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Executive Summary:

The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple
species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St.
Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included
bioenergy feedstock production impacts on environmental quality, economic costs of production, and
ecosystem services. The following Tasks were completed in this project:

o Task A: Improve the simulation of cellulosic energy crops, such as Miscanthus, switchgrass, and
hybrid poplar, in the Soil and Water Assessment Tool (SWAT) model

o Task B: Use the improved model to evaluate the environmental and economic sustainability of
likely energy crop scenarios on a watershed scale, including sensitivity to climate variability

e Task C: Identify and communicate the optimal selection and placement of energy crops within a
watershed for sustainable production.

Bioenergy crop (native prairie, Maize, dual purpose sorghum, Shawnee Switchgrass, and Miscanthus)
data representing 4696 plot-years were collected in this project at the Throckmorton Purdue Ag Center,
the South East Purdue Ag Center, the Northeast Purdue Ag Center, and the Water Quality Field Station
(WQFS) at the Agronomy Center for Research and Education. A comparison of the biomass data
indicated that Miscanthus produced the greatest yield each year and yields of this species were consistent
even in 2012 when the region experience severe drought that reduced yield of prairie, maize, and
switchgrass plots.

Various Soil and Water Assessment Tool (SWAT) model components were improved and validated with
the field measured data. Specifically, the following SWAT improvements were made:
e SWAT model representation of perennial grasses improved and validated with measured data

e Improved representation of hybrid poplar in SWAT
e Development algorithms to represent perennial grass establishment stage

o Improvement of vegetative filter strip representation. SWAT can now represent crop growth in
filter strip area and can be used to quantify production of bioenergy crops in filter strip areas

e Improved crop aeration stress representation

e Algorithms to represent dynamic change in CO, concentration that enables use of the SWAT
model to evaluate effects of climate change on ecohydrologic processes

e Validation of tile drain representation in SWAT
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Our research team worked with Dr. Jeff Arnold and the USDA-ARS SWAT team to incorporate the
model improvements in the release version of SWAT model (version 615). The improved SWAT
model is now distributed to SWAT users globally.

Sensitive fish species richness (SSR) was used as a simple, yet informative, indicator of stream segment
biointegrity. We also calculated rarity weighted fish species richness index (RWR) as a simple measure of
biodiversity importance. Results suggest that significant increases in RWR and SSR mediated by biofuel
cropping of perennial grasses can only be achieved via drastic changes in land use from corn/soybean to
Miscanthus or switchgrass.

Hydrology and water quality sustainability indices for baseline scenario with future climate data and
calibrated SWAT model were quantified to establish the baseline conditions. The GCM projected data
from 9 model simulations; three models (GFDL CM2.0.1, UKMO HadCM3 3.1 and NCAR PCM 1.3) for
each of three future emission scenarios (A1B, A2, and B1), for three thirty-year periods, viz. 1960-
1989 (Past), 1990-2019 (Present), and 2020-2049 (Future) were evaluated.

Scenario analysis principles were used to determine key variables, which were (1) the extent to which
corn and soybean continue to be maximized vs. a focus on protecting water quality and the environment,
and (2) whether bioenergy refineries continue to be large and centralized, necessitating a high percentage
of land conversion vs. a shift to smaller refineries that could accommodate low percentage of crops.
Single crop scenarios that consider planting the entire watershed (all agricultural area) in each candidate
feedstock were also included because these will serve as inputs to watershed optimization, and to consider
uniform adoption of low rates of stover removal from continuous corn, consistent with contracts that are
emerging between farmers and cellulosic biorefineries coming online in the near future. Based on these
concepts the project evaluated the following 21 different scenarios:

e Perennial energy crops on marginal lands
e Corn stover removal- 20%, 30% and 50%, with and without nutrient replacement

e Perennial bioenergy crops in buffers around corn/soybean areas with different buffer to source
area ratios

e Bioenergy crops in all agricultural areas (100% bioenergy crops in existing agricultural fields)

e Bioenergy crops in 50% of agricultural area. One scenario with random 50% of agricultural area
and one scenario with 50% of agricultural area selected with plausibility criteria of marginal land,
high slope area, pasture area, crop productivity, etc.

The scenario analysis results showed that

o Average stream flow, annual peak flow and number of days over threshold will likely reduce with
all bioenergy scenarios

o Energy crop scenarios in general will improve water quality with the exceptions of stover
removal that will likely increase sediment load at the watershed outlet

o Water quality benefits due to land use change are generally greater than the effects of climate
change and variability

o Comparison of scenarios with randomly selected and strategically selected perennial bioenergy
planting areas emphasize the opportunity of maximizing environmental sustainability by optimum
landscape planning
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Potential contribution of the marginal lands to produce bioenergy crops and associated hydrologic/water
guality impacts was completed using APEX model. Marginal lands of the region was identified using the
land capability classes and land proximity to streams. Marginal land suitability for growth of perennial
biofeedstocks was estimated using fuzzy logic based framework for the Upper Mississippi River Basin.
Results indicated that not all marginal lands are suitable for growing perennial biofeedstocks. For
example, 40% of the identified marginal lands in the Upper Mississippi River Basin has poor to
moderately poor suitability for growth of three targeted biofeedstocks.

Ecosystem services for bioenergy production scenarios were evaluated with measured weather data and
climate change data. The results indicate that the ecosystem services will likely improve with bioenergy
crops growing in the watershed. Similar to environmental impact analysis, the impacts of land use change
on ecosystem services were more dominant than the climate change impacts.

A new method to efficiently optimize land use for bioenergy crop production called Multi-Level Spatial
Optimization framework (MLSOPT) was developed. This method was robust and computationally
efficient in identifying optimum solutions. Users can download this optimization framework with
example files from https://engineering.purdue.edu/ecohydrology/download.htmI#MLSOPT. This hew
spatial optimization method was further tested with multi-objective optimization case study to identify
optimum stover removal rates from the Wildcat Creek watershed with the minimum impact of sediment
loading. Our results indicate that objective functions in optimization are critical in identifying the
sustainable solutions. The optimization results generally had good correlation with the biophysical
characteristics of the watershed indicating that these characteristics could be used a good surrogate to
make bioenergy land management decisions.

We developed a farm-gate partial budget to reflect the per hectare cost of growing an individual feedstock
for corn crop residue (corn stover), switchgrass, Miscanthus and hybrid poplar. Using the farm-gate
production cost together with the simulated biomass yield for each feedstock, we constructed a biomass
supply curve for each individual feedstock in the watershed. We performed two different types of
optimization based on (1) supplying a specified amount of feedstock at the lowest possible cost, and (2)
the same biomass production guantity constraints and environmental constraints of 25% and 50%
reductions in the total amount of nitrogen, phosphorus and sediment delivered to the waterways. One
noticeable difference among optimization results with different constraints was that both perennial grass
crops are expected to reduce delivery of all three pollutants relative to the baseline cropping practices in
place today. Stover removal in combination with continuous no-till may be able to improve sediment loss
relative to the baseline corn-soybean rotation under the current agricultural management practices.

The perennial grasses have the highest farm-gate production cost per dry metric of biomass. The
opportunity cost of not growing corn and/or soybeans on the high productivity land cannot be overstated
as a determinant of the crop(s) that farmers will choose to plant. If markets for cellulosic feedstocks do
eventually emerge, this opportunity cost will ultimately determine if farmers ever choose to grow
perennial grasses or woody feedstocks in the eastern Corn Belt. In 2015 in Indiana, this opportunity cost
on average quality agricultural land in a corn-soybean rotation was expected to be approximately $175
per acre. This means that unless biorefineries are willing to pay prices for switchgrass or Miscanthus high
enough to generate net revenue per acre greater than or equal to this level, then farmers will not be willing
to grow either of these feedstocks and stover is the only realistic feedstock in the watershed.

For the case of hybrid poplar tree production, the results suggest that the most efficient contract type to
encourage entry is based on a fixed per acre payment. A payment that guarantees average cost is covered
will completely eliminate the (option) value of waiting to plant hybrid poplars until a later date. Another
interesting result is that a revenue floor (guaranteed base payment) contract does very little to induce
farmer planting of woody crops until it gets to very high levels, although it does significantly lower the
threshold for leaving the contract at relatively low levels. The asymmetric nature of uncertainty results in
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conclusions that differ greatly from models without such asymmetry. More specifically, the premium on
entry is significantly lower after netting out yield uncertainty for an idle cellulosic biofuels plant.
Contracts are not only useful for sharing risk, they also have a very important role to play in perennial
crop production. Contracts—especially per acre payment contracts—reduce uncertainty for a grower and
allow them to enter production at a fraction of the net revenue required under a performance based
contract.

We developed interagency collaborations with multiple agencies and universities including lowa State
University, USDA-ARS, Texas A&M University, and CenUSA Project. These efforts are continuing
beyond the life of this project.

Four Post-Doctoral Research Associates, 14 graduate students were trained as a part of this project.

14 peer-reviewed journal articles have been published from this project. Additional 13 journal articles are
currently under review. Our project team made more than 80 different presentations at various local,
regional, national and international conferences documenting the results from this project.
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Detailed List of Tasks and Accomplishments

Task A: Improve the simulation of cellulosic energy crops, such as Miscanthus, switchgrass, and
hybrid poplar, in the Soil and Water Assessment Tool (SWAT) model

1. Tasks performed to complete this objective:

A.1. Synthesize available data needed to parameterize the model to effectively simulate the
production of various energy crops and identify data gaps

A.2. Conduct measurements on existing fields where energy crops are grown to obtain parameters
not currently available

A.3. Improve representation and parameterization of processes related to new energy crops in the
model

A.4. Validate the model on existing field/plots and watersheds where energy crop production,
water and soil data are collected

2. Accomplishments:

o Our project team synthesized available data on perennial energy crops such as Miscanthus,
switchgrass, and hybrid poplar. Data gaps were identified to parameterize the Soil and Water
Assessment Tool (SWAT) model to effectively represent the production of energy crops.

e Field experiments were conducted on existing energy crop fields at the Throckmorton Purdue Ag
Center, the South East Purdue Ag Center, the Northeast Purdue Ag Center, and the Water Quality
Field Station (WQFS) at the Agronomy Center for Research and Education. 4696 plot-years of
bioenergy crops monitoring data were collected. Major findings from field data collection are
demonstrated in Figure 1-Figure 4.
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Figure 1. Cumulative biomass yield (dry matter basis) of native prairie, maize, dual-purpose sorghum,
switchgrass and Miscanthus on an excellent maize-growing site at the Water Quality Field Station in West
Lafayette IN from 2010 to 2015. Miscanthus produced the greatest yield each year and yields of this species
were consistent even in 2012 when the region experience severe drought that reduced yield of prairie,
maize, and switchgrass plots. The least significant difference (LSD) at the 5% level of probability is shown
for the species main effect.
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Figure 2. Cumulative biomass yield (dry matter basis) of Miscanthus, a big bluestem/indiangrass prairie,
and Liberty switchgrass on marginal soils at the Northeast (NE), Southeast (SE), and Throckmorton (Thr)
Purdue Ag. Centers from 2012 to 2015. Once established (2013) Miscanthus produced the greatest yield
at each location in each year. The mixed prairie had low yield, especially at SE PU Ag Ctr where plots
were established on a landfill cap. Switchgrass yield approached that of Miscanthus at the NE Purdue Ag
Center. The least significant difference (LSD) at the 5% level of probability is shown for the site x species
interaction.
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Figure 3. Cumulative biomass yield (dry matter basis) of maize, dual-purpose sorghum (Sorg-DP),
photoperiod-sensitive sorghum (Sorg-PSS), and sweet sorghum (Sorg-SS) on marginal soils at the
Northeast (NE), Southeast (SE), and Throckmorton (Thr) Purdue Ag. Centers from 2011 to 2014. Within
a location, maize yields were always lower than sorghums, and especially at the SE PU site located on a
landfill cap. Yields of the photoperiod-sensitive sorghum were generally the highest irrespective of location.
The least significant difference (LSD) at the 5% level of probability is shown for the site x species
interaction.
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Figure 4. Cumulative biomass yield (dry matter basis) of maize and photoperiod-sensitive sorghum (Sorg-
PSS) as influenced by nitrogen (N) fertilizer application on marginal soils at the Northeast (NE), Southeast
(SE), and Throckmorton (Thr) Purdue Ag. Centers from 2011 to 2014. Maize yields increased as N
additions increased to 200 kg N/ha, except at the SE PU site where N application could not overcome the
poor soils. The Sorg-PSS responded in a predictable manner to added N and generally achieved higher
biomass yields at comparable N rates within a location suggesting higher N use efficiency.

DE-EE0004396, Chaubey et al., Watershed Scale Optimization to Meet Sustainable Energy Crop Demand pg. 8



e Compositional analysis of biomass collected was conducted. This includes sugars, starch,
cellulose, hemicellulose, lignin, ash, nitrogen, carbon, potassium, and phosphorus (Figure 5-
Figure 11). Plots at the WQFS were also monitored for greenhouse gas emissions, and all sites for
soil carbon and plant available nutrients.
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Figure 5 Relationship between biomass yield and tissue nitrogen (N) concentration of Shawnee switchgrass
at the Throckmorton Purdue Ag. Center near Lafayette IN. Plots were fertilized with 0, 50, 100, or 150 kg
N/ha in spring of each year and plots harvested for biomass yield in October or November. There was no
significant effect of N on yield (data not shown). The regression of tissue N on yield is significant (P<0.01),

but the low coefficient of determination (R?) indicates that factors, other than N, influence yield in this
experiment.
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Figure 6. Relationship between biomass yield and tissue phosphorus (P) concentration of Shawnee
switchgrass at the Throckmorton Purdue Ag. Center near Lafayette IN. Long-term P fertilizer applications
prior to planting switchgrass resulted in large plot-to-plot variation in soil test P ranging from what is
considered very low for maize production (<5 mg P/kg soil) to sufficient for maize (> 25 mg P/kg soil).
Plots were uniformly fertilized with 50 kg N/ha in spring of each year and harvested for biomass yield in
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October or November. The regression of tissue P on yield is significant (P<0.01), but the low coefficient of
determination (R?) indicates that factors, other than P, influence yield in this experiment.
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Figure 7. Relationship between biomass yield and tissue potassium (K) concentration of Shawnee
switchgrass at the Throckmorton Purdue Ag. Center near Lafayette IN. Long-term K fertilizer applications
prior to planting switchgrass resulted in large plot-to-plot variation in soil test K ranging from what is
considered very low for maize production (<50 mg K/kg soil) to sufficient for maize (> 150 mg K/kg soil).
Plots were uniformly fertilized with 50 kg N/ha in spring of each year and harvested for biomass yield in
October or November. The regression of tissue K on yield is significant, but the moderate coefficient of
determination (R?) indicates that factors, other than K, influence yield in this experiment. The red line

represents boundary conditions that may limit tissue K (left edge) and biomass yield (upper edge) at this

location.
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Figure 8. Box plots indicating the median and percentiles for lignin concentrations of native prairie, maize,

dual-purpose (DP) sorghum, switchgrass (switch) and Miscanthus at the Water Quality Field Station in
West Lafayette IN from 2010 to 2013. Lignin concentrations were consistently greatest in Miscanthus and
lowest in maize. Unlike biomass yields (Figure 1), variation in lignin concentration in this experiment was

low irrespective of year.
pg. 10
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Figure 9. Box plots indicating the median and percentiles for cellulose concentrations of native prairie,
maize, dual-purpose (DP) sorghum, switchgrass (switch) and Miscanthus at the Water Quality Field Station
in West Lafayette IN from 2010 to 2013. Cellulose concentrations were highest in Miscanthus, lowest in
maize, with cellulose concentrations of the other species intermediate. Unlike biomass yields (Figure 1),
but similar to lignin (Figure 8), year-to-year variation in cellulose concentration was very low especially
in Miscanthus and maize.
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Figure 10. Influence of surface runoff on nitrogen (N) losses in 2014 from plots of maize, dual-purpose
sorghum, Miscanthus, Liberty switchgrass, and hybrid poplar grown for biomass. The inset graph expands
the horizontal axis so species differences are more readily visible at low runoff rates. The legend provides
total runoff events and total water (L) and N (g) losses per hectare from plots in 2014. N loss as runoff per
event increases is least for the unfertilized poplar plots, and greatest for the switchgrass plots, with other
species intermediate (inset graph). Season-long totals for N loss were highest for maize, sorghum, and
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Miscanthus that all lost more than 50 g N in 6911 to 8690 L of runoff in 15 or more runoff events. By
comparison, switchgrass had only 5 events where surface runoff occurred and lost only 18 g N in the 1345
L of runoff. Poplar had 16 runoff events with 7740 L of runoff, but lost only 37 g N because this species
was not fertilized with N. High N losses occurred on the switchgrass and Miscanthus plots in the runoff
event immediately following surface N fertilizer application on May 12.
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Figure 11. Influence of surface runoff on phosphorus (P) losses in 2014 from plots of maize, dual-purpose
sorghum, Miscanthus, Liberty switchgrass, and hybrid poplar grown for biomass. The inset graph expands
the horizontal axis so species differences are more readily visible at low runoff rates. The legend provides
total runoff events and total water (L) and P (g) losses per hectare from plots in 2014. P loss as runoff per
event increases is least for the poplar and Miscanthus plots, greatest for the switchgrass plots, with maize
and sorghum intermediate (inset graph). Season-long totals for P loss were highest for maize, sorghum,
and Miscanthus that all lost at least 16 g P in 6911 to 8690 L of runoff in 15 or more runoff events. By
comparison, switchgrass had only 5 events where surface runoff occurred and lost less than 5 g P in the
1345 L of runoff. Poplar had 16 runoff events with 7740 L of runoff, and lost only 5 g P.

e We have installed soil moisture and soil temperature sensors at two depths and at three locations
in maize, switchgrass, Miscanthus, and hybrid poplar plots at the Throckmorton Purdue Ag.
Center. We have also installed a weather station and have collected meteorologic data from this
site.

o Data from the biomass production studies is being summarized and placed in the Purdue
University Research Repository. We plan to publish these data sets with a DOI once data analyses
are complete.

e We have improved various SWAT model components and validated many subcomponent
representations in the model with field measured data. A summary of model improvements are
provided below. Detailed discussions can be found in the subsequent sections.

o SWAT model representation of perennial grasses improved and validated with measured
data

o Improved representation of hybrid poplar in SWAT

o Development of algorithms to represent perennial grass establishment stage
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o Improvement of vegetative filter strip representation. SWAT can now represent crop
growth in filter strip area and can be used to quantify production of bioenergy crops in
filter strip areas

o Improved crop aeration stress representation

o Algorithms to represent dynamic change in CO, concentration that enables use of the
SWAT model to evaluate effects of climate change on ecohydrologic processes

o Validation of tile drain representation in model

e SWAT model was parameterized for perennial bioenergy crops from data collected in task A.1
and Task A.2. SWAT model parameterization and model improvements for perennial grass
simulation are presented in detail in Trybula et al., 2015. We have worked with Dr. Jeff Arnold
and the USDA-ARS SWAT team to incorporate all the model improvements in the release
version of SWAT maodel (version 615). The improved model is now distributed to SWAT users
globally. Figure 12 and Table 1 highlight some of the model improvements we have made.
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Figure 12. Comparison of Miscanthus simulation using improved SWAT model (Trybula et al., 2014) and
default model. The improved model significantly improved the perennial grass growth and nutrient
translocation processes
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Table 1 Suggested values and potential parameter range for Miscanthus x giganteus and upland
switchgrass (P. virgatum) cultivar Shawnee compared to current lowland switchgrass (c.v. Alamo) in the
SWAT 2009 crop database. Shaded parameters were estimated from our data and published literature

values.
Miscanthus x giganteus Shawnee Switchgrass Alamo
919 (Panicum virgatum) Switchgrass
MISG SWSH SWCH
Parameter Acronym Unit | Suggested Range Suggested Range 03:325e
Optimal Temperature 236 o - -
(degrees Celsius) T_OPT C Existing Alamo value Existing Alamo value 25
(E;aesgergeesmc'oeﬁgfﬂge T BASEL234 °C 8 7-10 10 8-12 1
[Potential Heat Units] [PHU] [1830] [2100-1600]| [1400] [1600-1200]
Radiation Use
.. - . 145 9410 41 ) 17 i
Efficiency in ambient BIO_E My % (39) (12) 47
CO;
Rootfractionat  prpyc NA | 087 076096 | 089  0.80-0.97 |Default (0.40)
emergence
Root fraction at RFR2C NA 018  012-0.22 | 049  0.44-057 |Default (0.20)
maturity
Harvest Index HVSTI’ NA 1 - 1 - 0.9
Harvest Efficiency HEFF! NA 0.7 0.65-0.75 0.75 0.7-0.75
Lower Limit of
Harvest Index due to WSYF NA 1 - 1 - 0.9
stress
Maximum Leaf Area 1 m?
Index (LAI) BLAI — 11 10-13 8 - 6
Fraction of growing
season when growth DLAI*’ NA 1.1 - 1 0.7
declines
Minimum LAI for m2
plant during dormant ALAI_MIN?® — 0 - 0 - 0
period m
Light extinction oy copppr | NA 055  0.45-0.65 0.5 0.4-0.55 0.33
coefficient
First point fraction of
BLAI for optimum  LAIMX14 NA 0.1 - 0.1 - 0.2
growth curve
Second point fraction
of BLAI for optimum LAIMX2%# NA 0.85 - 0.85 - 0.95
growth curve
Fraction of growing
season coinciding ~ FRGRW1'# NA 0.1 - 0.1 - 0.1
with LAIMX1
Fraction of growing
season coinciding ~ FRGRwW2'4 NA 0.45 - 0.4 - 0.2
with LAIMX?2
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Plant nitrogen

in vapor pressure
deficit

kg N - .
fraction at emergence PLTNFR(1)?! g 0.0100 0.0097 0.0073 0.0066 0.035
(whole plant) kg DM 0.0104 0.0081
Plant nitrogen
fraction at 50% . kg N 0.0062- 0.0067-
maturity (whole PLTNFR(2) kg DM 0.0065 0.0070 0.0068 0.0072 0.015
plant)
Plant nitrogen kg N 0.0053- 0.0051-
fraction at maturity PLTNFR(3)! 0.0057 ' 0.0053 ' 0.0038
(whole plant) kg DM 0.0060 0.0055
Plant nitrogen ka N i )
fraction in harvested CNYLD! g' 0.0035 %%%?é‘; 0.0054 %%(())5538 0.0160
(aboveground) mass kg yield ! !
Plant phosphorus ka P i )
fraction at emergence PLTPFR(1)? g 0.0016 0.0016 0.0011 0.0010 0.0014
(whole plant) kg DM 0.0017 0.0012
Plant phosphorus
fraction at 50% 1 kg P 0.0010- 0.0013-
maturity (whole PLTPFR(2) kg DM 0.0012 0.0014 0.0014 0.0016 0.001
plant)
Plant phosphorus ka P i )
fraction at maturity PLTPFR(3)* g 0.0009 0.0007 0.0012 0.0011 0.0007
(whole plant) kg DM 0.0011 0.0012
Plant phosphorus ka P i i
fraction in harvested CPYLD!? g. 0.0003 %%%%::’1 0.0010 %%%1101 0.0022
(aboveground) mass kg yield ! !
%{;X' Canopy Height o 1y 116 m 35 - 2 i 25
'(\ggx' Rooting Depth g s m 3 2-4 3 2-4 2.2
\I\//Ivgj[ér(:g:gsli::ﬁtor for USLE_C?® NA Existing Alamo Value Existing Alamo Value 0.003
;ﬁ?&; pressure VPDFR® kPa | Existing Alamo Value | Existing Alamo Value 4
Stomatal conductance GSI® ? Existing Alamo Value Existing Alamo Value 0.005
GSI fraction
corresponding to the
second point on the FRGMAX?® NA Existing Alamo Value Existing Alamo Value 0.75
stomatal conductance
curve
Rate of decline in
RUE due to increase WAVP?8 NA Existing Alamo Value Existing Alamo Value 8.5

!Data collected from the Purdue University Water Quality Field Station; 2Daily minimum, maximum, and mean
temperature Indiana State Climate Office; *Daily minimum, maximum, and mean temperature Illinois Climate

Network; “Heaton, E.M., 2007; °Kiniry et al., 2011; %Zub and Brancourt-Hulmel, 2010; "Modified parameter for
perennial rhizomatous grass representation; 8Assumed, *Preliminary value using top growth data, replaced by value

using total biomass data
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o SWAT model was parameterized and improved for hybrid poplar representation (Table 2). We
have published a manuscript describing the ALMANAC model (Agricultural Land Management
Alternative with Numerical Assessment Criteria) parameterization and improvement to simulate
short duration woody crops in Bioenergy Research (Guo et al., 2015). The model improvements
and parameters are now incorporated in the release version of the SWAT model.

Table 2. Values and suggested parameter ranges for hybrid poplar (Populus balsamifera L. x P.tristis
Fisch) and cottonwood (Populus deltoides Bartr.) compared to default parameter values for Populus in

SWAT2012 database
Acronym Parameter Populus balsamifera L. Populus deltoides Populus
x P.tristis Fisch Bartr. (POPL)
(HYPT) (POEC)
Value Range Value Range | Database
value
0-6 7-15
T_BASE* | Base Temperature (°C) 4 [2150- 8 [2900- 10
[PHU]* Heat Units to Maturity | [1750] 1500] [2818] 2200] -
Optimal Temperature
T_OPTY (°C) 25 25-30 25 25-30 30
Radiation Use
Efficiency in ambient
BIO E+§ | CO,(kghayMIm™) | 20 20-35 41 30-58 30
EXT_COEF Light Extinction
I8 Coefficient 0.30 0.20-0.60 0.60 0.20-0.60 0.45
BLAILT** Maximum LAI 9.50 5.00-9.50 9.50 5.00-9.50 5.00
Fraction of BLAI
LAIMX2iq | corresponding to 2nd
** point 0.95 0.95-0.98 0.95 0.95-0.98 0.95
Point in growing
season when LAI
DLAIL** declines 0.99 0.99 0.99 0.99 0.99
Fraction of tree
biomass converted to
residue during
BIO_LEAF dormancy - - - - 0.300
TREED{ {1 | Tree leaf area factor 0.500- 0.500- 0.500- 0.500-
T 4.500 4.500 4.500 4.500 -
Fraction of growing
FRGRW?2j} | season coinciding with
> LAIMX?2 0.40 0.40-0.45 0.40 0.40-0.45 0.40
ALAI_MIN Minimum LAI for 0.000- 0.000-
s [Nkl plant during dormancy 0.000 0.750 0.000 0.750 0.750
Fraction of growing
FRGRW1}' | season coinciding with
> LAIMXI1 0.05 0.05-0.07 0.05 0.05-0.07 0.05
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Fraction of BLAI
LAIMX1{q | corresponding to 1st
*k point 0.05 0.05-0.30 0.05 0.05-0.30 0.05
Plant P fraction at
PLTPFRI17t emergence (whole Existing Existing Existing Existing
g1 plant) value value value value 0.0007
Maximum stomatal 0.0040- 0.0040-
GSIt conductance 0.0070 0.0070 0.0070 0.0070 0.0040
Maximum canopy Existing 10.00-
CHTMX7 height (m) value 7.00-15.00 10.00 15.00 7.50
Fraction of GSI
corresponding to the
2nd point of stomatal | EXisting Existing Existing Existing
FRGMAXY conductance curve value value value value 0.750
Vapor pressure deficit
(kPa) corresponding to
2nd point of stomatal | EXisting Existing Existing Existing
VPDFRY conductance curve value value value value 4.00
Plant N fraction at
PLTNFRI1¥ emergence (whole Existing Existing Existing Existing
t,11 plant) value value value value 0.0060
PLTNFR3+ Plant N fraction at Existing Existing Existing Existing
T4 maturity (whole plant) value value value value 0.0015
Plant N fraction at
PLTNFR2T | 50% maturity (whole | EXisting Existing Existing Existing
1,11 plant) value value value value 0.0020
Plant residue
RSDCO_PL decomposition Existing Existing Existing Existing
T coefficient value value value value 0.0500
RDMX+,1 Maximum rooting Existing Existing Existing Existing
1 depth (m) value value value value 3.50
CNYLDZ,$ Plant N fraction in 0.0005- 0.0005-
8,11 harvested biomass 0.0005 0.0015 0.0005 0.0015 0.0015
CPYLDZ,§§ Plant P fraction in 0.0002- 0.0002-
9 harvested biomass 0.0002 0.0003 0.0002 0.0003 0.0003
Plant P fraction at
PLTPFR2%+ | 50% maturity (whole | EXisting Existing Existing Existing
g1 plant) value value value value 0.0004
PLTPFR37+ Plant P fraction at Existing Existing Existing Existing
I maturity (whole plant) value value value value 0.0003
Minimum crop factor | EXisting Existing Existing Existing
USLE Cf¥ for water erosion value value value value 0.0010
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Rate of decline in
radiation use
efficiency per unit
WAVPT,1 increase in vapor Existing Existing Existing Existing
i pressure deficit value value value value 8.00
Elevated CO;
atmospheric
concentration (UL CO>
L air) corresponding | EXxisting Existing Existing Existing
CO2HIt the 2nd point value value value value 660.00
Biomass-energy ratio
corresponding to 2nd | EXisting Existing Existing Existing
BIOHI+ point value value value value 31.00
Lower limit of harvest
index ((kg hat)/(kg
WSYFi ha'l)) 0.000 0.000 0.000 0.000 0.010
Number of years
required for tree
MAT_YRS species to reach full
,** development (years) 6-9 6-9 6-9 6-9 10
BMX TRE | Maximum biomass for | EXisting Existing Existing Existing
ESt,i1 a forest (mt ha™) value value value value 200
BM_DIEOF Biomass dicoff Existing Existing Existing Existing
Fy fraction value value value value 0.100
Harvest index for
HVSTIT+T, optimal growing
11t conditions 0.65 0.45-0.70 0.60 0.40-0.65 0.76

* Calculated based on maximum and minimum daily temperature from NCDC weather stations. 1 Assumption. |
Modified value after calibration. § Landsberg and Wright, 1989.9 Hansen, 1983. ** Zavitkovski, 198. 11 Kiniry

etal, 1999. 11 MacDonald et al., 2008. §§ Black et al., 2002. Y McLaughlin et al., 1987. *** J. Kiniry,

personal communication. 777 Michael et al., 1988. } 1} Arnold et al., 2011
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e We have improved SWAT model for simulating establishment period of perennial grasses and
validated using measured LAI data from literature (Figure 13) and measured data from Purdue
Research stations (Figure 14).

12 12
SWCH

10 F ——3mdQovs 10
E 8t 8
E6 | 6 |
< 4 | 4
—
=2t 2t

0 0

Yl Y2 Y3 Y4 YI Y2 Y3 Y4

Figure 13. Leaf area index (LAI) developing during the establishment period (when perennial grasses
building their growth potential untill the maximum potential is reached). Boxplot were reported observed
values of LAI from field experiments. 3rdQ Obs represents the third quartile of observed values and Sim
represented the simulated LAI values by the equation used by Miguez et al., 2008.

40
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Figure 14 Simulated and observed yield for switchgrass and Miscanthus at Water Quality Field Station
(WQFS), Indiana with the unmodified and modified (with improvement for simulation of establishment
period). Boxplot represented measured yield for the two perennial grasses at WQFS.
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e \We have improved the vegetative filter strip representation in SWAT model. The model
improvements were validated using paired watershed study from central lowa (Table 3).

Table 3. Average annual comparison of measured from a paired prairie VFS study in central lowa and
three VS representation scenarios for the 10% filter strip (edge of field) watersheds, only the measurement
data period is considered. Area weighted average of the three study watersheds were considered for the
dates of measured data availability. The improved model representation was able to estimate crop growth
in filter strip area and effectively estimate filter strip efficiency.

Field measured SWAT simulation

Control no VFS With VFS | With VFS

VFS watershed | watersheds No VFS | (Default) | (Improved)
Runoff (mm) 177.2 69.6 149.9 149.9 89.2
Sediment (Mg/ha) 6.3 0.4 54 2.0 0.6
TN (kg/ha) 28.4 3.3 16.5 8.3 4.6
TP (kg/ha) 7.8 0.8 4.4 1.9 0.8
NO3 (kg/ha) 2.7 0.8 3.0 1.5 1.0

o Since watershed-scale biofuel scenarios quantify the trade-offs in food and fuel production and
water quality for perennial biofuels crops relative to traditional cash crops, such as corn, we
realized early on in the project that it was essential that the simulated response of both the cash
crops and the biofuels crops under adverse climate conditions be well represented. In order to
investigate the sensitivity of the SWAT corn growth algorithms to climate variability, in
particular soil moisture stress, the SWAT model was first calibrated to observed soil moisture
profiles at USDA SCAN sites across the Midwest USA. The calibrated model was then used to
extend the observational records for 70 years (1941-2010) to compare simulated soil moisture
stress with observed county yields.

As a result of this work, stress parameters were introduced to the SWAT model to regulate model
performance in representing both mean yield and interannual yield variability. The following key
findings of this task have also been published in “Agricultural and Forest Meteorology” (Wang et
al., 2016):
o Observed corn yield is inversely correlated with drought stress during reproductive
stages.
o The impact of aeration stress on observed yield was not detected at the county scale,
potentially due to the small spatial scale of aeration stress; and
o Drought stress explains the majority of yield reduction across all return periods.

e Landsat TM images and Cropland Data Layer (CDL) images for multiple years (2000-2010) were
used to develop a generalized corn growth curve based on NDVI reflecting corn growth dynamics
under normal conditions for the St. Joseph River watershed which can be used to calibrate corn
growth rather than just final grain yield in the model.

Crop responses to stress are reflected by the departure of an individual Landsat scene’s NDVI
from the normal growth curve. The relationship between grain yield, stress and NDVI
residual at different growth stages was investigated, and this paper is currently under
review in the journal “Remote Sensing”. Key findings include:
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o Seasonal NDVI shows the greatest spatial variance at the leaf development and
senescence periods.

o Cornyield is significantly related to the NDVI residuals in the early growing period.

o Dry weather tends to result in crop growth below normal conditions, while under the
conditions observed higher than normal rainfall reduces the risk of yield loss;

o The fraction of corn pixels below normal growth condition is significantly correlated with
water stress.

e We have evaluated and improved the ability of SWAT to simulate tile-drained agricultural fields
in Midwestern watersheds. We have obtained tile drainage and watershed outlet flow and water
quality data for several small watersheds from researchers at USDA Agricultural Research
Service. The required spatial data have been acquired and the SWAT model is set up, which will
allow us to determine the appropriate parameters to use with the Hooghoudt-Kirkham drainage
routines. These more detailed drainage algorithms have been recently implemented in the SWAT
code but guidance on parameterization is lacking. We are conducting evaluations of model
predictions, specifically the tile drainage outputs based on various drainage-related parameter
options, to determine appropriate parameters for Midwestern tile-drained watersheds.

¢ Animportant and informative component of fish Index of Biotic Integrity (IBIs) is the presence
of sensitive (i.e., intolerant of degraded environmental conditions) species within a sampled
community. Such species are typically highly sensitive to human disturbance and tend to be
useful for detecting biotic responses to degraded environmental conditions. We used sensitive
fish species richness (SSR) as a simple, yet informative, indicator of stream segment biointegrity.
We also calculated rarity weighted fish species richness index (RWR) as a simple measure of
biodiversity importance (Williams et al. 1996). We compiled fish community data from the Ohio
Environmental Protection Agency (OEPA), all fish were identified to species and classified as
sensitive to habitat degradation according to Angermeirer and Karr (1986), Lyons et al. (1996),
and the OEPA (2013) to calculate SSR at a site. We compiled water quality data from the OEPA
STORET sampling. Median TN ranged from 0.3 to 15.005 mg/L, TP from 0.01 to 0.72 mg/L,
and TSS from 5 to 169 mg/L. We linked fish and water quality data using their latitude,
longitude, and sampling year, such that each water quality sample and fish sample came from the
same site and same year. This resulted in 526 samples from 508 unique sites. We spatially linked
data to the NHDPIlus hydrologic framework (http://www.horizon-systems.com/nhdplus/), from
which we extracted the average discharge (ft3/s). We modeled stressor-response relationships
using quantile regression. This method is useful for modeling the heterogeneous variance that is
often encountered in biological responses and for identifying limiting relationships between
stressors and responses (Cade and Noon 2003). We modeled the 95" quantile; thus, it is important
to note that our predictions do not represent the actual expected condition at a stream segment.
Rather, our models represent the potential biological condition given the stream conditions. As an
example, Figure 15 illustrates this relationship for SSR and TN.
Model selection: We developed models consisting of all possible additive combinations of TN,
TP, TSS, and log transformed discharge. Discharge was included because stream size is an
important determinant of fish community structure. We developed a candidate set of models by
keeping models within four AIC units of the model with the lowest AIC score. We also removed
models within two units of our best model that only included one extra parameter to remove the
influence of uninformative parameters (Burnham and Anderson 2002). The model-average
coefficients can be used to make predictions (Table 4 and Table 5), although it is important to
remember that model outputs are on the logit scale and must be transformed as described above to
yield data that reflect the original scale.
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Sensitive richness

TN (mg/L)
Figure 15 Relationship between sensitive species richness and total nitrogen (TN) relative to the average
value of TP, TSS, and discharge. The circles represent observed data and the line is the modeled
relationship from a quantile regression of the 95th quantile.

Table 4 Quantile regression results for the sensitive species richness.

Sensitive species richness

Model Intercept log (discharge) TN TP TSS df AIC. A AIC.
1 -1.816 0.678 -0.178 - -0.002 4.000 1977.472 0.000
2 -1.642 0.623 -0.195 - - 3.000 1978.653 1.181
3 -1.616 0.611 -0.219 0.880 - 4,000 1979.990 2518
Model averaged  -1.733 0.651 -0.189 0.136 -0.001

Table 5 Quantile regression results for the rarity weighted species richness.

Rarity weighted richness

Model Intercept log (discharge) TN TP TSS df AICc A AIC:
1 -1.748 0.416 -0.158 0.315 NA 4.000 1675.777 0.000
2 -1.757 0.419 -0.146 NA NA 3.000 1675.880 0.103
3 -1.759 0.419 -0.145 NA -0.00005 4.000 1677.863 2.086
Model averaged  -1.753 0.418 -0.151 0.137 -0.00001

Thus, the actual models for making predictions are:

logit (SSR;)) = Bo+ B1*In(Q; + 1)+ By *TN; + B3 * TP, + B, * TSS;
and

logit (RWR;) = Bo+ By *In(Q; +1) + B, *TN; + B3 *TP; + B, * TSS;
where SSR; is the sensitive richness for site i on the logit scale, f0 is the model averaged
intercept estimate from Table 4, 1 is the coefficient estimate for discharge from Table 4,
log (Q1) is the log transformed discharge (ft3/s) for site 1, B2 is the model average
coefficient estimate from Table 4, TNi is the TN (mg/L) from site i, B3 is the model
average coefficient for TP from Table 1, TPi is the TP (mg/L) for site i, B4 is the model
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average coefficient estimate for TSS, and TSSi is the suspended sediment (mg/L) for site
I. Similarly, RWR; is the rarity weighed richness for site i, and the coefficient estimates
are derived from Table 5.
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Task B: Use the improved model to evaluate the environmental and economic sustainability of
likely energy crop scenarios on a watershed scale, including sensitivity to climate variability

1. Tasks performed to complete this objective:
B.1. Parameterize, calibrate, and validate the SWAT model for the watersheds
B.2. Run the calibrated model with future climate scenarios to establish baseline

B.3. Develop scenarios that represent plausible watershed landscape alternatives, based on
scientific assessment and stakeholder input

B.4. Determine the sustainability of energy crop scenarios through comparison of the baseline to
the experimental scenarios

2. Accomplishments:

o We develop SWAT model for two watersheds (1) St Joseph River watershed located in Indiana,
Michigan, and Ohio; and (2) Wildcat Creek watershed, located in Indiana (Figure 16). Detailed
discussion of model development, input data used, and calibration and validation is provided in
Cibin et al. (2015).

St. Joseph River Basin
O _g"{r:

Wildcat Creek Basin

IKilometers

0 5 10 20 30 40 Legend

o Water Quality Stations

® USGS gauging stations
—— NHDFlowline
[Jwatershed

Figure 16. Location map of Wildcat Creek watershed and St Joseph River watershed.
o Model was calibrated and validated for crop growth, stream flow and water quality. The

calibration validation statistics and time series plots are provided in Table 6 and Figure 17-Figure
18.
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Table 6 Daily and monthly calibration and validation statistics for stream flow in Wildcat Creek watershed

and St Joseph River watershed

Station Station | Drainage Calibration statistics Validation statistics
ID area Daily Monthly Daily Monthly
(km?) RZ NS | R | NS | RE|NS | R | NS
Wildcat Creek watershed
Wildcat near Kokomo 3333700 614 0.70| 0.70| 0.89 | 0.88 | 0.67 | 0.67 | 0.96 | 0.95
Wildcat near Owasco 3334000 1009 079! 0791 092| 091] 075! 073! 090 | 0.87
Southfork Creek Lafayette 3334500 642 0.75| 0741 091| 090| 0.71 | 0.66 | 0.87 | 0.78
Wildcat near Lafayette 3335000 | 2045 0.83| 0.82|0.90| 0.90 | 0.80 | 0.79 | 0.90 | 0.88
St. Joseph River watershed
Cedar Creek near Cedarville 4180000 715 0.69| 068 0.72| 0.70| 0.77 | 0.75| 0.81 | 0.76
St. Joseph river near Fort Wayne | 4180500 2715 0.72| 0.72| 0.80| 0.80| 0.79 | 0.79 | 0.91 | 0.89
R2: Coefficient of determination
NS: Nash-Sutcliffe efficiency
600 . . . 12 sy r . .
o] ST R _
2 R*=0.816 P < | ——SWAT simulated " \
i 4001 : / - %8- :
E 3004 o Cy ;% 64 ,,\\ - !
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Figure 17. Calibration validation figures for Wildcat Creek watershed. (A-Top left) Scatter plot of observed
and simulated daily stream flow. (B-Top right) Time series plot of SWAT simulated, LOADEST estimated
mean and 95% confidence interval annual sediment yield (1995-2008), (C-Bottom) time series plot of SWAT
simulated and measured for Nitrate for the simulation period (1995-2009).
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Figure 18. Calibration validation figures for St. Joseph River watershed. (A-Top left) Scatter plot of
observed and simulated daily stream flow. (B-Top right) Time series plot of SWAT simulated, LOADEST
estimated mean and 95% confidence interval annual sediment yield (1995-2008), (C-Bottom) time series
plot of SWAT simulated and measured for Nitrate for the simulation period (1995-2009).

e Asan additional experiment, following traditional calibration of the SWAT model in the St
Joseph River watershed based on stream discharge and water quality performance, the
AMALGAM multi-objective optimization algorithm was applied to constrain model performance
in daily streamflow, seasonal corn LAI development (using the generalized corn growth curve
developed in Task A.4), and annual crop yield. Key findings include:

o After multi-objective calibration, the simulated timing and magnitude of corn LAI are
better represented,

o The model is also able to capture mean annual yield, interannual yield variation, and
daily streamflow, and

o Soil moisture dynamics show reasonable seasonal patterns after multi-objective
calibration.

Key findings for this accomplishment have been summarized in a presentation (Wang et al.,
2015) at the 2015 International SWAT Conference.

o We develop sustainability indicators to study the environmental and economic sustainability of
bioenergy scenarios (Table 7). These indicators were based on recommendations made by
McBride et al., 2011; applicability of indicators in the Midwestern watersheds, and ease of data
collection to quantify these indicators.
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Table 7. Sustainability indicators developed to study the environmental and economic sustainability of

bioenergy scenarios

Indicator for

Category Indicator Units
Erosion Mg/halyear Soil loss
Soil erosion and its - —
impact on long-term  [Total nitrogen Kg-N/ha Soil productivity
productivity Extractable Phosphorus Kg-P/ha Soil productivity
Annual maxima m?3/sec High flow
Runoff index - Stream flow
Water Quantity Richards-Baker Flashiness Index - Variability
7 day average low flow for year m3/sec Low flow
Water Stress Index (WSI) Water use
Sediment load or sediment concentration Mg/halyear or mg/L  [Suspended sediment
Water Quality Nitrate and total nitrogen Kg-N/ha Nitrogen loading
Organic phosphorus and total phosphorus Kg-P/ha Phosphorus loading
Biomass and crop  |Total biomass and harvested yield t/ha crop production
production
Profitability Break-even feedstock price $

Aquatic Biodiversity

Sensitive fish species richness (SSR)
rarity weighted fish species richness index

(RWR)

biodiversity

e SWAT simulations were conducted using CMIP3 future climate projections for the PCM, GFDL
and HadCM3 global climate models using three future climate scenario: A2, A1B, and B1.
Climate data were down-scaled and bias corrected to support regional hydrologic and crop
growth simulations. Monthly GCM climate forcings (air temperature and precipitation) were also
disaggregated to daily values for use in driving the SWAT model. Future climate datasets were
developed by Sinha and Cherkauer (2010), and have been used to assess climate change impacts
on streamflow (Cherkauer and Sinha, 2010), and drought impacts on crop yields (Mishra et al.,
2010). For simulations conducted for this project, SWAT was modified to take dynamic CO;
concentration (daily scale) as model input. Coupled with the model enhancements related to crop
growth and stress responses this version of SWAT is considered best for evaluating the impacts
of climate change on crop growth.

The model was applied in the St. Joseph River watershed to investigate climate change and CO»
enhancement impacts. This involved the design of simulation modeling experiments at different
future periods using downscaled and bias-corrected CMIP3 precipitation and temperature, and
CO; concentration data. The simulation experiment was used to investigate biophysical and
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hydrological effects of future climate change including trends in CO2 concentrations. Key

findings include:

o More interannual variability is expected for both aeration and drought stress in two future
periods (2021-2050, 2061-2090), when compared with baseline period (1981-2010)

o Decreased temperature stress in early spring cannot compensate for summer heat effects
on future yield reduction.

o There is no significant crop yield risk reduction due to CO; enhancement.

o Precipitation and temperature change is still the main driver to affect streamflow at all

probability of exceedance.

o The impacts of CO. enhancement on streamflow is only visible for very high flow

conditions.

Key findings for this accomplishment have been summarized in Wang et al., 20XX (in review).

e Hydrology and water quality sustainability indices for baseline scenario with future climate data
(90 year) and calibrated SWAT model were quantified for the Wildcat Creek watershed and St.
Joseph River watershed to establish baseline. The GCM projected data from 9 model simulations;
three models (GFDL CM2.0.1, UKMO HadCM3 3.1 and NCAR PCM 1.3) for each of three
future emission scenarios (A1B, A2, and B1), for three thirty year period 1960-1989 (Past),
1990-2019 (Present), and 2020-2049 (Future) were evaluated. Table 8 shows the baseline

sustainability metrics for Wildcat Creek watershed.

Table 8. Sustainability indicators of the baseline scenario for Wildcat Creek Watershed with GCM data for

three 30-year simulations; average values from 9 GCM model simulations are provided.

Unit 1960-1989  1990-2019 2020-2049

Erosion Mag/ha 191 2.13 2.23
Final Org N (Init=13140) kg/ha 12052 11345 10684
Final Nitrate (Init=64) kg/ha 80 100 116
Final Org P (Init=1610) kg/ha 1458 1363 1275
Final Min P (Init=287) kg/ha 643 912 1187
Avg of Annual Peak flow mé/sec 185 201 198
Days over threshold Days >300 m3/sec 3.9 6.6 8.3
Runoff Index - 0.537 0.519 0.516
R-B Index - 0.215 0.208 0.208
7day Avg low flow - 0.039 0.095 0.11
Water Stress index - 0.594 0.573 0.585
Sediment load (outlet) Mg/ha 0.83 0.94 0.98
Nitrate load (outlet) kg/ha 12.5 14.6 14.9
TN load (outlet) kag/ha 18.9 21.0 20.9
Org P load (outlet) kag/ha 11 14 1.5
TP load (outlet) kg/ha 14 1.7 1.9
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e Scenario analysis principles were used to determine key variables, which were (1) the extent to
which corn and soybean continue to be maximized vs. a focus on protecting water quality and the
environment, and (2) whether bioenergy refineries continue to be large and centralized,
necessitating a high percentage of land conversion vs a shift to smaller refineries that could
accommodate low percentage of crops (Figure 19). Single crop scenarios that consider planting
the entire watershed (all agricultural area) in each candidate feedstock were also included because
these will serve as inputs to watershed optimization, and to consider uniform adoption of low
rates of stover removal from continuous corn, consistent with contracts that are emerging between
farmers and cellulosic biorefineries coming online in the near future. Based on these concepts the
project evaluated the following scenarios:

O
O
O

Perennial energy crops on marginal lands

Corn stover removal- 20%, 30% and 50%, with and without nutrient replacement
Perennial bioenergy crops in buffers around corn/soybean areas with different
buffer to source area ratios

Bioenergy crops in all agricultural areas (100% bioenergy crops in existing
agricultural fields)

Bioenergy crops in 50% of agricultural area. One scenario with random 50% of
agricultural area (will run multiple sampling and report mean of simulations) and
one scenario with 50% of agricultural area selected with plausibility criteria of
marginal land, high slope area, pasture area, crop productivity, etc.

Prioritize Food and Feed (Corn & Soybeans)

Decentralized

fuel

production

(Small
refineries)

2
Bioenergy crops 1 _
only on marginal|  Corn Stover Cen;l:aeIIMEd

2ne production
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3
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4

Bioenergy crops || Bioenergy crops
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rime farmland

refineries)

Prioritize Water Quality and Environment

Figure 19 Bioenergy scenario development principle.
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e Environmental impacts of 21 bioenergy crop production scenarios were evaluated with measured
and projected climate data for both Wildcat Creek and St Joseph River watersheds. The results
(Figure 20-Figure 22) showed that

o Average stream flow, annual peak flow and number of days over threshold
reduced with all bioenergy scenarios

o Energy crop scenarios in general improved water quality with the exceptions of
stover removal that increased sediment load at watershed outlet

o Average annual impacts on hydrology, water quality and sustainability indices
with climate change data would be similar to current NCDC weather data

o Water quality benefits due to land use change are generally greater than the
effects of climate change and variability

o Comparison of scenarios with randomly selected and strategically selected

planting area emphasize the opportunity of maximizing bioenergy crop benefits
by optimum landscape planning.
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Figure 20. Average annual impact of growing Miscanthus in marginal lands at St Joseph (Top) and Wildcat
Creek (Bottom) watersheds. Three Marginal land scenarios were analyzed: environmental (slope>2%),
agricultural (corn grain yield <90%ile), and land quality (SSURGO LCC>2).
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Figure 21. Impact of biofuel scenario (Miscanthus in high slope marginal lands at St. Joseph River
watershed) with GCM climate data for three periods: 1960-1989 (Past), 1990-2019 (Present), 2020-2049
(Future). The bars indicate mean percentage change from 9 GCMs and error bars indicates min and max
of 9 GCMs.
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Figure 22. Average annual impacts of growing energy crops in all corn/soybean areas (Blue), randomly
selected 50% corn/soybean areas (red) and strategically selected (50%corn/soybean areas) based on area
slope at St Joseph River watershed outlet. Error bar for random selection scenario indicates the range of
ensemble simulations from100 samples.
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e Potential contribution of the marginal lands to produce bioenergy crops and associated
hydrologic/water quality impacts was completed using APEX model. Marginal lands of the
region (Figure 23) was identified using the land capability classes and land proximity to streams.
A manuscript describing results is published in Environmental modelling and software (Feng et

al., 2015).
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Figure 23 Marginal land map of Indiana. Marginal lands were identified using method discussed in (Feng
et al., 2015)

e Marginal land suitability for growth of perennial biofeedstocks is estimated using fuzzy logic
based framework for Upper Mississippi River Basin (Feng et al., 20XX, in review). Results
indicates not all marginal lands are suitable for growing perennial biofeedstocks, 40% of the
identified marginal lands in the Upper Mississippi River Basin has poor (LSI 0 to 30) to
moderately poor (LSI 30 to 60) suitability for growth of three targeted biofeedstocks (Figure 24).
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Figure 24 Histogram of areas for each range of Land Suitability Index (LSI) for marginal lands in the
Upper Mississippi River Basin (UMRB). The higher the LSI value is, the more marginal land is suitable for

growth of these biofeedstocks.

e The effects of landscape scenarios on sustainability metrics were quantified using climate change
data for both Wildcat Creek and St. Joseph River basins. Sustainability metrics from bioenergy
crop scenarios were compared with a best and worst case scenario (Figure 25). The simulated
native prairie landscape is considered as best case scenario and heavily fertilized and tilled
corn/soybean rotation is considered as worst case scenario. The comparison indicates bioenergy
scenarios sustainability indicators are closer to the native prairie scenario.
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Figure 25. Sustainability indicator comparison of bioenergy scenarios. The indicators are normalized with
simulated indicators from native prairie landscape (Best case) and intensively managed corn/soybean
(worst case). Value near one and above is good case and near zero and below represents worst case. RB
index in figure is not normalized as it is already an index value. Bioenergy scenarios in general is improved

sustainability indicators compared to baseline.
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e Ecosystem services of futuristic bioenergy based land use change were evaluated with measured
weather data (Figure 26) and climate change GCM data (Figure 27). The results indicate the
ecosystem services improved with bioenergy crops growing in the watershed. Similar to
environmental impact analysis the impacts of land use change on ecosystem services was more
dominant than the climate change impacts.

@ ) Baseline Miscanthus in High Slope Areas
FPI FPI
10 Wildcat Creek Watershed 10
0.75 0.75
05 05

1.0 1.0 .
FuPl 4 } FWPI FuPl ) FWPI
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FPI FPI
1.0 1.0
St Joseph River Watershed
FuPI 5 FWPI FuPI , FWPI
/ / \
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ERI 1.0 7 FRI ERI 1.0 7 FRI

Figure 26. Ecosystem services for base line and Miscanthus in high slope (>2% slope) areas in Wildcat
Creek watershed (top) and St Joseph River watershed (bottom). Five ecosystem services were evaluated
Fresh water provision (FWPI), food (FPI) and fuel provision (FuPl), erosion regulation (ERI), and flood
regulation (FRI).
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Figure 27 Ecosystem services evaluation with future climate change scenarios. The difference between bars
indicate impact of climate change and difference in index between the two figures indicate the impact of
bioenergy based landuse change

e Values for fish SSR and RWR were predicted for baseline (i.e., predominantly corn/soybean,
C/S) and 25 biofuel cropping scenarios evaluated using the improved SWAT model. Two-way
analysis of variance (ANOVA) was used to determine whether predicted values of fish SSR and
RWR were different among the scenarios, including baseline conditions. The two factors were
biofuel cropping scenario and watershed size as indicated in Figure 28 and Figure 30. Where
appropriate, post-hoc Scheffe tests were used to determine significance among scenarios. Tests
were considered significant at o = 0.05.

As expected, predicted mean RWRs were significantly different among the sub-basin size classes
and increased with increasing size class (F=5219.5, p<0.001, 4 df) (Figure 28). Predicted mean
RWRs were also significantly different among scenarios (F=29.3, p<0.001, 25 df), and there was
no interaction between the two main effects (F=0.30, p>0.99, 100 df). Post hoc Scheffe tests
indicated that RWR means for the 100% C/S Miscanthus (p<0.001), 100% C/S switchgrass
(p<0.001), and randomly selected 50% Miscanthus C/S replacement (p=0.025) scenarios were
significantly higher than baseline (Figure 28). The same post hoc tests indicated that predicted
mean baseline RWR values were statistically similar to all of the remaining 22 scenarios (p>0.95)
and that means for these 22 scenarios were all significantly lower than the 100% C/S Miscanthus
(p<0.001) and 100% C/S switchgrass (p<0.001) scenarios. Finally, mean RWRs for the randomly
selected 50% Miscanthus C/S replacement scenario were statistically similar to the 100% C/S
switchgrass scenario (p=0.112) but significantly lower than the 100% C/S Miscanthus (p<0.001)
scenario. These results suggest that significant increases in RWR mediated by biofuel cropping
of perennial grasses can only be achieved via drastic changes in land use from C/S to Miscanthus
or switchgrass (Figure 28 and Figure 30).

e Similar to mean RWR, predicted mean fish SSR were significantly different among the sub-basin
size classes and increased with increasing size class (F=6350.8, p<0.001, 4 df) (Figure 29).
Predicted mean SSRs were also significantly different among scenarios (F=51.32, p<0.001, 25
df), and there was no interaction between the two main effects (F=0.65, p>0.99, 100 df). Post hoc
Scheffe tests indicated that predicted SSR means for the 100% C/S Miscanthus (p<0.001), 100%
C/S switchgrass (p<0.001), randomly selected 50% Miscanthus C/S replacement (p<0.001),
randomly selected 50% switchgrass C/S replacement (p<0.001), strategically selected 50%
Miscanthus C/S replacement (p=0.001), and strategically selected 50% switchgrass C/S
replacement (p<0.001) scenarios were significantly higher than baseline (Figure 30). The same
post hoc tests indicated that predicted mean baseline SSR values were statistically similar to all of
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the remaining 19 scenarios (p>0.98), means for these 19 scenarios were all significantly lower
than the 100% C/S Miscanthus (p<0.001) and 100% C/S switchgrass (p<0.001) replacement
scenarios, and means for the randomly selected 50% Miscanthus C/S, randomly selected 50%
switchgrass C/S, strategically selected 50% Miscanthus C/S, and strategically selected 50%
switchgrass C/S replacement scenarios were all significantly lower than the 100% C/S
Miscanthus (p<0.001) and 100% C/S switchgrass (p<0.001) replacement scenarios. Finally,
mean SSRs for the randomly and strategically selected 50% Miscanthus C/S and 50% switchgrass
replacement scenarios were significantly higher than the remaining 19 scenarios with the
following exceptions: placing Miscanthus or switchgrass in environmental marginal land and all
marginal land were not significantly different from the randomly and strategically selected 50%
Miscanthus C/S and 50% switchgrass replacement scenarios (p>0.08), and mean SSR values
were statistically similar for the 50% corn stover removal, 50% corn stover removal in <2% slope
C/S areas, 10% Miscanthus and switchgrass buffers, and strategically selected 50% Miscanthus
C/S replacement scenarios (p>0.075). Like the results presented for RWR, it appears that
significant increases in SSR mediated by biofuel cropping of perennial grasses can only be
achieved via drastic changes in land use from C/S to Miscanthus or switchgrass (Figure 30 and
Figure 31).
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Figure 28 Mean (£ 1 standard deviation) fish rarity weighted species richness index (RWR) values for
Wildcat Creek watershed, Indiana, stream segments grouped according to watershed size. Values were
predicted for baseline (i.e., predominantly corn/soybean, C/S) and 25 biofuel cropping scenarios
evaluated using an improved SWAT model. The scenarios are indicated in the figure sublegends
according to the following: percentage of corn stover removal A) with and B) without nutrient
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replacement, and changing corresponding agricultural land use from baseline to Miscanthus x giganteus
(Miscanthus) or upland ecotype Panicum virgatum L. (switchgrass) in C) agricultural marginal land
(AML, >5%ile yield) and environmental marginal land (EML, >2% slope), D) land quality marginal
lands (LQML, LCC>2) and all marginal lands (ML), E) all pasture lands (PL) and in 10% buffers around
CI/S, F) 50% of randomly selected baseline C/S, G) 50% of strategically selected baseline C/S, and H)
100% of baseline C/S. Predicted mean RWRs were significantly different among scenarios (ANOVA
F=29.3, p<0.001, 25 df), and post hoc Scheffe tests indicated that RWR means for the 100% C/S
Miscanthus (p<0.001), 100% C/S switchgrass (p<0.001), and randomly selected 50% Miscanthus C/S
replacement (p=0.025) scenarios were significantly higher than baseline. The same post hoc tests
indicated that predicted mean baseline RWR values were statistically similar to all of the remaining 22
scenarios (p>0.95) and that means for these 22 scenarios were all significantly lower than the 100% C/S
Miscanthus (p<0.001) and 100% C/S switchgrass (p<0.001) scenarios. Finally, mean RWRs for the
randomly selected 50% Miscanthus C/S replacement scenario were statistically similar to the 100% C/S
switchgrass scenario (p=0.112) but significantly lower than the 100% C/S Miscanthus (p<0.001)
scenario.

Rarity weighted richness

. 13-6 WM 10-12 N 16-18 MM 22-24
[07-9 BN13-15MM19-21 MM 25-27

Figure 29 Predicted fish rarity weighted species richness index (RWR) values for Wildcat Creek
watershed, Indiana, subwatersheds for six selected scenarios, including: A) baseline (i.e., predominantly
corn/soybean, C/S), B) 50% corn stover removal with nutrient replacement, C) 10% Miscanthus x
giganteus (Miscanthus) buffers around C/S, D) 50% replacement of randomly selected baseline C/S with
Miscanthus, E) 50% replacement of strategically selected baseline C/S with Miscanthus, and H) 100%
replacement of baseline C/S with Miscanthus. The selected scenarios are representative of subwatershed
conditions for other scenarios according to the statistical results presented in Figure 28.
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Figure 30 Mean (z 1 standard deviation) fish sensitive species richness (SSR, number of sensitive fish
species) values for Wildcat Creek watershed, Indiana, stream segments grouped according to watershed
size. Values were predicted for baseline (i.e., predominantly corn/soybean, C/S) and 25 biofuel cropping
scenarios evaluated using an improved SWAT model. The scenarios are indicated in the figure
sublegends according to the following: percentage of corn stover removal A) with and B) without nutrient
replacement, and changing corresponding agricultural land use from baseline to Miscanthus x giganteus
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(Miscanthus) or upland ecotype Panicum virgatum L. (switchgrass) in C) agricultural marginal land
(AML, >5%ile yield) and environmental marginal land (EML, >2% slope), D) land quality marginal
lands (LQML, LCC>2) and all marginal lands (ML), E) all pasture lands (PL) and in 10% buffers around
CI/S, F) 50% of randomly selected baseline C/S, G) 50% of strategically selected baseline C/S, and H)
100% of baseline C/S. Predicted mean SSRs were significantly different among scenarios (ANOVA
F=51.32, p<0.001, 25 df), and post hoc Scheffe tests indicated that SSR means for the 100% C/S
Miscanthus (p<0.001), 100% C/S switchgrass (p<0.001), randomly selected 50% Miscanthus C/S
replacement (p<0.001), randomly selected 50% switchgrass C/S replacement (p<0.001), strategically
selected 50% Miscanthus C/S replacement (p=0.001), and strategically selected 50% switchgrass C/S
replacement (p<0.001) scenarios were significantly higher than baseline. The same post hoc tests
indicated that predicted mean baseline SSR values were statistically similar to all of the remaining 19
scenarios (p>0.98), means for these 19 scenarios were all significantly lower than the 100% C/S
Miscanthus (p<0.001) and 100% C/S switchgrass (p<0.001) replacement scenarios, and means for the
randomly selected 50% Miscanthus C/S, randomly selected 50% switchgrass C/S, strategically selected
50% Miscanthus C/S, and strategically selected 50% switchgrass C/S replacement scenarios were all
significantly lower than the 100% C/S Miscanthus (p<0.001) and 100% C/S switchgrass (p<0.001)
replacement scenarios. Finally, mean SSRs for the randomly and strategically selected 50% Miscanthus
C/S and 50% switchgrass replacement scenarios were significantly higher than the remaining 19
scenarios with the following exceptions: placing Miscanthus or switchgrass in EML and all ML were not
significantly different from the randomly and strategically selected 50% Miscanthus C/S and 50%
switchgrass replacement scenarios (p>0.08), and mean SSR values were statistically similar for the 50%
corn stover removal, 50% corn stover removal in <2% slope C/S areas, 10% Miscanthus and switchgrass
buffers, and strategically selected 50% Miscanthus C/S replacement scenarios (p>0.075).
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Figure 31 Predicted sensitive species richness (SSR) values for Wildcat Creek watershed, Indiana,
subwatersheds for six selected scenarios, including: A) baseline (i.e., predominantly corn/soybean, C/S),
B) 50% corn stover removal with nutrient replacement, C) 10% Miscanthus x giganteus (Miscanthus)
buffers around C/S, D) 50% replacement of randomly selected baseline C/S with Miscanthus, E) 50%
replacement of strategically selected baseline C/S with Miscanthus, and H) 100% replacement of baseline
C/S with Miscanthus. The selected scenarios are representative of subwatershed conditions for other
scenarios according to the statistical results presented in Figure 30.
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Task C: Identify and communicate the optimal selection and placement of energy crops within a
watershed for sustainable production

1. Tasks performed to complete this objective:

C.1. Optimize selection and placement of various energy crops in a watershed under single and
multi-objective functions, based on economic and ecological criteria.

C.2. Compare the optimization results with targeting strategies that could be implemented in a
watershed (e.g. switchgrass in grassed waterways, vegetated filter strips; hybrid poplar in riparian
forest areas; conversion of existing pasture lands into energy crop production).

C.3. Determine optimal design and implementation strategies for the sustainable production of
selected energy crops and other cellulosic feedstock production systems at the watershed scale,
and communicate the results.

2. Actual Accomplishments:

o We have developed new methods to efficiently optimize land use for bioenergy crop production
called Multi-Level Spatial Optimization framework (MLSOPT: Cibin and Chaubey, 2015)

(Figure 32).
o The new method was robust and computationally efficient in identifying optimum
solutions.

o Users can download new optimization framework with example files from
https://engineering.purdue.edu/ecohydrology/download.html#MLSOPT

o This new method for spatial optimization using SWAT was further tested with multi-
objective optimization case study to identify optimum stover removal rates from Wildcat
Creek watershed with minimum impact of sediment loading (Figure 32, Cibin and
Chaubey, 2015).

o Our results indicate that objective functions in optimization are critical in identifying the
sustainable solutions (Figure 33-Figure 35).

o The optimization results generally had good correlation with the land characteristics
(represented by model parameters), (Table 9) indicating that land characteristics could be
used a good surrogate to make bioenergy land management decisions.
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MLSOPT Approach
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Figure 32. Graphical representation of Multi-Level Spatial Optimization framework (MLSOPT) develop
to optimize selection and placement of bioenergy crops and land use in a watershed.
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Figure 33. Spatial distribution of optimization result for the watershed. (Top) spatial variability of impact
of biomass removal on erosion for sub-basin in watershed. (Bottom) Spatial distribution of stover removal
rates with watershed target of 500,000 Mg biomass for high biomass removal sensitive (Left) and low
sensitive (Right) region in watershed.

Table 9. Correlation of sub-basin model parameters* with biomass harvest sensitivity; erosion (kg) per Mg
of biomass harvested.

Model parameter Correlation coefficient
Curve number 0.40
Hydrological soil group 0.44
USLE K factor 0.71
USLE P factor -0.80
USLE LS factor 0.85
Available water capacity (mm) -0.40
Initial soil moisture(mm) -0.39
Slope of HRU's 0.85
Slope length of HRU's -0.80
Overland Manning’s N 0.03
Time of concentration(hr) -0.74

*Parameters were area weighted at sub-basin level for all corn/soybean HRU’s from which
biomass harvested
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Figure 34. Spatial distribution of corn stover removed at sub-basin level to the maximum possible for
optimization with Scenariol (minimize source level erosion) (Top) and scenario2 (minimize sediment
loading at watershed outlet) (Bottom) with watershed target of 800,000 Mg biomass. The different in stover
removal spatial distribution between the two scenarios indicate the significance of objective function choice
in optimization results. In source level (erosion) based optimization stover removal is distributed across
the watershed while in outlet based optimization more stover removed from upstream areas and less stover
removal from areas near to watershed outlet.
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Figure 35. Relationship between fractions of stover removed in sub-basin with distance to outlet for
optimization Scenariol (minimize source level erosion) (red cross) and scenario2 (minimize sediment
loading at watershed outlet) (blue dots). Sub-basins in the reach of 40-50 km from watershed outlet were
critical areas for scenario 2 and minimum stover removal was estimated from these areas.

e Economic Analysis
o Feedstock cost of production, transportation costs, and optimization

Economic analysis of candidate cellulosic feedstocks in this project began by
constructing a farm-gate partial budget—this reflects the per hectare cost of
growing an individual feedstock, without considering the cost of any other
income generating activities on a farm—for each individual feedstock: corn crop
residue (corn stover), switchgrass, Miscanthus and hybrid poplar. Farm-gate
production costs include site preparation (before planting), establishment
(planting, fertilization, necessary reseeding in the case of switchgrass), harvest,
and on-farm storage of biomass bales. The parameterized and validated SWAT
watershed model is used to simulate growing each individual feedstock on every
individual land unit based on the farm-gate production costs, and the yield on
each unit of land then determines the cost per metric ton of biomass harvested,
which varies across space. Using the farm-gate production cost together with the
simulated biomass yield for each feedstock, we construct a biomass supply curve
for each individual feedstock in the watershed (see Figure 36).
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Figure 36 Updated feedstock supply curves for the Wildcat Creek Watershed, Indiana based on estimated
2015 costs of production. [Caption: CC20, CC30 and CC50=continuous corn with 20%, 30% and 50%
residue removal; CS30 and CS50= corn-soybean rotation with 30% and 50% corn residue removal;
SG=switchgrass; SGNoTill=no-till planted switchgrass; Mxg=miscanthus]

o Transportation costs include loading bales onto trucks at the farm, hauling cost from the farm to
the biorefinery, and unloading at the biorefinery. Hauling costs are calculated based on actual
road miles (using a road data layer in ArcGIS) between a hypothetical biorefinery location at the
center of the watershed and the centroid of each individual land unit (hydrological response unit
in the SWAT model) where a feedstock can be grown (see Figure 37).
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Figure 37 Land units (dots are centroids) and transportation routing from fields (location 1) to a
hypothetical biorefinery (location 2)
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e Two different types of optimizations were performed. The first was based on supplying a
specified amount of total feedstock at the lowest possible cost. This was done based on the total
amount of feedstock required to supply the minimum economically feasible size biorefinery
based on the prior literature. This entered as a quantity constraint on total metric tons of feedstock
required by the hypothetical plant. The economic and environmental metrics used in this study
can then be compared for different biomass production requirements, without optimizing for
environmental outcomes. The second type of optimization included the same biomass production
guantity constraints and environmental constraints of 25% and 50% reductions in the total
amount of Nitrogen, Phosphorus and sediment delivered to waterways when different feedstocks
or mixes of feedstocks are grown in different spatially explicit locations around the watershed.
An example of an optimization to supply a large amount of biomass from the watershed for a
thermochemical biorefinery is visualized in Figure 38. When pollution constraints are added, the
ones that bind vary case by case (Table 10) and the total cost of production implicitly includes
pollution abatement costs.

Table 10 Optimization results with biomass production and pollutant level constraints

25% Reduction Constraint 50% Reduction Constraint
Thermo- Bio- Thermo- Bio-
chemical chemical chemical chemical
Total Cost ($) 141,532,768 94,475,733 161,532,738 145,285,324
Biomass (metric tons) 1,307,074 858,489 1,307,066 1,042,645
TN (% reduction) 25% 25% 50% 50%
TP (% reduction) 25% 25% 63% 80%
Sediment (% reduction) 60% 52% 77% 85%
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Figure 38 Example optimization results: Cost-minimization to supply a thermochemical refinery in the
Wildcat Creek watershed

Land share distributions from different optimization cases are depicted in Figure 38. One
noticeable difference among optimization results with different constraints is that much more
no-tilled switchgrass is planted when pollutant loading constraints are introduced to the
model. With only the production constraint, the cost minimization process selects scenarios
that are cheapest but does not take any pollutants into account. Hence CC50 and Miscanthus
dominate in the first two columns of Figure 39.
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Figure 39 Cost minimizing land shares under different production and pollutant constraints
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¢ One noticeable difference among optimization results with different constraints is that the
simulation results indicate that both perennial grass crops are expected to reduce delivery of all
three pollutants to the Wildcat Creek, relative to the baseline cropping practices in place today.
Stover removal in combination with continuous no-till may be able to improve sediment loss
relative to the baseline corn-soybean rotation under the assumed management. The perennial
grasses have the highest farm-gate production cost per dry metric of biomass. The opportunity
cost of not growing corn and/or soybeans on the high productivity land in the Wildcat Creek
watershed cannot be overstated as a determinant of the crop(s) that farmers will choose to plant.
If markets for cellulosic feedstocks do eventually emerge, this opportunity cost will ultimately
determine if farmers ever choose to grow perennial grasses or woody feedstocks in the eastern
Corn Belt. In 2015 in Indiana, this opportunity cost on average quality agricultural land in a corn-
soybean rotation is expected to be in the neighborhood of $175 per acre. This means that unless
biorefineries are willing to pay prices for switchgrass or Miscanthus high enough to generate net
revenue per acre greater than or equal to this level, then farmers will not be willing to grow either
of these feedstocks and stover is the only realistic feedstock in the watershed.
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Table 11 Feedstock Production and Transportation Cost Summaries

Production cost for different scenarios

$/acre $/ha $/DM ton $/metric ton
scenario 1 Baseline CS $- $- $- $-
scenario 2 CCNOoTill20 with N replacement $51.15 $126.34 $56.74 $62.42
scenario 3 CSNOoTill30 with N replacement $36.56 $90.30 $56.74 $62.42
scenario 4 CSNOoTill50 with N replacement $65.30 $161.30 $59.76 $65.74
scenario 5 CCNoTill30 with N replacement $76.95 $190.08 $56.74 $62.42
scenario 6 CCNoTill50 with N replacement $135.22 $334.00 $59.65 $65.62
scenario 7 switchgrass $507.58 $1,253.73 $114.85 $126.34
scenario 8 switchgrass no till $504.17 $1,245.30 $114.10 $125.51
scenario 9 Miscanthus $853.64 $2,108.50 $99.66 $109.62
Production + loading/unloading cost
$/acre $/ha $/DM ton $/metric ton

scenario 1 Baseline CS $- $- $- $-
scenario 2 CCNoTill20 with N replacement $56.35 $139.19 $62.51 $68.77
scenario 3 CSNoTill30 with N replacement $40.28 $99.48 $62.51 $68.77
scenario 4 CSNoTill50 with N replacement $71.61 $176.87 $65.53 $72.09
scenario 5 CCNoTill30 with N replacement $84.78 $209.41 $62.51 $68.77
scenario 6 CCNOoTill50 with N replacement $148.31 $366.32 $65.43 $71.97
scenario 7 switchgrass $540.32 $1,334.60 $122.26 $134.49
scenario 8 switchgrass no till $536.91 $1,326.16 $121.51 $133.66
scenario 9 Miscanthus $917.11 $2,265.25 $107.06 $117.77
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Entire watershed costs

Collected
Biomass  metric ton loading- Total cost
Weight total Cost production unloading hauling Total per
(kg/ha)  production $/ha cost cost cost cost metric ton
Baseline CS 0 0 $- $- $- $- $- $-
CCNoTill20 with 2115 306475 $126  $18,308,257 $1,830,521 $1,813,618  $21,952,396  $71.63
N replacement
CSNoTHlIS0with N 455 219048 $90 $13,085,532 $1,308,762 $1,296,749 $15,691,043  $71.63
replacement
CSNoTHlISOwith N 556, 371502 $161  $23,374,077 $2,218,639 $2,197.708  $27.790.423  $74.81
replacement
CCNoTill30 with 3182 461092 $190 $27,544,855 $2,753,227 $2,727,357  $33,025,439  $71.62
N replacement
CCNoTillS0 with 5318 770681 $334  $48.401,540 $4,600,804 $4,556,210  $57,558,555  $74.69
N replacement
Switchgrass 10651 1543463  $1,254  $181,681,425 $11,699,516 $11,585,356  $204,966,298  $132.80
ﬁ‘c’)‘”tt“clhgrass 10649 1543226 $1245  $180,460,890  $11,697,704 $11,583,978  $203,742,572  $132.02
Miscanthus 20645 2991663  $2,1000  $305,549,360 $22,675,397 $22,551,770  $350,777,026  $117.25
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e A study of the cost of growing hybrid poplar woody biomass for conversion into biofuels was
also conducted. Per hectare costs of production are detailed in Table 12. These costs are the basis
for calculating the per dry ton biomass price required to break-even (Net Present Value of the
investment = $0) growing this woody biomass feedstock. The working paper by McCarty,
Sesmero and Gramig, we identified a set of contractual arrangements between biomass growers
and a cellulosic biorefinery capable of inducing farmers to grow these crops. This analysis
considers a fundamental feature of growing perennial energy crops (switchgrass, Miscanthus and
woody crops), namely the presence of uncertainty and irreversibility that discourages this type of
enterprise. Three specific arrangements are identified from among the set that induces planting.
First, we identify the arrangement that maximizes total (farmer plus biorefinery) surplus. Second,
we identify the structure that maximizes a farmer’s surplus. Finally, we identify the arrangement
that maximizes biofuel firm’s surplus. Our analysis reveals that incentive systems embedded in
contractual arrangements matter, even in the absence of asymmetric information. Our analysis
demonstrates that different contractual arrangements result in different welfare outcomes because
they have a nonlinear effect on the expectation and volatility of returns from energy crops. In
particular, we find that the most efficient policy for inducing growers to enter the market is a
fixed payment policy.

For the case of hybrid poplar tree production, the results suggest that the most efficient contract
type to encourage entry is based on a fixed per acre payment. A payment that guarantees average
cost is covered will completely eliminate the (option) value of waiting to plant hybrid poplars
until a later date. Another interesting result is that a revenue floor (guaranteed base payment)
contract does very little to induce farmer planting of woody crops until it gets to very high levels,
although it does significantly lower the threshold for leaving the contract at relatively low levels.
The asymmetric nature of uncertainty results in conclusions that differ greatly from models
without such asymmetry. More specifically, the premium on entry is significantly lower after
netting out yield uncertainty for an idle cellulosic biofuels plant. Contracts are not only useful for
sharing risk, they also have a very important role to play in perennial crop production.
Contracts—especially per acre payment contracts—reduce uncertainty for a grower and allow
them to enter production at a fraction of the net revenue required under a performance based
contract.

Table 12 White Poplar Cost Sheet

Preparation costs Total Cost Price Units Quantity Source
Herbicide
Total kill (Roundup) $46.21 $4.94 liter 9.4 1
Pre Emergent (Prowl) $21.49 $9.19 liter 2.3 2
Post Emergent (Fusilade Dx) $113.15 $32.26 liter 35 2
Pesticide cost $- $3.04 hectare 0.0 3
Machinery custom hire (herbicide) $17.30 $17.30 hectare 1.0 3
Fertilizer
Nitrogen (raw) $516.50 $2.30 kg 224.2 4
(N from ESN Polomer coated urea) $210.60 $0.83 kg 254.7 5
(N from Ammonium Sulfate (AMS)  $305.91 $0.63 kg 482.3 6
K20 (source of potassium) $- $- kg 0.0 3
Lime (spread on field) $- $0.02 kg 0.0 7
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Machinery custom hire (fertilizer) $24.71 $24.71 hectare 1.0 3
Strip tillage, machinery cost $46.23 $46.23 hectare 1.0 8
Planting costs \
Cost of seedlings $554.65 $0.29 whip 1912.6 9
Cost of planting seedlings $172.13 $0.09 labor cost ~ 1912.6 10
Replant year 1 seedling cost $12.90 $0.29 whip 44.5 11
Cost of replanting seedlings yr 1 $4.00 $0.09 labor cost 44.5 11
Replant year 2 seedling cost $56.61 $0.29 whip 195.2 11
Cost of replanting seedlings yr 1 $17.57 $0.09 labor cost 195.2 11
Yearly management costs
Labor and management $49.00 $49.00 hectare 1 3
Crop insurance $- $22.24 hectare 0 12
Cutback cost $- $49.42 hectare 0 12
Harvesting Costs (w/o labor)
Feller/Buncher $328.35 $328.35 hectare 1 12
Skidder $1,029.34  $1,029.34 hectare 1 12
Total harvesting cost $1,495.11 $22.05 per dt 67.81 10
Transportation Costs
Tree farm to factory cost $387.96 $387.96 hectare 1 13
Opportunity Cost
CS rotation net rev $255.75 $255.75 hectare 1 7
Removal Costs
Stump removal $741.32 $741.32 hectare 1 12

Table 12 White Poplar Cost Sheet, Source/Reference list

1) USDA, National Agricultural Statistics Service, Glyphosate, “Prices Paid.” http://tinyurl.com/zx4cpga, 2014

2) Kentucky Farm Bureau, “Farm Chemical Prices.” http://tinyurl.com/jpb9bll, 2014

3) Lazarus, William, William L. Headlee, and Ronald S. Zalesny. "Impacts of Supplyshed-Level Differences in Productivity and
Land Costs on the Economics of Hybrid Poplar Production in Minnesota, USA." BioEnergy Research 8(1): 231-248, 2015

4) Calculation from USDA data and biological measurements from experimental plots, 2014

5) Johnson, N. “New product provides nitrogen to the crop as needed.” Farm Industry News, http://tinyurl.com/hgvyj6r, 2013

6) USDA, Economic Research Service. “Fertilizer Use and Price.” http://tinyurl.com/h87mm9w, 2013

7) Purdue Crop Cost and Return Guide. http://tinyurl.com/jgxocxe, 2014

8) Michigan State University, Extension Farm Management. “Farm Information resource management.”
http://www.firm.msue.msu.edu, 2014

9) Segal Ranch Hybrid Poplars. www.hybridpoplar.com cited in Lazarus et al., 2014 (source 3)

10) Perlack, Robert D., Laurence M. Eaton, Anthony F. Turhollow Jr, Matt H. Langholtz, Craig C. Brandt, Mark E. Downing,
Robin L. Graham et al. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry.” (2011).

11) Authors’ calculations

12) Lazarus, William F. Energy crop production costs and breakeven prices under Minnesota conditions. No. 45655. University
of Minnesota, Department of Applied Economics, 2008.

13) State University of New York, College of Environmental Science and Forestry. “EcoWillow2.0 — Economic Analysis of
shrub willow biomass crops.” http://www.esf.edu/willow/download.htm
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Interagency Collaborations Developed

e We developed interagency collaborations with multiple agencies and universities (see below).
These efforts are continuing beyond the life of this project.

o lowa State University:
= We have worked with researchers from the lowa State University to utilize their
datasets for validating improved vegetated filter strip algorithms in the SWAT
model (Task A).
= We have worked with Center for Agriculture and Rural Development (CARD)
team to evaluate the potential impacts of bioenergy production in lowa
watersheds and in regional scale. We are in the process of writing a series of four
publications from this collaborations.
o USDA-ARS:
= We worked with USDA_ARS (National Soil Erosion Research Lab) researchers
to utilize field measured tile drain and soil moisture data to validate tile drain
routines and soil moisture representation in SWAT model.
= We have strong collaborations with USDA-ARS (Grassland Soil and Water
Research Laboratory) researchers Temple, Texas in SWAT model improvements,
testing and validation.

o Texas A&M University(TAMU): We work very closely with SWAT model development
team at TAMU to incorporate model improvements in the release version of the model

o We are working with the CenUSA project team members to utilize their datasets for
model improvements (Award No. 20116800530411, “Sustainable production and
Distribution of Bioenergy for the Central US: An Agro-Ecosystem Approach to
Sustainable Biofuels Production via the Pyrolysis-Biochar Platform).

Students/post-docs trained on the project

Post-Doctoral Research Associates:
1. Cibin Raj, Department of Agricultural & Biological Engineering, Purdue University
2. Ryan Dierking, Department of Agronomy, Purdue University
3. Young Her, Department of Agricultural & Biological Engineering, Purdue University
4. Conor S. Keitzer, Department of Forestry and Natural Resources, Purdue University

Graduate Students:

1. Wang. R. Ph.D. Department of Agricultural and Biological Engineering, Purdue University.

2. Feng Q. Ph.D. Department of Agricultural and Biological Engineering, Purdue University.

3. Montgomery. A. MS. Department of Agricultural and Biological Engineering, Purdue
University.

4. Long. M. Ph.D. Agronomy, Purdue University.

5. Logsdon. R. Ph.D. Department of Agricultural and Biological Engineering, Purdue
University.

6. Burks, J. L Ph.D. Agronomy, Purdue University.

7. Cibin R. Ph.D. Department of Agricultural and Biological Engineering, Purdue University.

8. Boles, C.W. MS. Department of Agricultural and Biological Engineering, Purdue University.

9. Song, J. A. M.S. Department of Agricultural Economics, Purdue University.

10. Feng Q. MS. Department of Agricultural and Biological Engineering, Purdue University.
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11. Trybula, E. MS. Department of Agricultural and Biological Engineering, Purdue University.
12. Beugly J. Ph.D. Department of Forestry and Natural Resources, Purdue University

13. Ji Tianyun (Helen). MS. Agricultural Economics, Purdue University

14. Vester K. MS. Department of Agricultural and Biological Engineering, Purdue University.
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bioenergy crops on marginal land. Ph.D. Dissertation. Department of Agricultural and Biological
Engineering, Purdue University.

3. Montgomery. A. (2015) Water Quality and Production Potential Effects of Cellulosic Biofuel
Crops Grown on Marginal Land. MS Thesis. Department of Agricultural and Biological
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Chaubey, 1. 2015. Agricultural ecohydrology and watershed management. ASABE Natural
Resources and Environmental System Distinguished Scholar Series. New Orleans, LA. July 27.
(invited)
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Cibin R, Chaubey 1., Trybula E., Volenec J., Brouder S., Arnold J. (2015) SWAT model
improvements to simulate bioenergy crops production. International Soil & Water Assessment Tool
Conference — Sardinia, Italy June 24-26, 2015.
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change on crop production in the Midwestern USA — AGU Fall Meeting (Dec 9 - 13), San
Francisco, California, USA.

Chaubey, I. (2013). Ecohydrologic impacts of land use, land management, and climate change in
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Yields in Midwest USA.” ASA, CSSA, and SSSA International Annual Meetings. Oct. 21-24,
2012, Cincinnati, OH.

DE-EE0004396, Chaubey et al., Watershed Scale Optimization to Meet Sustainable Energy Crop Demand pg. 65



48.

49.

50.

51.

52.

53.

54.

95.

56.

o7.

58.

59.

60.
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Chaubey, 1. 2012. Sustainable watershed management under food, feed, and bioenergy production.
Invited talk presented at the Joint China-U.S. Joint Symposium on “Land Use, Ecosystem Services,
and Sustainable Development”. September 17-19. Shenyang, China.

Chaubey, 1., J. Volenec, S. Brouder, E. Trybula, J. Burks, and C. Raj. Parameterization of Soil and
Water Assessment Tool (SWAT) for energy crop production. OBP Monthly Lab Team
Conference. June 4, 2012,

Gramig, B.M. "Farmer decision-making and joint economic-ecological outcomes in agro-
ecosystem management.” Linking Biodiversity and Sustainability Across Natural and Managed
Landscapes: Can agriculture and natural communities be complementary? Symposium, Purdue
University, April 23, 2012.

Chaubey, 1. 2012. Environmental management challenges from bioenergy, landscape changes, and
ecosystem response: perspectives at global scale. Keynote address at the 46th Annual Conference
of the Indian Society of Agricultural Engineers. Pant Nagar, India. February 28, 2012.

Brouder, S.M. and J.J. Volenec. 2012. Impact of Climate Change on Crop Nutrient and Water Use
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Environment Interactions Conf., University of Veterinary Medicine, Vienna, Austria. Feb 18 — 21.

Volenec, J.J. and S.M. Brouder. 2012. Nutrient Use in Bioenergy Cropping Systems. Poster
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Murphy, P. 2012. Production of dedicated bioenergy crops on marginal lands: what makes sense in
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Burks, J.L., J.J. Volenec and S.M. Brouder. 2011. Seasonal cycling and partitioning of C and N in
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