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Abstract

Hiding communication behind useful computation is an important performance
programming technique but remains an inscrutable programming exercise even
for the expert. We present Bamboo, a code transformation framework that can
realize communication overlap in applications written in MPI without the need
to intrusively modify the source code. We reformulate MPI source into a task
dependency graph representation, which partially orders the tasks, enabling the
program to execute in a data-driven fashion under the control of an external
runtime system. Experimental results demonstrate that Bamboo significantly
reduces communication delays while requiring only modest amounts of program-
mer annotation for a variety of applications and platforms, including those em-
ploying co-processors and accelerators. Moreover, Bamboo’s performance meets
or exceeds that of labor-intensive hand coding. The translator is more than a
means of hiding communication costs automatically; it demonstrates the utility
of semantic level optimization against a well-known library.

1. Introduction

At present, distributed-memory systems have evolved to a sophisticated level
that requires applications to be heavily optimized to harness all resources pro-
vided by the hardware. An important consideration is how to minimize com-
munication overheads in tandem with improvements in computational rates.
There are two approaches to reducing communication overheads: tolerate them
[56, 30, 58, 5, 61, 60, 33, 23, 21, 34, 59, 41, 22, 39, 47] or avoid them [57, 6, 43].
It is also possible to use both approaches in the same application. In this pa-
per, we discuss an automated translation strategy that implements the first
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approach. We describe a domain-specific solution that applies to MPI applica-
tions. Since MPI is the de facto standard for distributed-memory programming,
our approach has a broad application space.

Although MPI enables one to write communication tolerant code, it does
not support the activity. For example, MPI provides immediate mode commu-
nication to express split phase algorithms [65, 38, 17], a common technique for
masking communication overheads under computations. However, it doesn’t
assist the programmer in pipelining and scheduling computation and communi-
cation, nor how to manage a sufficiently large pool for work needed to realize
overlap (e.g. processor virtualization or overdecomposition in Charm++ [35]).
As a result, policy decisions affecting performance become entangled with the
application, greatly affecting code development time and performance robust-
ness. Such requirements impose a significant burden on the domain-science
focused programmer who will usually defer to the expert.

To address obstacles to realizing communication overlap on high-end sys-
tems, we have developed a source-to-source translation framework, called Bam-
boo [47, 45, 46]. Bamboo transforms applications written in subset of MPI into a
data-driven form that overlaps communication with computation automatically.
Unlike other approaches [41, 16] that offer an explicit data-driven model, we use
information about communication operations embedded in an MPI program to
reason about the data dependencies among processes in order to improve per-
formance. Armed with such knowledge, Bamboo can reformulate MPI source
that doesn’t overlap communication with computation into a task dependency
graph representation that realizes overlap. The graph maintains a partial or-
dering over the execution of tasks of the graph, and the program executes in
a dataflow-like fashion under the control of an external scheduler, which can
overlap communication with computation automatically.

The Bamboo translation framework includes a programming model and a
source-to-source translator. The programmer annotates the application with
program directives, which inform Bamboo’s transformations. Compared to the
conventional split phase technique, these transformations not only realize over-
lap but also prevent policy decisions from becoming intertwined with the ap-
plication. The effect is to insulate application logic from technological change,
allowing the original code to continue to run correctly and to retain its familiar
code structure.

The Bamboo software stack comprises 2 layers: core message passing and
utility layers. The core layer transforms a minimal subset of MPI point-to-point
routines (Bamboo does not support MPI’s one sided communication), whereas
the second translates a subset of higher level MPI functionality into equivalent
point-to-point encodings, which will be then translated by the core layer. This
multi-layer design allows one to customize MPI collectives, which may benefit
from a specialized interconnect topology or be tailored to the application [14].

Though Bamboo supports only a subset of MPI, we have found that it
can improve the performance of a wide range of applications taken from well-
known application motifs on diverse platforms. We ran at scale on Edison (Cray
XC30) and Hopper (Cray XE6) systems at the National Energy Research Sci-
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entific Computing Center (NERSC) and on the Stampede system at the Texas
Advanced Computing Center (TACC), which has advanced node architectures
based on NVIDIA’s Kepler and the Intel’s Phi. We evaluated Bamboo against
basic MPI and hand optimized code variants written by an expert to overlap
communication with computation. Bamboo consistently realized a significant
reduction in communication delays of the basic MPI variant. We observed that
performance of applications translated with Bamboo met or exceeded that of
the hand optimized code variants requiring only modest amounts of user anno-
tation.

The remainder of the paper is organized as follows. Sec. 2 presents the
Bamboo source-to-source translation framework. Sec. 3 discusses the design
and implementation of the Bamboo source-to-source translator. Next, Sec. 4
presents experimental validation for various applications. Sec. 5 presents Bam-
boo support on advanced node technologies. Sec. 6 reviews related work. Sec.
7 concludes the paper and presents future work.

2. Bamboo

2.1. Motivation
Scalable applications are generally written under the SPMD (Same Pro-

gram Multiple Data) model, and message passing has been the preferred vehicle
for over two decades. The Message Passing Interface (MPI) [44] accounts for
the lion’s share of scalable application software, which may employ the two
tier MPI+X programming model to unfold node level parallelism via OpenMP,
CUDA or OpenCL.

MPI enables the application programmer to cater optimizations that benefit
performance using heuristics, in particular, involving data motion and local-
ity. Such domain specific knowledge is difficult to capture via general-purpose
language constructs and associated compilation strategies that are unaware of
application and library semantics and this helps explain the persistence of MPI.
The MPI software community has been prolific, building a large body of knowl-
edge and experience for writing high quality application software and tools.
This knowledge and experience holds important clues for optimizing high per-
formance applications. This observation motivates the design of Bamboo: a
custom translator tailored to the MPI interface that effectively treats the API’s
members as primitives in an embedded domain specific language.

Bamboo extracts data and control dependencies from the pattern of MPI
call sites and constructs a task precedence graph corresponding to the partial
ordering of tasks. These tasks execute according to dataflow semantics [4, 24].
A dataflow model has two appealing attributes. First, it can automatically
mask data motion costs and hence improve performance without programmer
intervention [7, 21, 34, 59, 20, 22]. Second, it simplifies code development and
maintenance by separating concerns surrounding policy decisions (e.g., schedul-
ing) from program correctness. Since static analysis is not sufficient to infer
matching sends and receives in a running program [48], Bamboo requires some
modest amounts of programmer annotation of the original MPI program.
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2.2. The Bamboo Programming Model
To illuminate our discussions about translation under Bamboo, we will use

a simple example: an iterative finite difference solver for Laplace’s equation
in two dimensions (Fig. 1). The MPI implementation partitions the solution
meshes across processors, introducing data dependencies among adjacent mesh
elements that straddle the boundaries between subproblems assigned to different
processors. To treat these data dependencies, the solver stores copies of off-
processor boundary values in ghost cells. Since a conventional compiler will
ignore the annotations, the code in Fig. 1 is also a legal MPI program. We next
describe Bamboo’s underlying programming model and its annotations.

1 Compute processID o f l e f t / r i g h t /up/down p r o c e s s o r s
2 for i t = 1 to num ite ra t i ons {
3 #pragma bamboo olap
4 {
5 #pragma bamboo r e c e i v e
6 { MPI Irecv ( RecvGhostce l l s ) from l e f t / r i g h t /up/down
7 }
8 #pragma bamboo send
9 { Pack boundary va lues to SendGhostce l l s

10 MPI Isend ( SendGhostce l l s ) to l e f t / r i g h t /up/down
11 }
12 MPI Waitall ( ) ;
13 Unpack RecvGhostce l l s
14 for j = 1 to N/Nprocs Y − 2
15 for i = 1 to N/Nprocs X − 2
16 V[ j , i ]=(U[ j −1, i ]+U[ j +1, i ]+U[ j , i−1]+U[ j , i +1]) /4
17 swap (U,V)
18 }
19 }
20 f r e e U, V, SendGhostce l l s , RecvGhostce l l s
21 MPI Final ize ( ) ;

Figure 1: Annotated MPI program for 2DJacobi. For purposes of clarify, some code has been
omitted.

A Bamboo program is a legal MPI program, augmented with one or more
code regions called olap-regions as shown in Fig. 1. An olap-region is a section of
code containing communication to be overlapped with computation. The entry
into an olap-region is called an evaluation point, where a task either continues
or it yields control to another task because the required input data is not yet
available. Receive operations residing within an olap-region will be included
in the input window corresponding to the evaluation point of the olap-region.
Bamboo preserves the execution order of olap-regions, which a task runs sequen-
tially, one after the other. However, there is no implicit barrier at the exit of
an olap-region. This allows a task to exit an olap-region and continue executing
until it reaches the next olap-region, which it can enter if all the inputs defined
by the corresponding evaluation point and input window are ready.

Within an olap-region, send and receive calls are grouped within enclosing
communication blocks. All code appearing within an overlap region must be
properly enclosed in a communication block, of which there are two kinds: send
and receive. A send block contains Sends (MPI Send and MPI Isend) only.
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In most cases, a receive block contains Recvs (MPI Recv and MPI Irecv) only,
except for the following situation. If a Send consumes data obtained from a prior
Recv (read after write dependence), then it has to reside within an appropriate
receive block, either the same block as the Recv, or a later one.

Communication blocks specify a partial ordering of communication opera-
tions at the granularity of a block, including associated statements that set up
arguments for the communication routines, e.g. establish a destination process.
While the statements within each block are executed in order, the totality of the
statements contained within all the send blocks are independent of the total-
ity of statements contained within all the receive blocks. This partial ordering
enables Bamboo to reorder send and receive blocks. For example, Bamboo can
move all send blocks up front and outside of the olap-region, enabling all outputs
to be sent out to fulfill inputs from the current olap-region onwards. Bamboo
does not reorder blocks of the same type. However, because a Bamboo pro-
gram executes asynchronously, inputs can arrive in any order, as they can be
buffered upon arrival and then injected into tasks in the order specified by the
programmer.

3. Implementation

For the sake of portability, we split the Bamboo translator into 2 software
layers as shown in Fig. 2(a). The lower level layer consists of a minimal set
of MPI point-to-point primitives, hence the name core message passing. An
implementation of this layer highly depends on a runtime system that executes
the generated task graph program. We will present the execution model and the
implementation of the runtime system in Sec. 3.2. On top of the core message
passing layer, we implement a utility layer, which supports a substantially richer
set of MPI routines, including communicator splitting and collective operations.

(a) The Bamboo software stack
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(b) Bamboo uses the ROSE compiler framework

Figure 2: The Bamboo design and implementation

3.1. MPI Subset
Bamboo supports an important subset of MPI used in a wide range of ap-

plications: point-to-point operations (Send/Isend/Recv/Irecv/Wait/WaitAll);
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a variety of collectives (see Table. 2); communicator splitting, MPI status,
derived datatypes (struct, contiguous and vector). Bamboo does not support
one-sided communication currently. Since Bamboo’s runtime requires that task
graphs be run time static structures (Sec.3.2). Bamboo does not support MPI
dynamic process creation. It can, however, support dynamic adaptive meshes,
which are treated successfully with dynamic process creation. However, Bam-
boo would not be applicable to graph algorithms, for example, that employed
find grained communication, dynamic process creation, or both.

3.2. Runtime System
A Bamboo program runs as a set of tasks coupled by data dependencies.

The program can over-decompose the problem, creating more tasks than the
number of processing cores. The task scheduling and communication handling
jobs are handled by Bamboo’s runtime system called Tarragon [21, 20].

3.2.1. Task scheduling
Tasks have state, and this state is used to manage task execution. A typical

Bamboo task spends most of its time circulating among the following 3 states:
eXecuting (X), Waiting (W) or Runnable (R) as shown in Fig. 3. A waiting
task will become runnable when all inputs are ready. The collection of all inputs
of a task is represented by task’s firing rule, which is visible to the runtime.
Tasks are executed by workers. A runnable task will start executing when the
runtime identifies an available worker. Since a task cannot execute unless it has
first become runnable, there is no explicit message waiting within a task; this
activity is factored out of task execution and handled via a callback made by
the runtime. Additional task state variables can be defined by Bamboo. For
example, we use task state to control iterative methods, folding the iteration
inside the tasks. Tasks and Task Graphs are run time static entities. Thus, once
instantiated, their structure, including tasks dependencies, can’t change at run
time.

Currently Tarragon uses Pthreads to implement workers. The runtime can
be configured to have either a shared task queue among all workers or multi-
ple private queues. The former configuration allows the workload to be easily
balanced but also incur some overhead for memory protection.

3.2.2. Communication handler
As a task is running, it produces data. Tasks can register certain data with

the runtime as outputs, which enable other tasks to become runnable (R) and
ultimately execute (X). Tasks will not block when producing outputs. Instead,
outputs will be buffered and processed by the communication handler. Data sent
out from a task will not become visible at the destination until the recipient has
entered the W state. When a task is in the R or X state, incoming messages
are hidden by the runtime system, in the order they were received, and only be
made visible when the task enters the W state again.
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Figure 3: Except for the initial state (I) and the final state (D), a task circulates among 3
states W, R, and X. Tasks never wait for inputs and hold computing resource at the same
time. In addition, tasks only receive new inputs at the W state.

Currently, Tarragon uses MPI to implement the communication handler.
It uses non-blocking routines (MPI Isend, MPI Irecv, and MPI Test) to han-
dle inter-process communication requests. For intra-process communication re-
quests, outputs of a task are injected directly to the recipient. To keep the
communication handler responsive to requests, the runtime can dedicate a pro-
cessor core to run the handler.

3.3. Translation: core message passing layer
3.3.1. Block reordering

To use Bamboo, the MPI source is annotated with olap-regions, each con-
sisting of communication blocks, send and receive blocks, which further contain
MPI function calls. Due to the way in which the generated code executes,
Bamboo performs an intermediate code transformation called block reordering.
Bamboo will reorder certain communication blocks in certain situations. For
example, the left side of Tab. 1 shows a common communication pattern used
in MPI applications that will be restructured by Bamboo. Specifically, Sends
(in the send block) issued by a process match up with Recvs (in the receive
block) of the other process encoded in the same iteration. Bamboo has to re-
order the send block due to the following reason. A task is runnable only when
all necessary data is available. If we place the corresponding send within the
same iteration as the corresponding receive, data sent in one iteration will not
be received until the next. But, the algorithm needs to receive data within the
same iteration. To cope with this timing problem, Bamboo reorders the send
block, advancing it in time so that the sending and receiving activities reside in
different iterations. Bamboo will set up a pipeline, replicating the send block
to the front of, and outside, the iteration loop. It also migrates the existing call
to the end of the loop body, adding an appropriate guard derived from the loop
iteration control logic. After reordering, the transformed code appears as shown
in the right side of Tab. 1. The matching send and receive blocks now reside
in different iterations. We next present how Bamboo reinterprets all MPI calls
produced in this phase as task’s inputs and outputs.
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Before reordering After reordering

1 #pragma bamboo olap
2 for ( i =1; i<=n I t e r s ; i++){
3 #pragma bamboo r e c e i v e
4 {MPI Irecv ( rbuf0 , . . . ) ;
5 MPI Irecv ( rbuf1 , . . . ) ; }
6 #pragma bamboo send
7 {MPI Send ( sbuf0 , . . . ) ;
8 MPI Send ( sbuf1 , . . . ) ; }
9 MPI Waitall ( . . . ) ;

10 Compute block
11 }

1 i=1
2 i f ( i<=n i t e r s ){
3 MPI Send ( sbuf0 , . . . ) ;
4 MPI Send ( sbuf1 , . . . ) ;
5 }
6 #pragma bamboo olap
7 for ( ; i<=n I t e r s ; ) {
8 #pragma bamboo r e c e i v e
9 {MPI Irecv ( rbuf0 , . . . ) ;

10 MPI Irecv ( rbuf1 , . . . ) ; }
11 MPI Waitall ( . . . ) ;
12 Compute block
13 i++
14 i f ( i<=n i t e r s ){
15 MPI Send ( sbuf0 , . . . ) ;
16 MPI Send ( sbuf1 , . . . ) ;
17 }
18 }

Table 1: An intermediate code transformation that reorders blocks of code. Left: a typical
MPI input program that requires code reordering. Sends within the send block of a process
match with receives within the receive block of another process in the same iteration. Right:
The same code with send reordered. Note that the replicated MPI Send calls will not pose a
deadlock issue. Bamboo will reinterpret MPI calls later, allowing the generated code to work
correctly.

3.3.2. MPI reinterpretation
Bamboo translates MPI calls into task methods. For MPI Comm rank

and MPI Comm size, Bamboo simply rewrites these routines to correspond-
ing method invocations that return the task ID and number of tasks in the
graph, since over-decomposition does not change the communication pattern.
For MPI Send and MPI Isend, Bamboo creates a message and copies communi-
cated data from the outgoing buffer into the data buffer of the message. Bam-
boo then generates a signal code notifying the communication handler of the
runtime system that the output data is ready to be sent out. MPI Recv and
MPI Irecv, however, are handled in a different way since tasks do not explicitly
invoke any method to receive data from other tasks. Instead, the runtime re-
ceives and buffers incoming messages. When a task is scheduled to execute, it
can pull these messages from the runtime. Bamboo uses all Recv calls within
an olap-region, together with any conditional statements connected with them,
to generate firing rule which decides when a task becomes executable. Details
of this implementation will be discussed in Sec. 3.3.3. Beside using MPI Recv
and MPI Irecv to generate firing rules, Bamboo also uses the information en-
coded in these routines to generate code that pulls messages from the runtime
system. Specifically, messages are sorted by source, destination, and tag. Bam-
boo transforms this information into queries to the runtime system. Finally,
for MPI Wait and MPI Waitall Bamboo simply removes these calls since each
olap-region requires all inputs to be available before it can execute.
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3.3.3. Firing rule and yielding rule
As previously mentioned, the task state often changes from X into W and

from W to R. The condition that determines when the runtime can enable a
transition from W to R is called the firing rule. Upon scheduled to execute, the
task state changes from R to X. The formula that the runtime uses to reverse
the state transition from X into W is called the yielding rule. Bamboo extracts
information from MPI receive calls and associated conditional statements to
generate firing and yielding rules.

Let m and C be, respectively, a message possibly received by an MPI pro-
cess in an olap-region and the associated conditional statements. Whether a
particular process should wait for message m or not is subject to the evaluation
of the condition C. Thus, the firing rule for an olap-region can be written in the
conjunctive normal form.

∧
(¬Ci

∨
mi) (1)

On the contrary, we express the yielding rule in disjunctive normal form,
where i ranges from 1 to the number of messages possibly received by a process
in an olap-region and mi is true means that message i has arrived.

∨
(Ci

∧
¬mi) (2)

3.3.4. Inter-procedural translation
The code transformation and analysis modules of Bamboo may need to span

procedure boundaries. For instance, Fig. 4 gives an example where the source
codes of an olap-region and its communication blocks (i.e. send block and receive
block) reside in different procedures. To generate firing and yielding rules for
the olap-region, the translator needs information in the receive block. Inlining
is a technique that exposes the calling context to the procedure’s body and
the procedure’s side effect on the caller. Bamboo performs inlining, and the
process is as follows. If a procedure directly or indirectly invokes MPI calls,
Bamboo registers it as an MPI-invoking procedure. Bamboo will subsequently
inline all MPI-invoking procedures from the lowest to the highest calling levels.
The inlining process is transparent to the programmer and does not require
any annotation. However, due to the static nature of the strategy Bamboo
currently does not support recursive procedures. This requires a redesign of the
graph library and run time system.

3.4. Translation: utility layer
To handle MPI functionality outside the core message passing substrate,

we take a library-based approach that allows system providers and MPI pro-
grammers to easily translate a custom implementation of these routines into a
task graph form. Bamboo includes default implementations of commonly used
primitives.
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Figure 4: A multigrid solver with call chains containing MPI invocations. Bamboo registers
procedures that directly or indirectly invoke MPI calls as an MPI-invoking procedure. It then
inlines all MPI-invoking procedures from the lowest to the highest calling levels.

3.4.1. Collectives
Bamboo maintains a library implementing widely used collectives, by break-

ing them down into their point-to-point components. The source-to-source
translator will automatically detect non-point-to-point MPI calls in the MPI in-
put source and inline corresponding implementations into the program’s source
code before translating these codes together into a task graph form. Bamboo
employs the AST merge mechanism provided by the ROSE compiler framework.
This mechanism allows the ASTs generated from source codes in different files
to be merged into a single AST. Tab. 2 shows algorithms that Bamboo uses to
implement common collectives and the corresponding latency and bandwidth
costs.

Collective API Algorithm Complexity
MPI Barrier Bruck’s algorithm dlgPeα
MPI Bcast Binomial Tree dlgPe(α + sβ)
MPI Reduce Binomial Tree dlgPe(α + sβ + size*opCost)
MPI Allreduce Recursive doubling dlgPe(α + sβ + size*opCost)
MPI Scatter Binomial Tree dlgPeα + totalSize*β
MPI Gather Binomial Tree dlgPeα + totalSize*β
MPI Allgather Bruck’s algorithm dlgPeα + totalSize*β
MPI Alltoall Bruck’s algorithm dlgPe(α + s

2β)

Table 2: Default Bamboo implementation of collective operations. We use the αβ model to
estimate the cost of collective operations, where α is latency and β is inverse bandwidth [62].

3.4.2. Communicators
An MPI Communicator is a namespace describing the set of MPI pro-

cesses that each process can communicate with for a particular MPI routine.
MPI COMM WORLD is the only predefined communicator in the MPI environ-
ment, defining the order of all processes of an MPI program. Bamboo currently
supports MPI Comm split, which partitions an existing communicator into mul-
tiple disjoint groups, reorders MPI ranks, or both. New communicators can be
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further split in the same way. We support MPI Comm split’s color-key filter-
ing mechanism which relies on a many-to-many mapping from the task ID set
into the color set, where the color set is normally smaller than the task ID
set. We also use key, a one-to-one mapping to sort tasks within a common color
set. Bamboo implements the MPI Comm split routine using MPI point-to-point
primitives as follows. All MPI processes in the existing communicator exchange
information of color, key, and the corresponding rank in MPI COMM WORLD.
Eventually each process holds information of the other processes. Based on the
information retrieved from others, each process filters out processes with the
same color. Such processes will be sorted on key before being assigned a new
rank in the new communicator. Once the new communicator has been cre-
ated, a communicator name and a process rank within the communicator will
be sufficient to locate the corresponding rank in MPI COMM WORLD.

4. Results

In this section, we describe computational results with 4 applications on
various platforms: NERSC’s Hopper and Edison platforms, and TACC’s Stam-
pede platform, using nodes that include NVIDIA Kepler K20 GPUs. In order
to assess the performance benefits of Bamboo, we built a set of variants for
each application. The first variant, MPI-basic, is the simplest implementation
that does not overlap communication with computation. All remaining variants
are obtained from MPI-basic. The Bamboo variant was obtained by translating
MPI-Basic with Bamboo. MPI-Olap was obtained by restructuring the appli-
cation to overlap communication with computation via split phase coding. The
third variant, MPI-Olap, has been manually restructured to employ split phase
coding to overlap communication with computation. The fourth variant, MPI-
nocomm was obtained by suppressing communication in the code, and is a loose
upper bound on the potential performance benefit of overlapping communica-
tion with computation.

In some applications running on CPUs, we found it advantageous to use a
mixed mode model MPI+OpenMP rather than “flat” MPI. To express variants
based on this approach, we use an intuitive notation e.g. MPI+OMP-ncomm is
an MPI+OMP code variant in which communication has been suppressed.

4.1. Dense linear algebra
Dense linear algebra is a class of computations on matrices where all elements

are stored explicitly. Typically, this class of applications delivers a high fraction
of peak processor performance. Thus, the overall performance will become much
more sensitive to communication overheads as computing capability is expected
to be substantially increasing in years to come. In this section, we evaluate
Bamboo using matrix multiplication and matrix factorization, two operations
commonly used as building blocks in dense linear algebra problems.
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4.1.1. 2.5D Cannon’s algorithm
2.5D Cannon (AKA communication avoiding, or CA) matrix multiplication

algorithm [57] targets small matrices. Small matrix products arise, for exam-
ple, in electronic structure calculations (e.g. ab-initio molecular dynamics using
planewave bases [42, 14]). At a high level, the 2.5D algorithm generalizes the
traditional 2D Cannon algorithm [50] by employing an additional process di-
mension to replicate the 2D process grid. The degree of replication is controlled
by a replication factor called c. When c=1, we regress to 2D Cannon. When
c = cmax = nprocs1/3, we elide the shifting communication pattern and employ
only broadcast and reduction. This algorithm is referred to as the 3D algorithm.
The sweet spot for c falls somewhere between 1 and cmax, hence the name 2.5D
algorithm. As in the 2D algorithm, the 2.5D algorithm shifts data in the X
and Y directions. In addition, the 2.5D algorithm performs a broadcast and a
reduction along the Z dimension.

Through experimentation, we observed that, for the small matrices targeted
by the 2.5D algorithm, the hybrid execution model MPI+OMP yields higher
performance than a pure MPI implementation, which spawns only one MPI
process per core. Therefore, we used the following 3 variants: MPI+OMP,
MPI+OMP-olap, and Bamboo+OMP. All variants perform communication at
the node level, using the OpenMP interface of the ACML math library to mul-
tiply the submatrices (dgemm). MPI+OMP is the basic MPI implementation
without any overlap. MPI+OMP-olap is the optimized variant of MPI+OMP
that pipelines computations of a step of the algorithm with communication for
the next step. Bamboo+OMP is the result of passing the annotated MPI+OMP
variant through Bamboo. As with the previous two applications, we also present
results with communication shut off in the basic variant, i.e. MPI+OMP-
nocomm, which uses the same code as MPI+OMP. We conducted a weak scaling
study on 4K, 8K, 16K and 32K cores on Hopper. We chose problem sizes that
enabled us to demonstrate the algorithmic benefit of data replication.

Figure 5: A weak scaling study on the 2.5D Cannon algorithm. We ran codes on up to 32K
cores on Hopper. We used small matrices (N=20668 on 4K cores).

Fig. 5 shows the results with the different variants. Both Bamboo+OMP and
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#Cores 4K 8K 16K 32K
MPI+OMP c= {1, 4} c= {2, 8} c= {1, 4, 16} c={2, 8}
MPI+OMP-olap c= {1, 4} c= {2, 8} c= {1, 4, 16} c={2, 8}
Bamboo+OMP c=2, VF =8 c=2, VF=4 c=2, VF=2 c=4, VF=2

Table 3: The effects of replication and virtualization. The MPI+OMP and MPI+OMP-olap
code variants have limited options for c. The boldface values within the curly braces yield the
highest performance.

MPI+OMP-olap deliver the same speedup over the MPI+OMP variant on up to
8K cores. With 16K cores or more, Bamboo+OMP overtakes MPI+OMP-olap.
Although Bamboo+OMP is still faster than the other variants on 32K cores, the
speedup provided by Bamboo+OMP has dropped. We believe this behavior is
the result of an interaction between the allowable replication factor c, and the
degree of virtualization v.

To understand the interaction, we first look at Tab. 3, which shows the values
of c that maximize performance for the different variants. Note that the 2.5D
algorithm requires that the first two dimensions of the processor core geometry
must be equal. For the two MPI variants, the available values for the replication
factor c are limited while Bamboo+OMP has more options due to the flexibility
offered by virtualization. For example, on 8K cores MPI+OMP and MPI+OMP-
olap can set c = 2 or c = 8, i.e. other values are illegal. On 16K cores, c can be
1, 4 or 16 while on 32K cores c can take on values of 2 or 8. For Bamboo+OMP,
performance depends not only on our choice of c but also on the degree of
virtualization v. Thus, we choose a combination of replication and virtualization
that is optimal and cannot choose these parameters independently. As a result,
performance is not stable as we grow the number of cores. The benefit of
the 2.5D algorithm is that the communication volume shrinks with c and p.
The cost is O(n2/

√
cp), where p is the number of cores. However, the effect

of increasing v doesn’t benefit from this cost function, since communication
among virtualized tasks must be performed serially (hence p doesn’t effectively
change in that formula.) The effect is to improve pipelining as in the other
applications. However, the number of messages is O(

√
p/c2/3 + log(c)). It will

grow as we increase v, because the message starts are serialized. The effect is
to damp c as v increases, and this is evident from the data in Tab. 3.

4.1.2. High Performance Linpack
The High Performance Linpack benchmark (HPL or Linpack for short)

[27, 26, 25] is a well-known benchmark that solves a dense system of linear
equations using LU factorization, and is often used to measure the performance
of supercomputers. HPL uses a blocked cyclic data decomposition scheme. The
HPL benchmark comprises 2 code variants. Pdgesv0 does not make any at-
tempt to overlap communication with computation, whereas pdgesvK2 applies
an overlapping technique called lookahead. We applied Bamboo annotations to
pdgesv0. Details of the 3 code variants are as follows.

The pdgesv0 code consists of 3 key operations: panel factorization pFact,
panel broadcast pBcast, and the trailing submatrix update pUpdate. pFact
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finds the pivots in column panel c. This step is costly since we have to factorize
a skinny matrix over a subset of the processes that own the panel, including a
sequence of row swap-broadcasts, one for each pivot within a single columns of
the panel. HPL provides various panel factorization implementations, classified
into recursive and non-recursive variants.

We evaluated both variants and observed no difference in performance. Thus,
we used the non-recursive variants. Once the panel has been factorized it must
be broadcast to column processes within the same row (pBcast). This is an
efficient implementation that uses a ring broadcast algorithm, shifting data to
the right along column processes. The pUpdate operation swap-broadcasts U
among row processes and then performs a rank-1 update. It accounts for the
lion’s share of LU’s computational work, performing O(N3) multiply-adds. The
pdgesvK2 variant applies lookahead [27], a technique for overlapping communi-
cation with computation that fills idle gaps in the execution of LU. Lookahead
utilizes the dependence structure of the blocked algorithm to orchestrate com-
putation and data motion. It uses split-phase coding [65], and may compute
multiple iterations in advance. The underlying communication structure for this
synchronization is complicated and difficult to implement and follow because the
application must poll for arriving data in several places in the program. These
complications have prevented lookahead from being used in practice. For exam-
ple, lookahead is not employed in the widely-used ScaLAPACK [8] library. This
predicament has motivated new algorithmic reformulations [15] or data-driven
implementations [34, 9, 15, 40] to realize overlap.

We annotated the pdgesv0 module and translated it with Bamboo. We also
added scheduling policies via task prioritization using a bamboo priority pragma
4 so that communication could be overlapped with communication more effi-
ciently. The common wisdom in scheduling a non-preemptive task graph is that
tasks should hold the core as long as they are still executable and only yield
control when they need input from other tasks. This greedy strategy is intended
to maintain the high hit rates of caches and TLB. However, LU factorization is
an exception. Specifically, many tasks are waiting for data from the root task
so that they can begin executing. Moreover, if for some reason the task that
will become the next root is not scheduled soon, the next panel broadcast will
be delayed. If this happens, performance could be significantly penalized since
no overlap can be realized. Bamboo’s olap-regions generally reside within an
outer iteration, and HPL is no exception. Bamboo handles overlap regions as
follows. When control reaches the end of an overlap region, if the priority is
negative, the task yields processor/core, even if inputs are ready for the next
iteration. To this end, we used 3 different values (0, -1, and 1) to represent for
the priority of scheduling a task to run next. Among runnable tasks, those with
higher priorities will be inserted at the top of the priority scheduling queue.
Tasks with priority of 0 or 1 will execute until they cannot continue, since they

4We didn’t present this pragma earlier since Bamboo simply translates the pragma into a
method that sets task priority
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await data from other tasks that haven’t yet completed. However, tasks with
priority -1, and must yield the core at the end of the olap region, even if they
have the data needed to continue executing. Note that this scheme is not pre-
emptive. Neither the runtime system nor task can force another task to yield
control. Depending on the availability of the input and the current priority, a
task decides whether it should continue or yield processor/core to another task.
For more information about how we prioritize the LU task graph, see [46].

Figure 6: Results comparing our scheduling strategies for the transformed code without looka-
head and with lookahead. Prioritization significantly improves performance, enabling our
transformed code to meet the performance of lookahead for many problem sizes

We performed experiments on Stampede [1], located at the Texas Advanced
Computing Center (TACC), using the Sandy Bridge processors only. We ran
on up to 128 nodes (4096 cores). The results appear in Fig. 6. We chose small
problems sizes to ensure that communication overhead is significant and thus
we can see the benefit of overlapping communication with computation. Fig. 6
shows that Bamboo was able to meet, and sometimes slightly exceed, the per-
formance of the painstakingly coded lookahead variant, so long as prioritization
was employed.

The vital role of task prioritization is inevitable. Theoretically, if we use a
random scheduling algorithm and we run the unprioritized Task Graph variant
for a large number of times, there is possibility that we observe the performance
of the prioritized Task Graph variant. However, the required number of ex-
periments could grow exponentially in k ∗ N , where N is the number of panel
columns of the input matrix and k is the number of communication events oc-
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curring for a particular N. We repeated each experiment more than 10 times and
took the best performance, but results without task prioritization were always
far below the performance of lookahead. Compared to the no-lookahead variant,
the performance of the unprioritized task graph was at best comparable and in
some cases it was even lower.

4.2. Structured Grid-Multigrid solver
Multigrid [11, 66, 13, 28] is a family of methods to accelerate the convergence

rate of conventional iterative methods such as Gauss-Seidel Red-Black and SOR.
A multigrid solver consists of multiple cycles which solve an equation via a
hierarchy of meshes. At each cycle, multigrid recursively solves an error equation
on a coarser grid, which it uses to correct the solution. The recursion ends
at some specified bottom-most level, where a bottom solver solves the error
equation on the coarsest grid. The solution from this grid is then projected (via
interpolation) up through the hierarchy of finer meshes until reaching the finest
level. At this point the cycle completes. The cycle can have a V or W shape, or
may be truncated at a certain level where the bottom solver can perform more
efficiently.

We translated MiniGMG, a multigrid solver developed at Lawrence Berkeley
National Laboratory [67]. This is an MPI+OpenMP code consisting of 4000
lines, 1000 of which are MPI code that need to be translated. It does not overlap
communication with computation. Owing to the complexity of restructuring
this third-party code by hand, we do not provide an MPI-Olap variant.

This solver employs truncated V-cycles. On the way down of each cycle,
smooths are applied to reduce the error before restrictions are used to deter-
mine the right-hand side of the coarser grids. Each smooth is a Gauss-Seidel
Red-Black relaxation (GSRB). The V-cycle is truncated when the mesh reaches
the minimal size threshold of 43, and the bottom solver consists of a significant
number of GSRB sweeps. Finally, the solution is interpolated and smoothed
upward to the next finer mesh. The GSRB kernel is optimized further with a
DRAM avoiding technique, which changes the communication pattern signifi-
cantly. In particular, in addition to nearest neighbor communication, adjacent
processes along the diagonals also communicate. The effect of this optimization
is to increase the number of neighbors that a process communicates from 6 to
26.

We conducted a weak scaling study on Edison, fixing the problem size at 83

boxes per core. The left part of Tab. 4 shows the execution time of modules
of the MPI variant. Communication (comm) accounts for about 20% of the
total execution time, and thus we have enough available computation to hide
communication. While the communication cost grows slightly as the number of
cores increases, the execution time for the other activities is stable, i.e. time
to update data elements (compute), serialize and deserialize messages (pack/un-
pack), and copy ghost cells among boxes of the same MPI process (box copy).
The right part of Tab. 4 shows the relative overhead of communication at each
grid level. It can be seen that communication overhead increases by a factor of
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2 from the finest grid L0 to L1, slowly increases (L1 to L2 and L2 to L3), or
saturates from L3 to the coarsest level grids, L4.

Cores Comm Compute pack/unpack box copy Comm/total time per level
L0 L1 L2 L3 L4

2048 0.448 1.725 0.384 0.191 12% 21% 36% 48% 48%
4096 0.476 1.722 0.353 0.191 12% 24% 37% 56% 50%
8192 0.570 1.722 0.384 0.191 13% 27% 45% 69% 63%

16384 0.535 1.726 0.386 0.192 12% 30% 48% 53% 49%
32768 0.646 1.714 0.376 0.189 17% 28% 44% 63% 58%

Table 4: Left: execution time in seconds of different modules in the multigrid solver. Right:
the relative cost of communication at each grid level (the smaller level, the finer the grid).

Fig. 7 compares the performance between MPI and Bamboo code variants
in a weak scaling study. We can see that both MPI and Bamboo are highly
scalable (in a weak sense) and that Bamboo improves the performance by up
to 14%. These results are promising, given that overlap strategies for multigrid
present three challenges. First, communication is effective at finest grids only
as the message size on these grid levels is still significant. At coarser levels, the
message size gets smaller and smaller, increasing the overhead of virtualization.
In addition, when moving from a fine to a coarser grid, computation shrinks
by a factor of 8 whereas communication reduces by only a factor of 4, reducing
the efficiency of the overlapping technique. Furthermore, the number of mes-
sages that each processor has to communicate messages with its 26 neighbors is
significant. This increases the processing overhead of the runtime system that
manages overlap.

Figure 7: Weak scaling study of algebraic multigrid on up to 32,768 processor cores of Edison.
At the finest level, each processor accounts for 8 × 1283 boxes. Thus, in each V-cycle the
finest grid size is 1283 and the coarsest grid size is 43.

5. Advanced node technologies

At present, it appears that further improvements to HPC systems will mainly
come from enhancements at the node level [53, 10, 52]. Node architectures are
changing rapidly, and a heterogeneous design that uses devices (i.e. coproces-
sors or accelerators) to amplify node performance is gaining traction. Bamboo
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supports state-of-the-art computing platforms employing advanced technologies
such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC).
In this paper we present the results on the former. Results on MIC can be found
in our previous work [45].

5.1. Graphical Processing Units
GPUs are a powerful means of accelerating compute-intensive and bandwidth-

intensive applications and for lowering the power/performance ratio. CUDA
(Compute Unified Device Architecture) is a well-known parallel programming
model for GPUs developed by NVIDIA. Under this model, each GPU works as
a device attached to a CPU called host. The host offloads compute kernels and
dependent data to its device(s) each running thousands of CUDA threads to
parallelize the workloads. The results are then collected back to the host. The
host-device communication is routed over a PCIe bus, which can easily become
a performance bottleneck due to its limited bandwidth.

As the demand for compute and memory increases, applications require a
cluster of many GPUs. MPI+CUDA is a hybrid programming model commonly
used to parallelize the application workloads across multiple GPUs. This model
spawns an MPI process per GPU to work as the host. The communication
between MPI processes is called host-host communication. We extend Bamboo
to hide the host-host and host-device communication overheads in MPI+CUDA
applications.

5.2. A GPU-aware Interface
Because MPI is not aware of device memory, Bamboo can realize overlap

among hosts only. It cannot overlap data motion between host and device. We
defined and implemented a GPU-aware MPI interface, which allows MPI com-
munication routines to specify device memory as the buffer for sending and re-
ceiving message data. Since distinguishing device and host buffers is challenging
at static time and costly at dynamic time, we also have the programmer specify a
different MPI COMM WORLD communicator called CUDA COMM WORLD.

With a GPU-aware MPI, the programmer can manage the communication
between devices without the need to explicitly route data via the hosts. Instead,
the compiler and runtime system are responsible for handling the data transfer
between host and device. Our proposal is similar to those proposed by MPI-ACC
[2, 3] and MVAPICH2-GPU [64]. However, we integrated GPU-aware MPI with
Bamboo. The result is that we can rewrite an MPI+CUDA program to a task
dependency graph form, where host-device transfers are factored out of the task
and are represented as edges of the graph. The runtime system can mask both
host-device communication automatically using the same mechanism it uses for
host-host communication 5.

5We note that MPI-ACC and MVAPICH2-GPU cannot realize this optimization
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Figure 8: Weak scaling results of 3D Jacobi on up to 32 GPUs on Stampede. Bamboo-GPU
outperforms MPI-basic, though it runs slightly slower than the hand optimized code.

5.3. Performance evaluation
We evaluated our GPU-aware programming model on the 3D Jacobi solver

running on a portion of Stampede containing hybrid CPU/GPU nodes. Only
32 such nodes were available at a time, so experimentation was limited to this
configuration. A GPU node has a single K20 ”Kepler” GPU with 5GB of fast
device memory. Our applications ran out of this memory rather than on the
more generous 32GB host memory, which is connected two 8-core Intel Xeon E5
”Sandy Bridge” processors. Nodes communicate via a Mellanox FDR InfiniBand
interconnect. We use the Intel compiler to compile code running on the host
and CUDA 5.5 to compile GPU kernel code. Mvapich handled communication
among GPU nodes.

We compared 5 code variants. The first and second variants, MPI-basic and
MPI-olap, employ the traditional MPI+CUDA programming model. The third
variant, Bamboo, is the task graph program obtained by translating MPI-basic.
The fourth variant, Bamboo-GPU, is generated by the Bamboo translator from
a basic MPI+CUDA code written under the GPU-aware programming model,
i.e. MPI-basic except with MPI data motion calls replaced by the equivalent
CUDA-aware MPI and CUDA calls that transfer data between the host and
device disabled. The fifth variant, MPI-nocomm, was obtained by removing all
host-host and host-device communication calls in MPI-basic. We conducted a
weak scaling study on Stampede. During normal production time, this platform
supports jobs with at most 32 K20 GPU nodes, so we limited ourselves to 32
nodes. Due to this small scale, 1D decomposition scheme was sufficient to meet
the needs of the application (though not scalable for larger configurations). We
evaluated all code variants with a base problem size of 510 × 512 × 128 per
GPU, which consumes 0.765 GB of device memory per node. This problem size
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is intended to mimic a more realistic application scenario, in which Jacobi would
comprise one step of a multiphase algorithm. Though Jacobi uses 3 variables
per mesh zone, a more realistic application would use many variables – a factor
of 5 or more. Thus, a production application would consume 3/4 or more of the
node’s available memory and in some cases the mesh size per node would have to
be reduced to avoid exceeding available memory capacity. The problem scaling
size we use thus stresses communication at a level appropriate for production
applications.

Fig. 8 shows the performance in GFLOP/s of all code variants. It can be seen
that Bamboo-GPU and MPI-olap significantly outperform Bamboo and MPI-
basic. We attribute the performance improvements of Bamboo-GPU compared
to Bamboo and MPI-basic to the following optimizations. First, the knowledge
of host-device transfer enables Bamboo-GPU to take advantage of locality, such
as tasks computing on the same GPU only exchange the header information of
messages. This optimization can save significant bandwidth of the PCI Express
bus connecting host and device. We found that this optimization is very sig-
nificant at small scales, where the bandwidth between host and device is more
critical than between hosts. Second, we modified the runtime to use pinned
memory to buffer messages. Using pinned memory can significantly increase
the bandwidth between host and device [63, 18]. Third, we used asynchronous
memory copies to avoid implicit synchronization on the GPU.

5.4. Future Implementation for Performance Portability
With the current implementation of our runtime system, messages among

GPUs are always routed through their hosts. This policy is not optimal when
all or some pairs of GPUs can communicate on a direct path. NVIDIA refers
to this capability as GPUdirect, which can be enabled when either 1) GPUs
of the same compute node share a common PCIe bus or 2) the interconection
network allows the communication among GPUs on different compute nodes
to bypass their hosts. Although Stampede provides neither of these, Bamboo’s
users may have access to GPUs clusters that have GPUdirect (e.g. the Comet
system at San Diego Supercomputer Center). As a results, we plan to modify
our implementation to support GPUdirect as follows.

Our runtime system employs a single MPI process per compute node to
handle the communication. Thus, for inter-node comminication, we plan to use
MPI implementations that support GPUdirect as the communication backend
(e.g. MPI-ACC and MVAPICH2-GPU). For intra-node communication, we will
need to provide our own implementation of GPUdirect. Specifically, once the
runtime detects that the sender and receiver tasks locate on the same compute
node, it sends the message descriptor instead of the raw data. The receiver opens
the descriptor and pulls data directly from the sender using CUDA memory copy.
In order to hide the communication cost, data dependency is only considered
satisfied when this memory copy operation completes. We plan to use the
asynchronous memory copy version so that we will not block the communication
handler at the receiver side. It is worth noting that these two extensions will
not require any modification on the Bamboo’s programming API.
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6. Related work

Danalis et al. [23] implemented transformations of MPI that realize commu-
nication overlap in collective operations. Strout et al. presented a framework for
inter-procedural analysis of message-passing SPMD programs; generating MPI
inter-procedural control-flow graphs that help reduce storage requirements [32].
Shires et. al [54] presented a program flow representation of an MPI program,
which is useful in code optimization. β-MPI [55] generates the runtime dataflow
graph of an MPI program, in order to assess communication volume. It over-
loads the MPI calls using macros, but does not perform source code analysis or
code restructuring.

Latency tolerant applications and infrastructure for expressing them have
been previously reported in the literature including Charm++ [36], KeLP2 [5,
29], Adaptive MPI [33] (built on top of Charm++), Tarragon [21, 20], Thyme
[59], and others [56, 58, 61, 60, 51, 19, 30].

Charm++ supports virtualization and latency tolerance. KeLP2 is a C++
framework that supports an explicit hierarchical execution model, and masks
latency. Adaptive MPI virtualizes MPI processes to support communication
overlap and task scheduling. When a thread blocks on an MPI call, it yields
to another thread. There is no explicit dataflow graph and the MPI source is
not manipulated. Bamboo transforms MPI source into an explicit graph, which
can be used to guide scheduling. Thyme is a C++ library with goals similar
to Tarragon. Husbands and Yelick [34] have implemented thread-scheduling
techniques for tolerating latency in dense LU factorization and use a dataflow
interpretation of the algorithm that exposes the latent parallelism.

PLASMA [39] is a library for dense linear algebra and it represents applica-
tions with a dataflow graph. To conserve memory, it allocates only a portion of
the graph at a time, inhibiting global optimizations. Bamboo can avoid graph
expansion by controlling the outer iteration within task state.

We used the Rose source-to-source translator [49] to develop Bamboo. Rose
is a member of the family of language processors that support semantic-level
optimizations including Telescoping languages [37, 12] and Broadway [31]. Such
language processors are able to treat a library like MPI as a domain specific
language, in which the MPI entries may be optimized as language intrinsics,
embedded within an ordinary language like C, C++, or Fortran. Embedded
domain specific languages are expected to play an important role in Exascale
computing.

7. Conclusions

This paper presented a novel interpretation of Message Passing Interface to
execute MPI applications under a data-driven model that can overlap communi-
cation with computation automatically. This interpretation factors scheduling
issues and communication decisions out of program execution. Specifically, by
reformulating MPI source into the form of a task dependency graph, which
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maintains the data dependency among tasks of the graph, we can rely on a run-
time system to schedule tasks based on the availability of data and computing
resources.

To implement our approach we developed Bamboo, a custom source-to-
source translator that transforms MPI code into the task dependency graph
representation. Bamboo treats the MPI API as an embedded domain specific
language, and it requires only a modest amount of programmer annotation. The
implementation of Bamboo comprises 2 software layers: core message passing
and utility layers. The core message passing layer transforms a minimal subset
of MPI point-to-point primitives, whereas the utility layer implements high-level
routines by breaking them into their point-to-point components, which will be
then translated by the core message passing layer. Such a multi-layer design
allows one to customize the implementation of MPI high-level routines such as
collectives, which may take advantage of special purpose hardware provided on
some platforms. In addition, this design can reduce the amount of program-
ming effort needed to port the core message passing layer to a different runtime
system.

We demonstrated that Bamboo improved performance by hiding communi-
cation. We showed that by using Bamboo, we can avoid the complications of
the lookahead algorithm implemented in the High Performance Linpack (HPL)
benchmark, while realizing the benefits. For structured grid, we translated
an iterative solver for Poisson’s equation and a geometric multigrid solver for
Helmholtz’s equation. For all applications, we have validated our claim that,
by interpreting an MPI program in terms of data flow execution, we can over-
lap communication with computation and thereby improving the performance
significantly. Moreover, Bamboo performance meets or exceeds that of labor-
intensive hand coding, at scale. Bamboo also improves performance of com-
munication avoiding matrix multiplication (2.5D Cannon’s algorithm). The
result on this application demonstrates that the translated code not only avoids
communication, but tolerates what it cannot avoid. We believe that this dual
strategy will become more widespread as data motion costs continue to grow.
We also validated Bamboo on advanced node architectures, which accelerate
node performance by offloading compute-intensive kernels to devices such as
GPUs. Bamboo not only improves performance of a program written under the
MPI+CUDA programming model, but also offers a simpler interface that allows
communication between GPUs to be transparent to the programmer.

Lastly, Bamboo enables the programmer to specify scheduling hints as task
priorities in order to optimize the scheduler. A task with higher priority will
have a higher chance to be scheduled quickly. Such task prioritization support is
important in applications that consist of irregular workloads. While Bamboo’s
scheduler employs a non-preemptive task scheduling [20, 21, 22], it allows tasks
to voluntarily yield the processor, enabling tasks of the graph to work in a more
cooperative manner. This dual scheduling scheme allows hardware resources to
be efficiently shared among tasks. We evaluated the task prioritization support
using the High Performance Linpack benchmark. Experimental results demon-
strated that we gained significant performance benefits by employing simple
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prioritization schemes.
In the future we can extend Bamboo to support complicated, heterogeneous

computing. A compute node may contain multiple types of multicore and many-
core processors. Thus, processor cores may run at different speeds with the
result that data partitioning and mapping are non-trivial programming tasks.
Bamboo alleviates these challenges by supporting process virtualization. How-
ever, in the future Bamboo needs to provide an analytical model and/or auto-
tuning support for finding optimal or near-optimal virtualization factors and
task mapping schemes. For irregular applications, hints from the programmer
may be useful to effective task migration.
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• We present Bamboo, a source-to-source translator that transforms MPI
source code into a task graph formulation that executes in a data-driven
fashion.

• Bamboo supports both point-to-point and collective communication.

• Bamboo supports GPUs, hiding communication among GPUs and be-
tween GPUs and their hosts.

• We present a thorough evaluation using applications with elaborate pro-
gram structures and communication patterns.
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