EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-726979

Issues Identified During
September 2016 IBM OpenMP
4.5 Hackathon

D. F. Richards

March 15, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Issues |Identified During

September 2016 IBM OpenMP 4.5
Hackathon

Author: David Richards (richards12@lInl.gov)
Date: 15-Mar-2017

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1 Introduction

In September, 2016 IBM hosted an OpenMP 4.5 Hackathon at the T] Watson
Research Center. Teams from LLNL, ORNL, SNL, LANL, and LBNL attended the
event. As with the 2015 hackathon, IBM produced an extremely useful and
successful event with unmatched support from compiler team, applications staff,
and facilities. Approximately 24 IBM staff supported 4-day hackathon and spent
significant time 4-6 weeks out to prepare environment and become familiar with
apps. This hackathon was also the first event to feature LLVM & XL C/C++ and
Fortran compilers.

The time and effort invested in the hackathon pays substantial dividends. In
particular:
e The compiler team gets experience with real applications and fussy
developers
e Developers get personalized support for their applications
e Standards committee gets feedback to drive needed improvements

This report records many of the issues encountered by the LLNL teams during the
hackathon. A draft version of this document was prepared for the OpenMP face-to-
face meeting held in Japan in October, 2016 and was used to help drive
improvements to the standard. According to IBM approximately 20 compiler bugs
found during the hackathon are now fixed (as of 12/7/16).

2 Issues Identified (Cardioid)

2.1 Incorrect code generation

We were forced to use the clang compiler for the entire hackathon. The code to
transfer our simple data structure to the target (listed below) triggered a bug in the
xIC compiler that caused it to produce incorrect code. When transferring a C data
structure with a pointer to a dynamic array, we chose to first copy over the whole
data structure to the GPU with a simple bit-wise copy, then replace the GPU
structure’s pointer (which now pointed to host memory) with a new device-
allocated dynamic array. This confused the xIC compiler—it saw that we were
mapping into a piece of memory that had already been and tried to optimize out the
second dynamic allocation. We notified the compiler developers and were told that
the problem could not be fixed during the hackathon.

struct PADE {
int 1;
int m;
double* coef; //dynamic array of size l+m

I

const int fit length=31;
PADE fit [fit length];

vector<double*> state ;

TTO6Dev_Reaction::TTO6Dev_Reaction (..) {

#pragma omp target enter data map(to: fit [:fit length])
for (int 1 = 0; i < fit length; i++) {
#pragma omp target enter data map(to: fit [i].coef[:fit [i].m +
fit [i].1])
}

const int nState = state .size();

double ** stateAlias = &state [0];

#pragma omp target enter data map(to: stateAlias[0:nState])

for (int istate = 0; istate < nState; istate++) {

fpragma omp target enter data map (to:

stateAlias[istate] [0:nCells])

}
}

2.2 No way to place data in constant memory on the device.

Cardioid needs to evaluate rational polynomials with constant coefficients. Ideally,
these polynomial coefficients should be read from input at run time. For best
performance, these coefficients need to be placed in constant memory within the
GPU (a 4x difference in speed). However, the OpenMP standard does not provide a

capability to specify that certain memory needs to be in GPU constant memory. Here
is the code example we sent to IBM that exposes the problem.

#pragma omp declare target

const int Tau m = 18;

const double Tau a[] = {/*An array of 18 numbers*/};
#pragma omp end declare target

int main () {

#pragma omp target teams distribute parallel for thread limit (128)
for (int ii=0; ii<nCells; 1ii++) {
suml = 0;
for (int j = Tau m-1; j >= 0; j--)
suml = Tau al[j] + x*suml;

double tauR = suml;
m gate[ii] += (mhu - m gate[ii])*(l-exp(-tauR));

The CORAL compiler had a non-standard __attribute(3) type that we were told could
designate a variable declared in a target region to be put into constant memory, but
this approach is not portable. In our case, trying to use the extra keyword triggered

compiler bugs that we never resolved.

#pragma omp declare target

const int Tau m = 18;

double attribute((address space(3)))Tau a[] = {/*An array of 18
numbers*/};

To get the best performance, we had to embed the polynomial coefficients directly
within the target parallel for. The resulting code is extremely hard to read and
maintain. Under OpenMP 4.5 the code would have to be changed and recompiled
every time we wanted to change the interpolating polynomials.

2.3 Features related to task pragma and pipelined kernel launches are not yet
implemented

In Cardioid, the 12 gate equations are all data parallel and can be run concurrently.

Under CUDA we could pipeline these kernel launches asynchronously, but parallel

tasking is currently not implemented in the CORAL compilers.

2.4 Lack of valid introspection when using inlined templates in a device

section.
We attempted to use templates to improve the maintainability of the code used in

the gate equations:

struct padeHack mMhu {

enum { 1 = 10, m = 5};

static constexpr double a[] = {{/* an array of 15 numbers */};
}i
constexpr double padeHack mMhu::a[l15];

struct padeHack mTau {

enum {1 = 1, m = 18};

static constexpr double a[] = {{/* an array of 18 numbers */};
}i
constexpr double padeHack mTau::a[l19];

template<class hacker>
inline double padeFuncTry (const double x) {
double suml = 0;
for (int j = hacker::1 + hacker::m - 1; j >= 0; j—--)
suml = hacker::a[j] + x * suml;
if (hacker::1 < 2) return suml;
double sum?2 = 0;
int k = hacker::m + hacker::1 - 1;
for (int 3 = k; j >= hacker::m; j--)
sum?2 = hacker::a[j] + x * sum2;
return suml / sum2;

//use the template:
double mMhu = padeFuncTry<padeHack mMhu> (Vm) ;

The templatized version above was 4x slower. Inspection of the assembly revealed
that unnecessary synchronization calls were generated before the inlined code for
the template. IBM theorized that due to the ordering of internal passes in the
compiler’s optimizations, the compiler was being more conservative than was
warranted for this case. IBM promised to fix the problem.

2.5 Compiler bugs

We tried mapping our static polynomial coefficient arrays into constant memory by
declaring const/constexpr arrays with the non-standard __attribute(3) type at the
file scope and within a declare target section. This triggered a segmentation fault
in the compiler.

2.6 Cannot find/link CUDA float functions in the math library

In one attempt to improve performance, we converted all the variables in the kernel
from double to float. However, compiler failed to find/link CUDA float function,
expf(), in the math library.

2.7 Changing the variables from double to float doesn’t improve performance
with current compiler and machines.
We tried to change our application to use floats instead of double precision to test if
we could further speedup the kernels. The theory was that our memory loads
would improve and we might be able to take advantage of both the float32 units and
the float64 units on the GPU at the same time. We replaced doubles with floats
everywhere we could—our rational polynomial approximations required double
precision to produce correct results. The resulting code was slower than the double
version of the code and we did not have time to dig into the assembly to figure out
why, so we abandoned the attempt.

2.8 Compiler flag “-ffp-contrast=fast” is needed to generate fused multiply
adds with the CORAL compiler.

We verified this by checking the assembly code both before and after using this

option.

2.9 Compiler flag “-fopenmp-nonaliased-maps” improves the performance of
our kernels by 16%.

This option auto-adds the “restrict” keyword to all target pointers, which was fine

for our test problem. Equivalent speedups could be had by using the restrict

keyword with the codebase.

3 Issues Identified (Quicksilver)

3.1 Hardware mapping and thread affinity are difficult to manage

[s there anything we can do to make this easier? Can we have better defaults or is
there just no good default choice? The current system of cryptic scripts, commands,
and environmental variables is very hard to use. Can we do anything to help users
verify they're getting the mappings and affinities they want?

3.2 CPU only performance suffers when code is built with unified memory
6x slowdown on code running only on CPU with unified memory. All allocations are
in initialization so this isn’t a problem with overhead in cudaMallocManaged()

3.3 Can’t refer to variables passed by reference in a target region

When I tried to use a variable that was passed by reference in a target region the
compiler crashed. This is apparently a known problem.

Workaround: Create a temporary copy and refer to the copy instead. (ToDo: was it
a copy or an alias?)

3.4 Can’t refer to C++ this pointer in target region

Compiler segfaults when attempting to refer to the this pointer in a target region.
This includes implicit references such as accessing a member variable.
Workaround: Use a copy

3.5 Can’t map *this or this[0:1]

All of our attempts to write a map() member function that would map the object
produced incorrect results. Is mapping this disallowed by the standard or is this a
compiler issue? Or were we just using the wrong syntax? Other developers report
there is a workaround involving mapping a copy.

3.6 Difficulty using declare target selectively for class member functions
This is the issue that declare target is only effective at file or namespace scope. Tom
Scogland and I have discussed this at length.
Issues include:
e [BM workaround doesn’t work for overloaded functions
e IBM warnings are inconsistent. Warns when declaration doesn’t have
declare target but definition does. Silently ignores missing declare target on
definition.
e Why is the placement of declare target limited in the first place. CUDA has no
problem decorating a member function with __device

3.7 Can’t put critical section in target code
This crashed either at compile or run time. I can’t recall which. It might be a bad
idea for performance to put a critical section in GPU code, but it should work.

3.8 Triple nested parallel for give wrong results on GPU

Function f1() contains a parallel loop that calls f2() that contains a parallel loop that
calls f3() that does work in a parallel loop. This works fine on CPU. Answer is
incorrect on GPU. Performance is a separate issue from correctness. Sample code
available.

3.9 Murkiness in the standard related to our data mapping strategy

Our strategy for mapping variables relies on the runtime automatically translating
certain pointers. (I'm not describing this well. See the discussion at the end of
section 4.4). From discussions with Tom it apparently isn’t clear (at least to him)
what the standard actually requires. Since we rely on this behavior we want a clear
standard that we can hold compilers/runtimes to correctly implement.

4 Issues Identified (Hypre)

4.1 Static library support in Clang

the problem with the MPI executables that need mpirun and the lack of static library
support in Clang. Want executables built with mpi compiler wrappers to be directly
executable without mpirun. Device code not included in static libraries.

4.2 Offload Issues
e We will need some mechanism to look at what is happening within the
offload code.
e Ideally this would be a detailed source line level report on what the compiler
did to generate the offload code
e Atthe minimum it has to be a description of hotspots in the generated code
and their source locations

4.3 Non-aliased maps compiler option

e We will need fine grain control of the non-aliased maps compiler option in
Clang probably as a clause to omp target(standards/compiler)

4.4 If clause degrades performance
Using the if clause seemed to degrade performance on the host code due to the use
of teams distribute parallel for(compiler)

5 Issues Identified (Miranda)

5.1 Seg-faults in xlflang compiler

Seg-faulting with the xlflang compiler, that according to one of the IBM guys on my
team — as far as [understand it — was due to not mapping scalars firstprivate to
the device by default, which is the usual behavior for most other compilers, like
x1f95. This may be just be a case of growing pains for a new compiler that's wasn’t
quite ready for prime time — or unfounded assumptions on my part.

5.2 Non-performant default settings

The default settings for number of teams and threads using the xIf95 compiler were
dreadful in terms of performance, and needed to be set and tuned by hand for the
specific hardware. This may be par for the course, but this lazy (whiny) novice
would like something more portable where the compiler chooses more sensible
default values given the target device and/or there is dynamic optimization of these
parameters at runtime.

5.3 Workshare construct unavailable (?)
There was, unfortunately, no discussion about the workshare construct for
Fortran, and indeed [was under the (perhaps mistaken) impression it wasn’t

supported in the xI OpenMP compilers we were using. Because workshare is used
with whole array expressions and intrinsics, forall loops, etc., which are a mainstay
of concise modern Fortran programming, it is a really useful feature of OpenMP that
[hope is fully supported in future versions.

