grain parallelism

▪ Reordering slows convergence but still a win compared to
sequential approach

▪ On-node performance critical for exascale.

▪ Rewrite of solver software is needed.

Conclusions

Backup

▪ MPI+X based subdomain solvers

▪ Decouple the notion of one MPI rank as one subdomain: Subdomains can span multiple MPI ranks each
with its own subdomain solver using X or MPI+X

▪ Epetra based solver, Tpetra interface still being developed

▪ Trilinos Solver Factory a big step forward to get this done (Thanks to M. Hoemmen)

▪ Subpackages of ShyLU: Multiple Kokkos-based options for on-node parallelism

▪ Basker : LU or ILU (t) factorization (J. Booth)

▪ Tacho: Incomplete Cholesky - IC (k) (See Kyungjoo’s talk)

▪ Fast-ILU: Fast-ILU factorization for GPUs (A. Patel)

▪ KokkosKernels: Coloring based Gauss-Seidel (M. Deveci), Triangular Solves (See Andrew’s talk for HTS)

▪ Experimental code base under active development. Jointly funded by ASC, ATDM, FASTMath, LDRD.

ShyLU and Subdomain Solvers : Overview

TachoTachoBaskerBasker FAST-ILUKLU2KLU2

Amesos2Amesos2 Ifpack2Ifpack2

ShyLUShyLU

KokkosKernels –
SGS, Tri-Solve (HTS)

KokkosKernels –
SGS, Tri-Solve (HTS)

