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= Qverview of the discrete ordinates method
= Summary of model reduction methodology
= Definitions

= Sample problems / results

= Description of error estimation technique

= Summary
= Q&A




Discrete Ordinates Method ).

Radiative Transfer Equation

s Q-TI(0) + (04 + 0)I(@) = o4l + 2 [ 1(R) aDd 1 5-dimensional PDE

= Discrete Ordinates Approximation
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L= el T Wikl coupled 3-dimensional PDEs

= Source lteration
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, . Hundred or thousands of
" Discretized Model solutions of large linear
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Why Discrete Ordinates? ) ..

= Well established

= Often the only or one of few options available for treating PMR in
commercial applications

= Lots of literature on solution acceleration
= Equations are intuitive and easy to derive
= Converges to correct answer
= Handles void regions well

= Faster than MC




Reduced Order Modeling ) e,

Reduced order modeling offers to reduce the prohibitive cost
of the discrete ordinates method by replacing a significant
fraction of the linear system solutions with less expensive
solutions to significantly smaller linear systems.
Take snapshots and construct reduced basis through POD

=[5, 7] = ST

: $ is the primary modes of M given by the first k < Kcolumns of U
Approximate discretized intensity in low-dimensional space

© (R@F)s =3

Solve for X applying least-squares Petrov-Galerkin projection

- (R@)$) (R@)P)z = (R(@)F) § :
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Definitions

= FOM (Full-Order Model)
= The discrete ordinates linear system solved in the traditional way
(K@) =3
ROM (Reduced-Order Model)

= The approximate linear system
=—>=T=—>=_> =, =\1 >
(K(Q)¢) (K(Q)e)x = (K(Q)$) S
LOM (Low-Order Model)

= The set of linear systems corresponding to a low-order quadrature set

= Reduced accuracy

= HOM (High-Order Model)
= The set of linear systems corresponding to a high-order quadrature set
= Typically unattainable using the FOM




Sample Results )i

National

= 1D & 2D

Use FOM to evaluate LOM for snapshots to build ROM

Use ROM to evaluate HOM

Compare accuracy relative to using FOM to evaluate HOM

ROM more effective (faster/more accurate) than increasing LOM order
Benefits only conferred once minimum LOM order satisfied

Minimum LOM order to generate accurate ROM too high
LOM quadrature is an inefficient way to generate samples

Choose subset of HOM points to generate initial snapshots
Add additional snapshots adaptively to reduce error
Discrete rather than continuous optimization

Estimate error at any step (minimum number of FOM evaluations to
achieve desired accuracy) 7




1D Results

Enriching DOM quadrature
with ROM solutions enhances

dCCuracy

10° ‘
o x LOM
o ROM

Error

10-5 I
10° 10t 102

Number of Ordinate Directions

h

Despite added cost of ROM
solutions this is more efficient
than increasing quadrature order

Error

10°

*x LOM
O ROM

8 6o
®
Ooo

%o

L
10°

Solution Time

Sandia
National
Laboratories



2D Results

—HOM (544 Ordinate Directions)
0.135- --LOM (112 Ordinate Directions)
,,,,, ) ~ROM generated from LOM
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= Significant improvements in
accuracy hold true for 2D

= Minimum number of
snapshots required prior to
rapid accuracy improvements
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3D Results

= Enrich basis through greedy
search to increase ROM 2.4k, 12.2k, 36.5k, 111.8k nodes

solution accuracy

T(X,y,2)=300+400%(x>+y?+2?)

O Adaptive ROM, Coarsest Mesh
% Progressive LOM, Coarsest Mesh

107t

O Adaptive ROM, Coarse Mesh
= No need to guess and check
O Adaptive ROM, Medium Mesh
X Progressive LOM, Medium Mesh
O Adaptive ROM, Fine Mesh

appropriate quadrature order L, e,
= Adaptive ROM benefits L5 T

increase with larger meshes 5 ST e
.... g0 107 o7 0 o
Cumulative Solution Time

1
-0.2

i i
-0.6 -0.4

-0.8

= Smart sample point distribution n



3D Results

= Performance improvements from adaptive ROM
technique are similar for a wide range of possible
source distributions.

107t

Error

T(x,y,2)=100 if y=0, O else
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% Progressive LOM, Fine Mesh
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Error Estimation

* Reduced-order model error surrogate (ROMES)
model constructed as reduced basis is enriched

through adaptive refinement
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Summary ) e,

National

Using the discrete ordinates method to model PMR is
computationally expensive

Reducing the quadrature order to reduce cost results in
potentially unacceptable errors of unknown magnitude as
well as ray effects

Reduced order modeling offers an alternative (more efficient)
path to reduced computational costs while controlling and
quantifying any error introduced

Cost of ROM evaluations does not scale with mesh size
13




Questions? )




