
LLNL-TR-726979

Issues Identified During
September 2016 IBM OpenMP
4.5 Hackathon

D. F. Richards

March 15, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Issues Identified During
September 2016 IBM OpenMP 4.5
Hackathon

Author:		David	Richards	(richards12@llnl.gov)
Date:	15-Mar-2017

This	work	was	performed	under	the	auspices	of	the	U.S.	Department	of	Energy	by	
Lawrence	Livermore	National	Laboratory	under	Contract	DE-AC52-07NA27344.

1 Introduction

In	September,	2016	IBM	hosted	an	OpenMP	4.5	Hackathon	at	the	TJ	Watson	
Research	Center.		Teams	from	LLNL,	ORNL,	SNL,	LANL,	and	LBNL attended	the	
event.		As	with	the	2015	hackathon,	IBM	produced	an	extremely	useful	and
successful	event	with	unmatched	support	from	compiler	team,	applications	staff,	
and	facilities.		Approximately	24	IBM	staff	supported	4-day	hackathon	and	spent	
significant	time	4-6	weeks	out	to	prepare	environment	and	become	familiar	with	
apps.		This	hackathon	was	also	the	first	event	to	feature	LLVM	&	XL	C/C++	and
Fortran	compilers.		

The	time	and	effort	invested	in	the	hackathon	pays	substantial	dividends.		In	
particular:

 The	compiler	team	gets	experience with	real	applications	and	fussy	
developers

 Developers	get	personalized	support	for	their	applications
 Standards	committee	gets	feedback	to	drive	needed	improvements

This	report	records	many	of	the	issues	encountered	by	the	LLNL	teams	during	the	
hackathon.		A	draft	version	of	this	document	was	prepared	for	the	OpenMP	face-to-
face	meeting	held	in	Japan	in	October,	2016	and	was	used	to	help	drive	
improvements	to	the	standard.		According	to	IBM	approximately	20	compiler	bugs	
found	during	the hackathon	are	now	fixed	(as	of	12/7/16).

2 Issues Identified (Cardioid)

2.1 Incorrect code generation
We	were	forced	to	use	the	clang	compiler	for	the	entire	hackathon.		The	code	to	
transfer	our	simple	data	structure	to	the	target	(listed	below)	triggered	a	bug	in	the	
xlC compiler	that	caused	it	to	produce	incorrect	code.	When	transferring	a	C	data	
structure	with	a	pointer	to	a	dynamic	array,	we	chose	to	first	copy	over	the	whole	
data	structure	to	the	GPU	with	a	simple	bit-wise	copy,	then	replace	the	GPU	
structure’s	pointer	(which	now	pointed	to	host	memory)	with	a	new	device-
allocated	dynamic	array.		This	confused	the	xlC	compiler—it	saw	that	we	were	
mapping	into	a	piece	of	memory	that	had	already	been	and	tried	to	optimize	out	the	
second	dynamic	allocation.	We	notified	the	compiler	developers	and	were	told	that	
the	problem	could	not	be	fixed	during	the	hackathon.

2.2 No way to place data in constant memory on the device.
Cardioid	needs	to	evaluate	rational	polynomials	with	constant	coefficients.				Ideally,	
these	polynomial	coefficients	should	be	read	from	input	at	run	time.		For	best	
performance,	these	coefficients	need	to	be	placed	in	constant	memory	within	the	
GPU	(a	4x difference	in	speed).	However,	the	OpenMP	standard	does	not	provide	a	

struct PADE {
 int l;
 int m;
 double* coef; //dynamic array of size l+m
};

const int fit_length=31;
PADE fit_[fit_length];

vector<double*> state_;

TT06Dev_Reaction::TT06Dev_Reaction(…){
 ...

 #pragma omp target enter data map(to: fit_[:fit_length])
 for (int i = 0; i < fit_length; i++) {
 #pragma omp target enter data map(to: fit_[i].coef[:fit_[i].m +
fit_[i].l])
 }

 const int nState = state_.size();
 double ** stateAlias = &state_[0];
 #pragma omp target enter data map(to: stateAlias[0:nState])
 for (int istate = 0; istate < nState; istate++) {
 #pragma omp target enter data map(to:
stateAlias[istate][0:nCells_])
 }
}

capability	to	specify	that	certain	memory	needs	to	be	in	GPU	constant	memory.	Here	
is	the	code	example	we	sent	to	IBM	that	exposes	the	problem.	

The	CORAL	compiler	had	a	non-standard	__attribute(3)	type	that	we	were	told	could	
designate	a	variable	declared	in	a	target region	to	be	put	into	constant	memory,	but	
this	approach	is	not	portable.		In	our	case,	trying	to	use	the	extra	keyword	triggered	
compiler	bugs	that	we	never	resolved.	

To	get	the	best	performance,	we	had	to	embed	the	polynomial	coefficients	directly	
within	the	target	parallel	for.		The	resulting	code	is	extremely	hard	to	read	and	
maintain.		Under	OpenMP	4.5	the	code	would	have	to	be	changed	and	recompiled	
every	time	we	wanted	to	change	the	interpolating	polynomials.

2.3 Features related to task pragma and pipelined kernel launches are not yet
implemented

In	Cardioid,	the	12	gate	equations	are	all	data	parallel	and	can	be	run	concurrently.		
Under	CUDA	we	could	pipeline	these	kernel	launches	asynchronously,	but	parallel	
tasking	is	currently	not	implemented	in	the	CORAL	compilers.

#pragma omp declare target
 const int Tau_m = 18;
 const double Tau_a[] = {/*An array of 18 numbers*/};
#pragma omp end declare target

int main(){
 ...

 #pragma omp target teams distribute parallel for thread_limit(128)
 for (int ii=0; ii<nCells; ii++){
 sum1 = 0;
 for (int j = Tau_m-1; j >= 0; j--)
 sum1 = Tau_a[j] + x*sum1;

 double tauR = sum1;
 m_gate[ii] += (mhu - m_gate[ii])*(1-exp(-tauR));
 }
}

#pragma omp declare target
 const int Tau_m = 18;
 double __attribute((address_space(3)))Tau_a[] = {/*An array of 18
numbers*/};
#pragma omp end declare target

2.4 Lack of valid introspection when using inlined templates in a device
section.

We	attempted	to	use	templates	to	improve	the	maintainability	of	the	code	used	in	
the	gate	equations:

The	templatized version	above	was	4x	slower.	Inspection	of	the	assembly	revealed	
that	unnecessary	synchronization	calls	were	generated	before	the	inlined	code	for	
the	template.		IBM	theorized	that	due	to	the	ordering	of	internal	passes	in	the	
compiler’s	optimizations,	the	compiler	was	being	more	conservative	than	was	
warranted	for	this	case.		IBM	promised	to	fix	the	problem.

2.5 Compiler bugs
We	tried	mapping	our	static	polynomial	coefficient	arrays	into	constant	memory	by	
declaring	const/constexpr	arrays	with	the	non-standard	__attribute(3)	type	at	the	
file	scope	and	within	a	declare	target section.		This	triggered	a	segmentation	fault	
in	the	compiler.	

struct padeHack_mMhu {
 enum { l = 10, m = 5};
 static constexpr double a[] = {{/* an array of 15 numbers */};
};
constexpr double padeHack_mMhu::a[15];

struct padeHack_mTau {
 enum {l = 1, m = 18};
 static constexpr double a[] = {{/* an array of 18 numbers */};
};
constexpr double padeHack_mTau::a[19];

template<class hacker>
inline double padeFuncTry_(const double x) {
 double sum1 = 0;
 for (int j = hacker::l + hacker::m - 1; j >= 0; j--)
 sum1 = hacker::a[j] + x * sum1;
 if (hacker::l < 2) return sum1;
 double sum2 = 0;
 int k = hacker::m + hacker::l - 1;
 for (int j = k; j >= hacker::m; j--)
 sum2 = hacker::a[j] + x * sum2;
 return sum1 / sum2;
}

...
 //use the template:
 double mMhu = padeFuncTry<padeHack_mMhu>(Vm);
...

2.6 Cannot find/link CUDA float functions in the math library
In	one	attempt	to	improve	performance,	we	converted	all	the	variables	in	the	kernel	
from	double	to	float.	However,	compiler	failed	to	find/link	CUDA	float	function,	
expf(),	in	the	math	library.

2.7 Changing the variables from double to float doesn’t improve performance
with current compiler and machines.

We	tried	to	change	our	application	to	use	floats	instead	of	double	precision	to	test	if	
we	could	further	speedup	the	kernels.		The	theory	was	that	our	memory	loads	
would	improve	and	we	might	be	able	to	take	advantage	of	both	the	float32	units	and	
the	float64	units	on	the	GPU	at	the	same	time.		We	replaced	doubles	with	floats	
everywhere	we	could—our	rational	polynomial	approximations	required	double	
precision	to	produce	correct	results.		The	resulting	code	was slower	than	the	double	
version	of	the	code	and	we	did	not	have	time	to	dig	into	the	assembly	to	figure	out	
why,	so	we	abandoned	the	attempt.

2.8 Compiler flag “-ffp-contrast=fast” is needed to generate fused multiply
adds with the CORAL compiler.

We	verified	this	by	checking	the	assembly	code	both	before	and	after	using	this	
option.

2.9 Compiler flag “-fopenmp-nonaliased-maps” improves the performance of
our kernels by 16%.

This	option	auto-adds	the	“restrict”	keyword	to	all	target	pointers,	which	was	fine	
for	our	test	problem.		Equivalent	speedups	could	be	had	by	using	the	restrict	
keyword	with	the	codebase.

3 Issues Identified (Quicksilver)

3.1 Hardware mapping and thread affinity are difficult to manage
Is	there	anything	we	can	do	to	make	this	easier?		Can	we have	better	defaults	or	is	
there	just	no	good	default	choice?		The	current	system	of	cryptic	scripts,	commands,	
and	environmental	variables	is	very	hard	to	use.		Can	we	do	anything	to	help	users	
verify	they’re	getting	the	mappings	and	affinities	they	want?

3.2 CPU only performance suffers when code is built with unified memory
6x	slowdown	on	code	running	only	on	CPU	with	unified	memory.		All	allocations	are	
in	initialization	so	this	isn’t	a	problem	with	overhead	in	cudaMallocManaged()

3.3 Can’t refer to variables passed by reference in a target region
When	I	tried	to	use	a	variable	that	was	passed	by	reference	in	a	target	region	the	
compiler	crashed.		This	is	apparently	a	known	problem.
Workaround:	Create	a	temporary	copy	and	refer	to	the	copy	instead.		(ToDo:	was	it	
a	copy	or	an	alias?)

3.4 Can’t refer to C++ this pointer in target region
Compiler	segfaults	when	attempting	to	refer	to	the	this	pointer	in	a	target	region.		
This	includes	implicit	references	such	as	accessing	a	member	variable.
Workaround:		Use	a	copy

3.5 Can’t map *this or this[0:1]
All	of	our	attempts	to	write	a	map()	member	function	that	would	map	the	object	
produced	incorrect	results.		Is	mapping	this	disallowed	by	the	standard	or	is	this	a	
compiler	issue?		Or	were	we	just	using	the	wrong	syntax?		Other	developers	report	
there	is	a	workaround	involving	mapping	a	copy.

3.6 Difficulty using declare target selectively for class member functions
This	is	the	issue	that	declare	target	is	only	effective	at	file	or	namespace	scope.		Tom	
Scogland	and	I	have	discussed	this	at	length.		
Issues	include:

 IBM	workaround	doesn’t	work	for	overloaded	functions
 IBM	warnings	are	inconsistent.		Warns	when	declaration	doesn’t	have	

declare	target	but	definition	does.		Silently	ignores	missing	declare	target	on	
definition.

 Why	is	the	placement	of	declare	target	limited	in	the	first	place.		CUDA	has	no	
problem	decorating	a	member	function	with	__device

3.7 Can’t put critical section in target code
This	crashed	either	at	compile	or	run	time.		I	can’t	recall	which.		It	might	be	a	bad	
idea	for performance	to	put	a	critical	section	in	GPU	code,	but	it	should	work.

3.8 Triple nested parallel for give wrong results on GPU
Function	f1()	contains	a	parallel	loop	that	calls	f2()	that	contains	a	parallel	loop	that	
calls	f3()	that	does	work	in	a	parallel	loop.		This	works	fine	on	CPU.			Answer	is	
incorrect	on	GPU.		Performance	is	a	separate	issue	from	correctness.		Sample	code	
available.

3.9 Murkiness in the standard related to our data mapping strategy
Our	strategy	for	mapping	variables	relies	on	the	runtime	automatically	translating	
certain	pointers.		(I’m	not	describing	this	well.		See	the	discussion	at	the	end	of	
section	4.4).		From	discussions	with	Tom	it	apparently	isn’t	clear	(at	least	to	him)	
what	the	standard	actually	requires.		Since	we	rely	on	this	behavior	we	want	a	clear	
standard	that	we	can	hold	compilers/runtimes	to	correctly	implement.

4 Issues Identified (Hypre)

4.1 Static library support in Clang
the	problem	with	the	MPI	executables	that	need	mpirun	and	the	lack	of	static	library	
support	in	Clang. 		Want	executables	built	with	mpi	compiler	wrappers	to	be	directly	
executable	without	mpirun.		Device	code	not	included	in	static	libraries.

4.2 Offload Issues
 We	will	need	some	mechanism	to	look	at	what	is	happening	within	the	

offload	code.	
 Ideally	this	would	be	a	detailed	source	line	level	report	on	what	the	compiler	

did	to	generate	the	offload	code
 At	the	minimum	it	has	to	be	a	description	of	hotspots	in	the	generated	code	

and	their	source	locations

4.3 Non-aliased maps compiler option
 We	will	need	fine	grain	control	of	the	non-aliased	maps	compiler	option	in	

Clang	probably	as	a	clause	to	omp	target(standards/compiler)

4.4 If clause degrades performance
Using	the	if	clause	seemed	to	degrade	performance	on	the	host	code	due	to	the	use	
of	teams	distribute	parallel	for(compiler)

5 Issues Identified (Miranda)

5.1 Seg-faults in xlflang compiler
Seg-faulting	with	the	xlflang	compiler,	that	according	to	one	of	the	IBM	guys	on	my	
team	— as	far	as	I	understand	it	— was	due	to	not	mapping	scalars	firstprivate	to	
the	device	by	default, which	is	the	usual	behavior	for	most	other	compilers,	like	
xlf95.	This	may	be	just	be	a	case	of	growing	pains	for	a	new	compiler	that’s	wasn’t	
quite	ready	for	prime	time	— or	unfounded	assumptions	on	my	part.

5.2 Non-performant default settings
The	default	settings	for	number	of	teams	and	threads	using	the	xlf95	compiler	were	
dreadful	in	terms	of	performance,	and	needed	to	be	set	and	tuned	by	hand	for	the	
specific	hardware.	This	may	be	par	for	the	course,	but	this	lazy	(whiny)	novice	
would	like	something	more portable	where	the	compiler	chooses	more	sensible	
default	values	given	the	target	device	and/or	there	is	dynamic	optimization	of	these	
parameters	at	runtime.

5.3 Workshare construct unavailable (?)
There	was,	unfortunately,	no	discussion	about	the	workshare construct	for	
Fortran,	and	indeed	I	was	under	the	(perhaps	mistaken)	impression	it	wasn’t	

supported	in	the	xl	OpenMP	compilers	we	were	using.	Because	workshare is	used	
with	whole	array	expressions	and	intrinsics,	forall	loops,	etc.,	which	are	a	mainstay	
of	concise	modern	Fortran	programming,	it	is	a	really	useful	feature	of	OpenMP	that	
I	hope	is	fully	supported	in	future	versions.

