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A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial confinement fusion
simulations has identified a class of implosions that robustly achieve high yield, even in the presence of drive
variations and hydrodynamic perturbations. These implosions are purposefully driven with a time-varying
asymmetry, such that coherent flow generation during hotspot stagnation forces the capsule to self-organize
into an ovoid, a shape that appears to be more resilient to shell perturbations than spherical designs. This
new class of implosions, whose configurations are reminiscent of zonal flows in magnetic fusion devices, may
offer a path to robust inertial fusion.

I. INTRODUCTION

The aim of inertial confinement fusion (ICF)1 is to
compress a hollow shell of cryogenic deuterium-tritium
(DT) fuel to thermonuclear conditions. In the case of di-
rect or indirect drive, the spherical ice shell is encased in
an ablator material, the outer surface of which is heated
either directly by impinging laser beams or indirectly
via x-rays in an encasing hohlraum, respectively. As the
capsule surface ablates, the spherical shell compresses to
high temperature and density. The goal is to have the
gas at the center of the shell ignite a fusion burn wave,
which consumes the DT shell and releases large amounts
of fusion energy.

However, this process can be sensitive to hydrody-
namic instabilities, which can arise throughout the im-
plosion. At early times, shocks can cause the Richtmyer-
Meshkov2–4 growth of small-scale imperfections, which
can be amplified by the Rayleigh-Taylor (RT) instabil-
ity5–7 during the main capsule acceleration. As the cap-
sule compresses, the back-pressure exerted by the central
gas on the shell causes the shell to decelerate, at which
point the inner surface of the shell becomes RT unstable.
During this time, a perturbation of wave number k on the
inner surface of a shell with characteristic density scale
length Lm and local ablation velocity va (due to mass
ablating into the forming hot spot) that experiences a
deceleration of magnitude g will grow with a growth rate
of the form8:

γRT = α

√
kg

1 + kLm
− βkva, (1)

for some constants α ' 0.9 and β ' 1.4. Under con-
verging geometry, Bell-Plesset-like (BP) effects9,10 can
enhance this growth, such that the total linear growth
from any perturbation increases with the convergence ra-
tio R(t = 0)/R(t) of the shell.
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In sum, these processes can lead to a distorted asym-
metric shell at stagnation, which adversely affects per-
formance. For example, the ITF formalism11 defines an
ignition metric that depends on (among other things) the
hotspot radius Rhs and the mode-weighted RMS devia-
tion from that hotspot ∆Rhs:

ITF ∝
(

1− 1.2
∆Rhs

Rhs

)4

. (2)

Larger values of ITF are more robust ignitors, and ITF
can be used to estimate a capsule’s margin. For instance,
a hotspot deviation ∆Rhs/Rhs of 0.13 can reduce the
margin for ignition by a factor of two. Other studies12–14

have also found that capsule performance degrades when
implosions are asymmetric.

Because non-radial capsule stagnation is so detrimen-
tal to performance, one of the major goals of ICF research
is to produce a nearly spherical implosion. One way to
accomplish this is via the minimization of the seeds for
asymmetric stagnation. Examples include placing engi-
neering tolerances on the capsule surfaces15, reducing the
effective footprints of the capsule support tent16 and DT
gas fill tube17, and ensuring a smooth capsule drive13,18.
Additionally, one can attempt to reduce the total inte-
grated linear growth of hydrodynamic instabilities, by
exploring such techniques as adiabat shaping19–28 or by
pursuing implosions with low convergence ratios29.

In this work, we report on a nonlinear stabilization
process for ICF implosions that simultaneously addresses
drive and shell distortions. In particular, intentionally
generated large scale coherent flows within the hotspot
can stabilize other shell deformations that arise during
stagnation. These flows, which are reminiscent of the
zonal flows that appear in planetary atmospheres30 and
magnetic fusion devices31, shear off both smaller scale
instabilities and larger scale asymmetries, making these
implosions more robust than those without zonal flows.

Implosions with these flows are not spherical, but
rather asymmetric, with the shell forming an ovoid dur-
ing capsule deceleration and stagnation. Their high per-
formance challenges the notion expressed in Eq. 2 that
spherical shells universally have the largest ignition mar-



2

gins.
This robust aspherical implosion was discovered by a

machine learning algorithm trained on the largest ICF
capsule simulation dataset ever created. We discuss the
dataset, the learning algorithm and how it predicted the
existence of the ovoid in Sec. II. In Sec. III, we con-
firm the algorithm’s prediction with a series of new sim-
ulations at the predicted robust point and show that
these implosions are more resilient to distortions driven
by asymmetric drives and the capsule support tent than
those driven symmetrically. Section IV summarizes and
discusses our results.

II. FINDING A ROBUST IMPLOSION

Our study builds on previous efforts12–14,32 to use large
ensembles of simulations to quantify the performance of
implosions under adverse conditions. Here, we are in-
terested in taking the further step of using data science
techniques to search for implosions that exist in flat re-
gions of parameter space, thus being explicitly robust
to perturbations around their design point. That is, we
want to not just quantify robustness, but optimize for it.

The methodology is straightforward: choose a baseline
implosion design, generate a suite of multi-dimensional
simulations of perturbations around that baseline and fit
the resultant quantity of interest Q (for instance, the
total produced yield) to a functional form of the i indi-
vidual input variations x̄ ∈ Rd = {xi}, thereby creating a

data-trained surrogate model Q̃ ' Q that can be quickly
evaluated for any value of x̄, not necessarily included in
the original simulation ensemble. One can then use Q̃ to
optimize x̄ for robustness without performing additional
simulations.

In studies12–14,32 that produce rules like Eq. 2, the sur-
rogate model is assumed to be a power-law of the form:

Q̃(x̄) =

d∏
i

fi (xi)
ai , (3)

with fi(xi) some analytic function of the input parame-
ters, such as (1 − bixi), for some constant bi. It is also
possible as in Eq. 2 for the xi not to be simulation in-
put parameters, but rather physical quantities extracted
from the simulation database, like ∆R/R.

Laws like Eq. 3 are easy to construct (being linear
regression on log fi) and interpret (since the relative
strengths and impacts of the various terms come di-
rectly from the constants ai and bi). They can built with
datasets of a few hundred14 or a few thousand12,13,32 in-
dividual simulations. However, Eq. 3 precludes any in-
teractions between the xi, and the ai are held constant
over the entire space. This makes power laws unsuitable
for design optimization, particularly when the xi are sim-
ulation input parameters.

Instead, to search for a robust implosion, we look to the
family of non-parametric Q̃, such as those generated by

machine learning statistical algorithms. These methods
do not necessarily make assumptions about the under-
lying structure or functional form of Q, but can require
many simulations to achieve an acceptable level of accu-
racy, especially when the input space is of high dimen-
sionality (d > 4). However, recent work33 has shown that
machine learning techniques can build accurate surrogate
models from ICF simulation ensembles (without alpha-
particle deposition) of d = 7 with ∼ 3500 simulations.

In this section, we build off this successful application
of machine learning to construct surrogate models for
ICF implosions and search for a design that ignites even
under adverse conditions. We explain our new dataset
that consists of a nine-dimensional survey of drive ampli-
tudes, asymmetries and convergence ratios, and use ma-
chine learning techniques to build surrogate models for
multiple quantities of interest. We then combine these
surrogates, which effectively serve as fast but complex
interpolators for our dataset, into a robustness cost func-
tion that is suitable for optimization and find a set of
input parameters that produce the optimally robust im-
plosion. Next, we query additional surrogates, which are
trained on the individual Legendre moments of the DT
fuel shape, and find that the optimal input parameters
produce an ovoid shape at stagnation. The surrogate
models also predict that the optimal ovoid-shaped implo-
sion is more resilient to a variety of perturbations than
the baseline spherical implosion. In Section III, addi-
tional simulations at the optimal point (which are not
in the original dataset) confirm the surrogate predictions
and provide physical insight into the high performance
of this implosion.

A. The Trinity Open Science I Dataset

The first step towards searching for a robust design is
to create a large dataset of input simulations, upon which
to build a surrogate model. Our new ensemble of approx-
imately 60,000 two-dimensional ICF capsule simulations
is the largest created to date.

Consuming roughly 39 million cpu-hours of computer
resources during the Open Science Phase I of the Trinity
Supercomputer at Los Alamos National Laboratory, the
dataset constituted a nine-dimensional parameter scan of
time-varying drive magnitudes, drive asymmetries (de-
scribed by Legendre modes 1, 2 and 4, Pn), and capsule
gas fill densities. Due to its large size, the estimated
5 petabytes of raw data were processed using a novel
in-transit data analysis technique34, which used internal
servers (built on the beanstalkd library35) to direct ded-
icated compute nodes to analyze and erase raw data on-
the-fly before overflowing the file system.

The baseline simulation, run with the radiation hydro-
dynamics code HYDRA36, is an axisymmetric variant
of a high-density-carbon (HDC)37 National Ignition Fa-
cility (NIF)38 implosion design, meant to ignite in 1D,
with a 20 µm dopant layer of 3% Si embedded in the
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75 µm-thick shell of 1108 µm outer radius. Both the DT
and the HDC use tabular equations of state (LEOS 1018
and 64 respectively39,40) and opacities. The ice layer is
55 µm thick and the central gas has a baseline density
of 5 × 10−4 g/cm3. The initially Arbitrary-Lagrangian-
Eulerian mesh with 513 angular zones and 321 impedance
matched radial zones remaps to an entirely Eulerian el-
liptic mesh near stagnation to trade accuracy for robust-
ness (99.9% of the simulations completed without hu-
man intervention). The nine-dimensional study consti-
tutes latin hypercube sampling of a space around the
baseline implosion, with linearly varying drive magni-
tude A and asymmetry perturbations between three time
points (the end of the first shock “trough,” the end of the
“rise” to peak laser power and the end of “peak” radia-
tion drive). All time-dependent perturbations ramp up
from time zero and down from the end of peak power. P1

and P4 have the same value at the three time points, but
P2 and A can vary (see Fig. 1a for an example). The peg
points are sampled linearly between ± [2, 10, 5, 25]%
for [P1, P2, P4, A]. The capsule gas fill density is sam-
pled logarithmically between 0.2× and 5×, for a total of
9 independent variables.

B. Using Machine Learning to Search for a New Design

With the dataset in hand, it is possible to use ma-
chine learning techniques to build surrogate models that
infer the behavior of multiple quantities of interest at
any point within our design space, even where no sim-
ulations exist. Here, we opt to use random forest
regression41, which consists of a series of bootstrapped
decision trees trained on subsets of the whole dataset.
As such, a random forest can handle large quantities
of high-dimensional data and automatically incorporate
nonlinearities, which becomes especially important near
regions of high yield that are potentially surrounded by
steep “cliffs.”

We find that such a random forest regression surro-
gate for the logarithm of the total energy yield (log10 Y )
achieves an 80% cross-validation mean error of 8%. (Ex-
plicitly we train the surrogate model on a random 80%
of the data and test the prediction against the other
20%: the mean error on the prediction for the 20% ran-
dom hold-out points is 8%.) Being a statistical fit to
our entire data set, the yield surrogate not only allows
for the continuous real-time interpolation of parameter
space between our discrete samples, but also lets us de-
fine a metric for robustness. For this measure, we pick
a point in parameter space and with the surrogate make
1000 random input variations within a hypercube cen-
tered at that location with side length ∆ of 10% of the
total sample space. The number of surrogate evalua-
tions that achieve Y > 1 MJ serves as a local estimate
of the probability of achieving high yield under variable
conditions: P(Y > 1|∆ = 0.1). This function serves
as a smoothing operator on the yield, filtering out nar-

row “peaks” of high performance in favor of more broad
“plateaus.”

We can also build surrogates for any number of the
extracted physical quantities, such as DT fuel areal
density (ρR), the first Legendre moments of the DT
shell (P0−8) and an ignition threshold factor metric42

ITFX
.
= Y (ρR)2 (“ignition”

.
= ITFX & 1) at the time

of peak energy production (“bang time”).
Finally by combining the surrogate models, we can de-

fine a cost function for multi-dimensional optimization
that similarly weights robustness and yield:

C = 10P + ITFX. (4)

The first term in Eq. 4 finds broad areas of parameter
space that ignite, and the second term finds locations
that are high up the ignition cliff. To speed up con-
vergence toward an optimal point, we weight the first
term higher (which being a probability maximizes at 1) to
make it of similar order as the second term (which crosses
the ignition threshold at 1, but can be 10 or higher for
robustly burning designs). Furthermore, since our oper-
ational space is nine-dimensional and a single evaluation
of P requires 1000 surrogate evaluations, we opt for a
simplex based optimization algorithm43 to avoid gradi-
ent evaluations in our search for a robust design.

Optimization of Eq. 4 produces the drive shown in
Fig. 1a (additionally, the optimal point has a 0.5× gas
fill multiplier). Notably, this optimal point, which is pre-
dicted to robustly achieve high yield, has a time-varying
P2 drive asymmetry. Figure 1b compares the DT bang-
time fuel shapes as predicted by the Pn surrogate models
for both the baseline and optimal drives. Due to the time-
varying asymmetry, the optimal drive’s stagnated shape
is predicted not to be a sphere, but rather an ovoid.

The surrogates also predict that the optimal ovoid-
producing drive is more resistant than the symmetrically
driven baseline to other perturbations. Figure 2 shows
surrogate outputs for yield under changing peak drive
multiplier, represented by the total drive fluence

∫
T 4
r dt

(normalized to the baseline). This metric serves as an
estimate of the total laser energy required to achieve a
given radiation drive. To eliminate the effects of the re-
maining drive parameters, the optimal and symmetric
implosions are compared with the same gas fill, P1, and
P4 perturbations such that the change in performance is
due to the P2 drive alone. Both designs fall off in yield
as the drive is reduced. However, while adding a +2% P1

to the baseline design makes ignition impossible for any
drive in our parameter space, the location of the opti-
mal point’s ignition cliff remains unchanged at 1.05 total
fluence.

To investigate further the movement of the ignition
cliff, yield contours predicted by the surrogate are shown
in Fig. 3a for varying P2 drives on the rise to peak power
(PR

2 ) and at the end of the peak radiation drive (PP
2 ).

The overlaying white contour lines correspond to the
surrogate-predicted P2 moment of the fuel at bang time,
and the orange point indicates the location of the optimal
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FIG. 1. Comparison of the baseline and optimal radiation drives and surrogate-predicted bang time fuel shapes.
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FIG. 2. The surrogate’s estimate of yield under changing
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ence

∫
T 4
r dt/(

∫
T 4
r dt)baseline for the baseline (round) and op-

timal (ovoid) cases. Unlike the baseline, the optimal point
can ignite for fluences > 1.05, even with an applied P1.

implosion. There is a broad, high-yield ridge along a line
of compensating PR

2 and PP
2 drives, with higher yields fa-

voring a negative PR
2 and positive PP

2 . This compensat-
ing drive does not result in a round implosion, but rather
an ovoid with positive P2 (' 20%) (see Fig. 3b for the re-
constructed fuel shapes at the colored points). Under the
addition of a P1 perturbation, the high-yield ridge con-

tracts toward more extreme compensating drives. The
optimal implosion remains within the ridge boundaries,
while the round implosion falls to low yield. Additionally,
the high-yield ridge appears to extend beyond the bound-
aries of the design space, suggesting that there may exist
an implosion with higher performance than the optimal
point if more extreme compensating P2 drive perturba-
tions are considered, outside the bounds of our dataset.
In summary, the surrogate predictions in Figs. 3a and 3b
show that the optimal point sits on a topological ridge
in parameter space defined by compensating P2 drives of
opposite signs. More extreme variations in drive P2 are
more robust to other perturbations. The high-yield ridge
corresponds not to round implosions, but rather ovoids
with bang-time fuel shapes given by P2/P0 ' 20%.

III. NEW HYDRA SIMULATIONS OF THE ROBUST
DESIGN

To confirm the surrogates’ predictions of a robust
ovoid at a location not explicitly in the original sim-
ulation database, a series of 2D HYDRA simulations
were performed for the optimal point and for a symmet-
ric simulation with the same drive amplitude and gas
fill, so that any differences are due solely to the time-
varying drive asymmetry. To isolate alpha-particle boot-
strapping from hydrodynamic effects, “burn-off” simula-
tions with a reduced fusion cross-section were also per-
formed (with their total reported yields re-scaled by the
same factor for comparison to the full “burn-on” cases.)
For these conditions, the surrogate predicts 17.4 MJ for
the burn-on symmetric implosion and 15.2 MJ for the
ovoid. Firstly HYDRA confirms the predicted high per-
formance for the optimal point (Yburn−on = 16.6 MJ,
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burns at lower temperatures and higher densities than the
round implosion.

Yburn−on/Yburn−off = 355 for the ovoid vs. 17.2 MJ and
262 for round). This corresponds to a burn-on yield-over-
1D of 97%, but a burn-off yield-over-1D of only 71%.

To understand this phenomenon, we turn to Fig. 4, the
trajectories of DT burn-rate averaged temperature and
density for the round and ovoid implosions. The ovoid
implosion compresses and burns at a higher density and

lower temperature than the round case. Since the ICF
hotspot self-heating condition can be written as f(ρR) >
g(T ) for some functions f and g1, the higher density and
lower temperature ovoid burn trajectories in Fig. 4 imply
a more efficient burn process. This helps to explain the
near 1-D full burn yield.

Additionally, HYDRA shows how an ovoid shape arises
explicitly from the time-dependent implosion dynam-
ics. Asymmetric shock bounce (that begins deceleration)
seeds vorticity in the gas. The negative P2 drive on the
rise to peak power biases the capsule compression equa-
torially. As the compressed gas meets on axis, it forms
axial jets. The late time positive P2 drive prevents the
jets from escaping and the flow circles on itself, forming
two co-axial counter-propagating vortex rings, and the
hotspot organizes during stagnation into a configuration
shown in Fig. 5. As shown, the exterior shell conforms
to the vortex rings (forming an ovoid) and the central
gas between the vortexes becomes trapped in a vortic-
ity quadrupole. The hotspot is elongated, and does not
align with the high-pressure central core. Strong coher-
ent flows exist throughout the hotspot, so that the cold
dense shell on the equator accretes into the central high-
pressure region, burns, and exhausts via the poles. Inter-
estingly enough, one can estimate a single fluid element
taking ∼ 0.5 ns to make a complete revolution of the ed-
dies shown in Fig. 5, longer than typical (. 0.1 ns) ICF
burn and disassembly times.

These flows appear to nonlinearly suppress the growth
of hydrodynamic instabilities. Figure 6 shows the upper
right section of the stagnating shell for a burn-off ovoid
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of peak energy production for a burn-off HYDRA simulation of the ovoid implosion.

implosion with added roughness on the inner ice surface
(at NIF ignition specifications11) and a perturbation on
the ablator surface due to the capsule support tent (cali-
brated to a 100 nm tent on an HDC capsule44). Two key
distortions are worth noting. Firstly, a large on-axis jet,
originally seeded by ice surface roughness, is entrained
in a large axial flow field, directed down toward the cen-

tral hotspot. Secondly, the shell has a visible low-density
“scar” due to the tent. However, the background flow
meets the axis jet head-on, forms a high velocity (> 300
km/s) shearing layer and directs the jet away from the
hotspot. The same shear layer directs the flow field tan-
gential to the tent scar, reducing convective loss through
the tent hole.
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tion perturbed with ice layer roughness and capsule support
tent membrane. The background flows set up a high-velocity
shear layer (thick arrows) that mitigates the effects of the
perturbations during stagnation.

FIG. 7. The local shearing rate of the eddy in Fig. 6 is
larger than both the deceleration Rayleigh-Taylor growth rate
(Eq. 1) or the shell breakup rate (Eq. 5).

The shearing in Fig. 6 appears strong enough to com-
pete with shell distortions that occur during decelera-
tion. The local shear rate can be estimated as the ra-
tio of the local velocity to the eddy size. The eddy in
Fig. 6 is roughly 5 µm across with an average velocity of
(150 + 300)/2 = 225 µm/ns, which gives a shearing rate
of 45 ns−1. Meanwhile, perturbations on the shell evolve
at a characteristic rate that can be estimated as either
the RT growth rate (given by Eq. 1) or the inverse of the
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shell breakup time τ45:

τ =

√
2πR (ρR)shell

lPstag
, (5)

for some mode number l = kR on a shell with areal den-
sity (ρR)shell stagnating against a hotspot with pressure
Pstag. Figure 7 shows that the eddy shear rate is larger
than both rates predicted by Eqs. 1 and 5, suggesting
that the shear flows present in the ovoid are potentially
strong enough to impact the growth of shell perturba-
tions during capsule deceleration.

Overall, these ovoid implosions can tolerate larger dis-
tortions than their round counterparts. Figure 8 shows
contours of yield > 1 MJ for the round and ovoid implo-
sions with varying levels of applied P4 asymmetry and
tent amplitude. The performance of both implosions
falls off with increasing perturbation strength, but the
ovoid implosion maintains high yield for a larger param-
eter range. For instance, the ovoid produces > 9 MJ with
a 300 nm tent and +3% P4, where the round implosion
fails to ignite.

In all, these new simulations confirm the surrogates’
predictions of an asymmetric ovoid implosion that is
more resilient to perturbations than symmetrically driven
one-dimensional designs.

IV. DISCUSSION AND CONCLUSIONS

In summation, we report the discovery of a new class
of ICF implosions, which were found with machine learn-
ing techniques as applied to the largest ensemble of ICF
simulations to date. Firstly, these implosions are ovoid in
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shape, challenging the philosophy behind formalisms like
Eq. 2 that suggest spherical implosions uniformly out-
perform aspherical ones. Secondly, they are intentionally
driven by strong time-varying drive asymmetries, which
serve to set up large-scale coherent convective flows at
stagnation. Thirdly, they are more robust than spher-
ical implosions to shell perturbations from either drive
asymmetries or the hydrodynamic growth of smaller-
scale shell imperfections, perhaps due to locally strong
shearing rates induced by said flows.

Although the ovoids challenge the notion that the ideal
implosion is symmetric (that asymmetries always de-
grade performance), they are not inconsistent with some
studies46 and anecdotal observations47,48 of improved
performance with positive P2 shapes.

Interestingly enough, our results may be related to
other naturally occurring phenomena. The key features
of the ovoid are the large-scale convective flows that cir-
culate into the hotspot on the equator and out via the
poles. In fluid dynamics, the upper and lower solu-
tions are repelling circular vortexes49 (like smoke rings
and mushroom clouds) joined by a Burger’s vortex at
the origin50, all of which are axially symmetric 3D fluid
solutions with increased stability at low Reynolds num-
bers51,52, like those expected in ICF hotspots53.

This flow pattern is similar to that proposed to exist
in the Jovian core that drives the large zonal flows on the
planet’s surface30. Zonal flows also play a prominent role
in the stabilization of magnetic fusion drift wave turbu-
lence31. These waves, like the Rossby waves in planetary
atmospheres experience an inverse cascade phenomenon,
in which small scale perturbations can nonlinearly couple
energy into larger scales. As such, larger scale flows can
serve as energy sinks for smaller scales by shearing away
perturbations as they grow.

The ovoid implosions could be experiencing a similar
process. In this scenario, since nonlinear Rayleigh-Taylor
bubble merger54 can be thought of as an inverse cascade
process (smaller bubbles merge into large bubbles), the
stabilization of small-scale perturbations by larger scale
flows could occur during the capsule stagnation phase.
From this view, the flow fields induced in the ovoid im-
plosion protect the hotspot from shell imperfections dur-
ing stagnation by serving as an energy sink for smaller
scale shell instabilities, shearing away unstable shell im-
perfections. In other words, the central hotspot is not
in a hydrostatic equilibrium, but rather a nonlinear hy-
drodynamic one, dominated by coherent convective flow.

That zonal flows could be induced in ICF implosions
is an interesting prospect, because they would allow for
a nonlinear mechanism for the stabilization of stagnat-
ing shells. However, this stabilization would not come
without a price, as Fig. 2 shows that the required en-
ergy to ignite an oval implosion is indeed higher than a
perfectly spherical implosion (roughly 8%). In this sense,
the ovals intentionally contain a finite amount of residual
hotspot kinetic energy at stagnation, but that energy is
coherently organized in a stabilizing flow pattern, trading

one-dimensional margin for robustness in higher dimen-
sions.

Such a new class of implosions opens many avenues of
future work. First, the exact and optimal generation con-
ditions of ICF zonal flows must be explored. An analytic
model of stagnation that includes these nonlinear flows
could be extremely helpful in that regard. Additional an-
alytic work would involve mapping out and exploring the
turbulent energy channels that govern the interactions of
the zonal flows and smaller scale shell perturbations.

Additional increasingly complex simulations are also
warranted. Although our simulations impose an axisym-
metric constraint and are limited to two-dimensional con-
figurations, both the Burger’s vortex and the spherical
vortex are stable axisymmetric configurations that ex-
ist in natural (3D) systems (for instance, smoke rings).
Variations on these flows also exist in 3D, often with ro-
tation about the z-axis (as in hurricanes and tornados).
Exploring the stability and generation of these configu-
rations in 3D is therefore a top priority. Furthermore,
these flow patterns are likely to induce magnetic fields,
which may alter the stability properties of the implosion
(or perhaps offer a means of experimentally diagnosing
their existence55). It is also yet to be seen if these implo-
sions are more or less sensitive to variations and uncer-
tainties in other physics models, such as thermal conduc-
tivity, equations of state, viscosity, implosion adiabat, or
velocity. Again, this is another area where an analytic
stagnation flow model may prove useful.

Finally, it may be possible to experimentally cre-
ate these implosions on current facilities. Near-vacuum
hohlraums (NVH)56, which are designed to counter a
late-time polar drive with early time equatorial drive,
may already operate near this regime (indeed similar flow
patterns have been observed in some integrated NVH
simulations of current NIF designs57). The predicted ex-
istence of a high-yield ridge in parameter space could be
tested with a controlled experimental campaign that uses
the ratio of the powers on NIF’s inner and outer cones
to independently vary the x-ray P2 during the rise and
peak of the laser pulse. Furthermore, given their inher-
ent asymmetry, these configurations may be approach-
able in a NIF polar direct drive configuration58. Mapping
out the experimental signatures of zonal flow dominated
hotspots is therefore another priority.

In conclusion, we report the discovery of a class of high-
performing asymmetric implosions that are more robust
to drive and shell perturbations than those driven sym-
metrically. Suggested by a machine learning algorithm
trained on a large simulation dataset, their existence not
only opens the possibility of a new type of counterintu-
itively stable implosion, but also demonstrates the po-
tential benefits of augmenting physics studies with data
science.
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R. V. Mises and T. V. Kármán (Elsevier, 1948) pp. 171 – 199.
51T. Maxworthy, Journal of Fluid Mechanics 51, 15 (1972).
52A. Prochazka and D. I. Pullin, Physics of Fluids 7, 1788 (1995).
53C. R. Weber, D. S. Clark, A. W. Cook, L. E. Busby, and H. F.

Robey, Phys. Rev. E 89, 053106 (2014).
54D. Sharp, Physica D: Nonlinear Phenomena 12, 3 (1984).
55R. Betti, private communication (2016).
56L. F. Berzak Hopkins, S. Le Pape, L. Divol, N. B. Meezan, A. J.

Mackinnon, D. D. Ho, O. S. Jones, S. Khan, J. L. Milovich, J. S.
Ross, P. Amendt, D. Casey, P. M. Celliers, A. Pak, J. L. Peterson,
J. Ralph, and J. R. Rygg, Physics of Plasmas 22, 056318 (2015).

57L. F. Berzak Hopkins, private communication (2016).
58S. Skupsky, J. A. Marozas, R. S. Craxton, R. Betti, T. J. B.

Collins, J. A. Delettrez, V. N. Goncharov, P. W. McKenty, P. B.
Radha, T. R. Boehly, J. P. Knauer, F. J. Marshall, D. R. Harding,
J. D. Kilkenny, D. D. Meyerhofer, T. C. Sangster, and R. L.
McCrory, Physics of Plasmas 11, 2763 (2004).


