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Governing Equations 
� Radiative Transfer Equation 

� Ω ∙ 𝛻𝐼 Ω + 𝜎𝐴 + 𝜎𝑆 𝐼 Ω = 𝜎𝐴𝐼𝑏 + 𝜎𝑆
4𝜋  𝐼 Ω 𝑑Ω  

 
� Discrete Ordinates Approximation 

� Ω𝑖 ∙ 𝛻𝐼𝑖 + 𝜎𝐴 + 𝜎𝑆 𝐼𝑖 = 𝜎𝐴𝐼𝑏 + 𝜎𝑆
4𝜋  𝑤𝑗𝐼𝑗 

� 𝐼𝑖 = 𝜀𝐼𝑏𝑤 + 1−𝜀
𝜋  𝑤𝑗𝐼𝑗 𝑛 ∙ Ω𝑗𝑛∙Ω𝑗<0  

 
� Source Iteration 

� Ω𝑖 ∙ 𝛻𝐼𝑖0 + 𝜎𝐴 + 𝜎𝑆 𝐼𝑖0 = 𝜎𝐴𝐼𝑏   Ω𝑖 ∙ 𝛻𝐼𝑖𝑗 + 𝜎𝐴 + 𝜎𝑆 𝐼𝑖𝑗 = 𝜎𝐴𝐼𝑏 + 𝜎𝑆
4𝜋  𝑤𝑘𝐼𝑘𝑗−1 

� 𝐼𝑖0 = 𝜀𝐼𝑏𝑤    𝐼𝑖𝑗 = 𝜀𝐼𝑏𝑤 + 1−𝜀
𝜋  𝑤𝑘𝐼𝑘𝑗−1 𝑛 ∙ Ω𝑘𝑛∙Ω𝑘<0  

 
� Discretized Model 

� 𝐾 Ω𝑖 𝐼 Ω𝑖 = 𝑆  
3 

1 5-dimensional PDE 

Up to several hundred 
coupled 3-dimensional PDEs 

Hundred or thousands of 
solutions of large linear 
systems (per time-step or 
nonlinear iteration) 



Why	
  Discrete	
  Ordinates?	
  

§  Well	
  established	
  
§  OJen	
  the	
  only	
  or	
  one	
  of	
  few	
  op@ons	
  available	
  for	
  trea@ng	
  PMR	
  in	
  

commercial	
  applica@ons	
  
§  Lots	
  of	
  literature	
  on	
  solu@on	
  accelera@on	
  

	
  
§  Equa@ons	
  are	
  intui@ve	
  and	
  easy	
  to	
  derive	
  
	
  
§  Converges	
  to	
  correct	
  answer	
  
	
  
§  Handles	
  void	
  regions	
  well	
  
	
  
§  Faster	
  than	
  MC	
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Reduced Order Modeling 
� Reduced order modeling offers to reduce the prohibitive cost 

of the discrete ordinates method by replacing a significant 
fraction of the linear system solutions with less expensive 
solutions to significantly smaller linear systems. 

� Take snapshots and construct reduced basis through POD  
� Ω1, Ω2,⋯ , Ω𝐾 ⟶ 𝐼1, 𝐼2,⋯ , 𝐼𝐾  

� 𝑀 = 𝐼1, 𝐼2,⋯ , 𝐼𝐾 = 𝑈 𝑆 𝑉 𝑇 

� 𝜙  is the primary modes of 𝑀  given by the first 𝑘 ≤ 𝐾columns of 𝑈  

� Approximate discretized intensity in low-dimensional space 
� 𝐼 Ω ≈ 𝜙 𝑥   

� 𝐾 Ω 𝜙 𝑥 = 𝑆   

� Solve for 𝑥  applying least-squares Petrov-Galerkin projection 

� 𝐾 Ω 𝜙 𝑇 𝐾 Ω 𝜙 𝑥 = 𝐾 Ω 𝜙 𝑇𝑆   4 
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§  FOM	
  (Full-­‐Order	
  Model)	
  
§  The	
  discrete	
  ordinates	
  linear	
  system	
  solved	
  in	
  the	
  tradi@onal	
  way	
  

§  ROM	
  (Reduced-­‐Order	
  Model)	
  
§  The	
  approximate	
  linear	
  system	
  	
  

§  LOM	
  (Low-­‐Order	
  Model)	
  
§  The	
  set	
  of	
  linear	
  systems	
  corresponding	
  to	
  a	
  low-­‐order	
  quadrature	
  set	
  
§  Reduced	
  accuracy	
  

§  HOM	
  (High-­‐Order	
  Model)	
  
§  The	
  set	
  of	
  linear	
  systems	
  corresponding	
  to	
  a	
  high-­‐order	
  quadrature	
  set	
  
§  Typically	
  unaXainable	
  using	
  the	
  FOM	
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§  1D	
  &	
  2D	
  
§  Use	
  FOM	
  to	
  evaluate	
  LOM	
  for	
  snapshots	
  to	
  build	
  ROM	
  
§  Use	
  ROM	
  to	
  evaluate	
  HOM	
  
§  Compare	
  accuracy	
  rela@ve	
  to	
  using	
  FOM	
  to	
  evaluate	
  HOM	
  
§  ROM	
  more	
  effec@ve	
  (faster/more	
  accurate)	
  than	
  increasing	
  LOM	
  order	
  
§  Benefits	
  only	
  conferred	
  once	
  minimum	
  LOM	
  order	
  sa@sfied	
  

§  3D	
  
§  Minimum	
  LOM	
  order	
  to	
  generate	
  accurate	
  ROM	
  too	
  high	
  

§  LOM	
  quadrature	
  is	
  an	
  inefficient	
  way	
  to	
  generate	
  samples	
  

§  Choose	
  subset	
  of	
  HOM	
  points	
  to	
  generate	
  ini@al	
  snapshots	
  
§  Add	
  addi@onal	
  snapshots	
  adap@vely	
  to	
  reduce	
  error	
  
§  Discrete	
  rather	
  than	
  con@nuous	
  op@miza@on	
  
§  Es@mate	
  error	
  at	
  any	
  step	
  (minimum	
  number	
  of	
  FOM	
  evalua@ons	
  to	
  

achieve	
  desired	
  accuracy)	
  



1D	
  Results	
  
Enriching	
  DOM	
  quadrature	
  
with	
  ROM	
  solu@ons	
  enhances	
  
accuracy	
  

Despite	
  added	
  cost	
  of	
  ROM	
  
solu@ons	
  this	
  is	
  more	
  efficient	
  
than	
  increasing	
  quadrature	
  order	
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§  Significant	
  improvements	
  in	
  
accuracy	
  hold	
  true	
  for	
  2D	
  

§  Minimum	
  number	
  of	
  
snapshots	
  required	
  prior	
  to	
  
rapid	
  accuracy	
  improvements	
  

2D Results 

6 

𝑇 𝑥, 𝑦 =  100, &𝑦 = 0
0, &𝑦 ≥ 0 

𝑇 𝑥, 𝑦 = 300 + 700(1 − 𝑦) 

� Significant improvements in 
accuracy hold true for 2D 

� Minimum number of 
snapshots required prior to 
rapid accuracy improvements 

2D Results 

6 

𝑇 𝑥, 𝑦 =  100, &𝑦 = 0
0, &𝑦 ≥ 0 

𝑇 𝑥, 𝑦 = 300 + 700(1 − 𝑦) 

� Significant improvements in 
accuracy hold true for 2D 

� Minimum number of 
snapshots required prior to 
rapid accuracy improvements 
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3D	
  Results	
  
§  Enrich	
  basis	
  through	
  greedy	
  

search	
  to	
  increase	
  ROM	
  
solu@on	
  accuracy	
  

§  No	
  need	
  to	
  guess	
  and	
  check	
  
appropriate	
  quadrature	
  order	
  

§  Adap@ve	
  ROM	
  benefits	
  
increase	
  with	
  larger	
  meshes	
  

§  Smart	
  sample	
  point	
  distribu@on	
   10	
  

2.4k, 12.2k, 36.5k, 111.8k nodes  
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§  Performance	
  improvements	
  from	
  adap@ve	
  ROM	
  
technique	
  are	
  similar	
  for	
  a	
  wide	
  range	
  of	
  possible	
  
source	
  distribu@ons.	
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§  Reduced-­‐order	
  model	
  error	
  surrogate	
  (ROMES)	
  
model	
  constructed	
  as	
  reduced	
  basis	
  is	
  enriched	
  
through	
  adap@ve	
  refinement	
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Summary	
  

§  Using	
  the	
  discrete	
  ordinates	
  method	
  to	
  model	
  PMR	
  is	
  
computa@onally	
  expensive	
  

§  Reducing	
  the	
  quadrature	
  order	
  to	
  reduce	
  cost	
  results	
  in	
  
poten@ally	
  unacceptable	
  errors	
  of	
  unknown	
  magnitude	
  as	
  
well	
  as	
  ray	
  effects	
  

§  Reduced	
  order	
  modeling	
  offers	
  an	
  alterna@ve	
  (more	
  efficient)	
  
path	
  to	
  reduced	
  computa@onal	
  costs	
  while	
  controlling	
  and	
  
quan@fying	
  any	
  error	
  introduced	
  

§  Cost	
  of	
  ROM	
  evalua@ons	
  does	
  not	
  scale	
  with	
  mesh	
  size	
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