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Abstract	
  
 
This project was part of a coordinated software development effort which the nuclear physics lattice QCD 
community pursues in order to ensure that lattice calculations can make optimal use of present, and 
forthcoming leadership-class and dedicated hardware, including those of the national laboratories, and 
prepares for the exploitation of future computational resources in the exascale era. 	
   The UW team 
improved and extended software libraries used in lattice QCD calculations related to multi-nucleon 
systems, enhanced production running codes related to load balancing multi-nucleon production on large-
scale computing platforms, and developed SQLite (addressable database) interfaces to efficiently archive 
and analyze multi-nucleon data and developed a Mathematica interface for the SQLite databases.	
  
	
  
	
  

Project	
  Summary	
  
	
  
The UW lattice QCD physics effort is focused on determining the properties and interactions of the 
lightest nuclei from QCD using the numerical technique of Lattice QCD.    This is a multi-faceted 
operation, relying heavily of USQCD software developed by others particularly for the configuration 
generation and light-quark propagator production.  The calculation of nuclear correlation functions 
requires algorithms and techniques not used in other calculations, and features a workflow that is 
inversion and contraction intensive.  	
  
	
  
A reorganization of the N-body contractions was performed because the propagator plus hadronic 
building block (sink contraction) part and the source contraction part, which completes the correlation 
functions, have distinct parallelisms as illustrated in Figure 1. The former consists of multiple MPI jobs, 
each running on multiple nodes, while the latter consists of serial jobs, each running on a single CPU 
core. These two regimes must be matched in such a way that all the CPU cores allocated in a batch job are 
fully utilized throughout during the entire run. This is only possible, and without using an inordinate 
amount of disk space to temporarily store hadronic blocks, if the calculations of the N-body contractions 
are distributed evenly among the available CPU cores (so that hadronic blocks are consumed as soon as 
they are produced with a minimum amount of delay). 
 
 

 

Figure	
  1.	
  	
  Correlators from different N-body contractions are grouped together to evenly distribute the 
work across CPU cores. This is shown schematically for a node with 4 CPU cores. 

 
This workflow removes the need for dependent jobs, which were required due to the distinct parallelisms 
of different parts of the calculation. This simplifies the management of the runs, and reduces the failure 
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rates and temporary disk space usage.  In addition to providing a new Chroma interface to the Multigrid 
code based on QDP/C, the following improvements were made: 
 

◦ QDP++/Chroma and QDP/C distribute lattice points of the discretized space-time among the 
CPU cores differently. This mismatch in geometry showed up as non-convergence issues in 
propagator solutions. Modifications were made to QMP, the communication layer underlying 
both QDPs, such that a single command line flag “-qmp-geom” suffices to set correctly the 
geometry for both QDP++/Chroma and QDP/C. 

◦ Compile times for QLA and QOP both used by Multigrid were improved by a more efficient 
organization of the functions among files to be compiled. QLA and QOP generate a 
significant number of source files with one function per file. A large number of small files 
reduce Make's ability to leverage the performance of a multi-core system. By merging 
multiple functions into a single compilation unit and combining with a more efficient build 
program (makepp), which is able to build a single dependency tree between different 
modules, a more efficient scheduling of the sub-compilations leads to a faster build. 

◦ A new setup process was created specifically to compile and install all the USQCD modules 
required for building Multigrid with Chroma. Instead of the customary configure/make 
generated by autoconf for each module and specifying the locations where the dependent 
modules are installed, the dependency between the different modules are made explicit and 
the necessary files read by makepp are generated, which then build a single dependency tree 
between all the modules in the USQCD software ecosystem to better schedule the install and 
compilation processes. The effect of various C preprocessor defines which affect the 
compilation is made explicit. 

 
A comparison between the Multigrid inverter and the mixed precision BiCG-Stab inverter was performed 
for PACS-CS lattices at several light quark masses and a NPLQCD isotropic lattice at a pion mass of 430 
MeV, as shown in Figure 2. 

 
NPLQCD data are produced in XML and SDB format, as outlined in the following table. 

 
 

Format Category Type  

XML Hadron spectrum TEXT Unstructured, mirrors Chroma code 

Figure 2. The speed up of the Multigrid inverter compared with the mixed precision BiCG-Stab 
inverter as a function of the pion mass. 
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SDB Multi-baryon Correlators BINARY J-Lab in house database 
 
Each XML file contains multiple correlators, and the standard procedure is to extract each correlator into 
its own file. In both cases, the information is represented as key-value pairs; in the case of XML, the key 
is the file name of the extracted correlator. The string representation of a key is, to a certain extent, 
arbitrary but not the information it contains, for example, QCD quantum numbers of the source/sink states 
of a correlator. Using a database allows more efficient management of this information, for example, one 
can query a group of correlators with some specific attributes, say, those with strangeness equal to -2. 
 
In addition, one also avoids writing a large number of small files to disk, which are read back to perform 
averaging. For a typical run, this saves writing 80 ~ 200 million files. As a specific example, the global 
scratch file system at NERSC can have at most ~ 500 million files and the quota for a typical user is much 
less than that. 
 
The following software developments have been completed: 

◦ Mathematica notebook client to the new databases for analysis. 
◦ C/C++ code to convert SDB to SQLite3 databases using CppDB (http://cppcms.com/sql/cppdb). 
◦ Perl script to convert XML to SQLite3 databases. Also XML outputs are converted to YAML 

and compressed to speed up processing and saving disk space by a factor of 10, a schematic 
of which is shown in Figure 3. 

◦ An ADAT compliant data stripper is also provided for compatibility and for debugging. 
 

A number of modifications to lattice QCD-related libraries were implemented: 
 
• Updated makepp build to use the latest versions of USQCD software from git repositories; 

previously we had been using versions from 2011/2013. To maintain correctness and track the 
latest changes upstream, our customizations to qmp, qdp++, qdp/c, qla and chroma are now in 
git repositories at https://github.com/6twirl9. 

• Changes to qdp++, qdp/c, qla and chroma are necessary for a successful makepp build but are 
otherwise compatible with the original build procedure shipped with the software. Change to 
qmp (default value for –qmp-job) is to avoid common error of not specifying the flag due to 
setup differences by users of qmp. 

• The qcdlib used in our previous build dates back to 2012. Multi-level MG was broken. This was 
fixed in qop in mid-2014. The required changes are minor with a few details to consider, such as 

Figure 3. A schematic of the management of correlation functions. 
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the differences in function prototypes and struct definitions. 
• The functions that transfer objects required – DiracFermion, ColourMatrix – between qdp++ and 

qdp/c have been rewritten to accept all the qdp++ objects.  They have been moved inside qdp++ 
with all dependence on qla removed. Currently the implementation is simplistic and the 
separation formal, i.e. it assumes, as is always the case by design, that qdp/c and qdp++ map the 
lattice sites to the compute nodes in identical fashion. 

• The addition of multi gauge-field capability to wilson-clover-mg is a natural progression after 
having added the option of setting up multiple MG for a given gauge field. The procedure is 
straightforward with slightly more complicated bookkeeping than previously required. 

• To give users more flexibility, initialization of qdp/c and associated functions, and loading of the 
gauge-field links, have been separated. We are also looking into sharing of the gauge links by 
different MG setups to reduce memory usage where possible. 

• All data from the NPLQCD collaboration’s mπ ~ 450 MeV isotropic-clover ensembles (with 
volumes of L3 where L = 24, 32 and 48) were converted to SQLite3 databases. XML data are 
converted to YAML first; SDB data are converted to SQLite3 directly using a Perl module 
interfacing filedb via qdp++. The SQLite files are kept in three forms corresponding to different 
stages of processing and serves as starting point for further processing or simply retracing the 
steps: 1) 1–1 with the original data, 2)Grouped by configuration, and 3) Sourced averaged. 

• By examining the schema of a database, one can easily formulate an appropriate query to retrieve 
the needed data for analysis in a programmatic way. However, analysis usually proceeds by 
focusing first on a specific, small subset of the data with high impact and are necessary 
benchmarks then followed by more exotic states with humanely unreadable names. We eased the 
process of casual browsing by developing a catalogue, organized in a hierarchical fashion – 
Baryon number, Isospin, Spin, Baryon content –, using Mathematica’s custom interface facilities. 

• Combined with custom controls, with minimal visual impact (collapsible), which allows easy 
selection of the required source/sink structures with the desired spin projection. Baryon contents 
are clearly displayed with their Q-numbers using simply Grid with pastel color schemes. 

 
Improvements were then made to the process of converting legacy Chroma XML and SDB files into 
SQLite database files and the Mathematica user interface to the database files. The rationale for this work 
is to establish a reference point for new ideas and improvement on the current workflow. The impetus is 
the need to provide a unified, high performance interface to current and past data, which are significant 
assets to the collaboration and the community. 

 
SQLite is chosen for its simplicity, reliability and the wealth of publicly available and well-documented 
and supported tools. Mathematica is the preferred environment in which many conduct their analysis of 
the data. It is also well suited for prototyping and experimentation of user interaction. In particular, 
generalized input allows the construction of sophisticated user interface entirely within Mathematica. 
SQLite is now used to implement a table of input parameters and output data. This is a very simplistic 
yet informative way of exploring alternatives for current workflow. The flow of the set of input 
parameters forms the unique thread connecting every stage of a calculation from the start to the end and 
back.  Implementation of each stage then becomes completely independent. This gives the user the option 
to adopt whichever is the best tool for the specific task from the specification of the tasks to perform, to 
the calculation proper and to the final analysis of data as one can follow the transformation of a given set 
of input parameters through all stages.      
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As it stands, one can almost draw a clear line between the calculation and the data. The extraction of 
specific information from either XML or SDB files depends on the infrastructure used to perform the 
calculation, which however does not make provision to facilitate the process.  SDB makes an attempt yet 
the implementation is immature and dated. Both suffer from relying on very specific details of the 
framework on which the numerical codes are built i.e., the input parameters are insufficient to identify the 
data; additional information such as user defined document format as text or code is required. There is no 
provision for the long term archival and retrieval of data, which are rather costly to produce in terms of 
computing resources. 
 
  The situation is simply a legacy of past smaller scale production(s) when the framework was constructed 
and workflow practices established at that time. Our solution is to present a unified view of the data, 
prepared in forms suitable for archival and retrieval.  The conversion process depends slightly on the 
original framework except where it was necessary to convert SDB key/value pairs to C struct to be passed 
onto PERL. The process itself serves as explicit descriptions of the format of the data. The XMLs are 
described using a YAML document augmented with markers to describe lists and extraction of data from 
specific patterns. SDBs are simple key/values pair. The information required to build up the set of input 
parameters can be obtained from a disassembly of the keys, which were generated from simpler input.  
We also ensure that the process is scalable at and above the current size of our complete set of data on 
two reference systems Edison, Cori at NERSC and Hyak at University of Washington. The whole process 

Figure 4. Mathematica notebook interface with SQLite databases containing nuclear correlation 
functions. 
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is as automated and transparent as possible on both systems. Users have the option of running non-
interactive or interactive if testing and extending the process for new sets of data. TMUX is used to allow 
one to monitor the job directly on the compute nodes. 
 
The XMLs and SDBs can still be used with care. In fact, this is the presently recommended approach, as a 
consistent flow workflow requires time for users to adopt. Generating the SQLite database files directly 
from the main code is currently not implemented.  To ensure the continuity of the work, the entire set of 
scripts used for the conversion have been rewritten, reorganized and greatly simplified so that users would 
find it easier to extend. It also went through much more thorough testing on the two reference systems 
Edison and Hyak. As far as the user is concerned, there is no difference or extra setup required running on 
either system. The new organization also makes it suitable as a foundation to build collaboration work 
upon it. And of course, it will continue to transform and adopt as it attempts to meet the demands of the 
users. In addition, it serves to pass on the knowledge and experiences accumulated from previous works. 
 
Mathematica is used to perform analysis and as an interface to the SQLite databases. There is nothing that 
requires specifically Mathematica except that it is mightily convenient for those who use it for analysis 
and its generalized input provides a simple way to build a rather sophisticated interface.  A complex 
interface is not always needed or desired. In this case, one may simply supply an appropriately formulated 
query to the JDBC SQLite driver and obtain a list of lists in return, which contain the set of necessary and 
sufficient input parameters together with the correlator data.  Formulating the appropriate query is in 
effect what the sophisticated interface does. Often, the information required to index a particular piece of 
data cannot be described in simple words; a hierarchical and graphical representation of related 
information makes the process of picking the object of desire more intuitive. 
 
The connection between SQLite and Mathematica is not direct. The correlator data, a list of double 
precision numbers, as a string of bytes does not map directly to a list of real numbers in Mathematica. 
Two approaches can be adopted: a) passing an SQLBinary object (a list of 64 bit integers) to a C function 
or b) instead of getting an SQLBinary from the JDBC driver, one obtains a HEX string version of the 
correlator data from SQLite and process that string in a C function returning a list of real numbers.  
Option b) is not only faster to load but also has a more natural vectorization. In addition, one can adopt a 
CSLEGQ convention (0 – 9, ; < = > ? are consecutive in the ASCII table) for HEX strings, which may 
work faster. Using the latest version of SQLite (currently version 3.12.2) is important. However, it 
appears using the Mathematica + JDBC combination is not ideal. Calling SQLite directly via LibraryLink 
for example should provide significant speedup ‒ performing the same query and dump results to a text 
files formatted as a Mathematica package is an order of magnitude faster; loading the package file is 
relatively slow, however the overall time is still faster.  Currently all queries and results are cached in 
Mathematica’s binary format (MX). Reloading the data takes on average less than ½ of a second even for 
large data set. Work is underway to provide a more direct access to SQLite. 
 
To ensure continuity of the current effort, the entire Mathematica framework has been reworked, 
reorganized and simplified to make it easier for the users to intervene and add new features. In addition, a 
meta package system is also being written to make extending the current work with additional packages 
easier. It also provides a flexible basis for the collaboration to contribute and exchange knowledge and 
analysis methods in a well defined well. It is advisable to factor out complicated Mathematica analysis 
code and place them in package files that can be tracked and version controlled. Notebook files are fragile 
and cannot be version controlled effectively. 
 

 
 
	
  
	
  


