
RMA-MT: A Benchmark Suite for Assessing MPI
Multi-threaded RMA Performance

Matthew G. F. Dosanjh, Taylor Groves, Ryan E. Grant, Ron Brightwell
Center for Computing Research
Sandia National Laboratories*

Albuquerque, USA
{mdosanj,tgroves,regrant,rbbrigh}@sandia.gov

Patrick G. Bridges
Department of Computer Science

University of New Mexico
Albuquerque, USA

bridges@cs.unm.edu

Abstract—Reaching Exascale will require leveraging massive
parallelism while potentially leveraging asynchronous communi-
cation to help achieve scalability at such large levels of concur-
rency. MPI is a good candidate for providing the mechanisms
to support communication at such large scales. Two existing
MPI mechanisms are particularly relevant to Exascale: multi-
threading, to support massive concurrency, and Remote Memory
Access (RMA), to support asynchronous communication. Unfor-
tunately, multi-threaded MPI RMA code has not been extensively
studied. Part of the reason for this is that no public benchmarks
or proxy applications exist to assess its performance.

The contributions of this paper are the design and demon-
stration of the first available proxy applications and micro-
benchmark suite for multi-threaded RMA in MPI, a study of
multi-threaded RMA performance of different MPI implemen-
tations, and an evaluation of how these benchmarks can be used
to test development for both performance and correctness.

I. INTRODUCTION

One-sided communication is a promising communication
mechanism for extreme scale systems due to its ability to de-
couple data movement from synchronization. Similarly, multi-
threaded communication is a promising mechanism for dealing
with the increasing parallelism expected at Exascale. However,
the combination of these two mechanisms has not received
much attention, despite the fact that they may be deployed
together in future systems.

The combination of one-sided communication and multi-
threading is particularly attractive because of synchronization
costs. In particular, one-sided communication decouples the
transport of data from synchronization, while multi-threaded
program performance can be heavily impacted by unnecessary
synchronization. By coupling the two, a high-performance
program can potentially synchronize only when necessary,
using the shared memory space exposed through an MPI RMA
window, as opposed to incurring unnecessary synchronizations
resulting from the use of two-sided communications.

This paper described RMA-MT, a suite of micro-
benchmarks and mini-applications that are the first to en-
able the study of MPI RMA with multi-threading enabled

*Sandia National Laboratories s a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

(MPI_THREAD_MULTIPLE). It then uses the benchmarks
and miniapps to demonstrate the multi-threaded RMA per-
formance of a production version of MVAPICH. In addition,
it demonstrates how this benchmark suite can and already
has been used for development of future MPI releases in the
development trunk of Open MPI.

To the best of the authors’ knowledge, code utilizing multi-
threaded RMA MPI has not been available to the public
until now. The RMA-MT benchmark suite offers four micro-
benchmarks and three miniapplications to assess the perfor-
mance of multi-threaded RMA. These benchmarks can be used
to both test MPI implementations, as well as provide a basis
for the beginnings of performance optimization for MPI multi-
threaded RMA. RMA-MT offers bandwidth, latency, and two
message rate micro-benchmarks.

The message rate micro-benchmarks are built from the
Sandia Microbenchmarks (SMB) [5] and offer two modes
of operation to assess performance. First, they provide a
peer-to-peer message rate assessment that supports multiple
pairs of peers communicating in one direction from a set of
origin peers to a set of target peers. Second, they provide a
halo-exchange mode in which message rate in a typical halo
exchange is measured. The modifications to these benchmarks
involved re-architecting the benchmark to be multithreaded
and replacing the two sided communication with one-sided
calls. The bandwidth and latency tests are heavily modi-
fied versions of MPI multi-threaded tests by Thakur and
Gropp [17], which add in RMA capabilities. The modifications
to these microbechmarks included re-architecting them to use
RMA and data verification to explore the correctness of the
implementation.

In addition, the suite provides three multi-threaded RMA
mini-apps: HPCCG, MiniFE and MiniMD. These mini-apps
represent key portions of real applications used in production
today. The miniapplications required overhauling their com-
munication phases to use RMA-MT. They are the first multi-
threaded RMA mini-apps of which we are aware, and their
design demonstrates how such codes could be adapted to take
advantage of multi-threaded MPI RMA. As no significant pub-
licly available codes operate in such a manner, this provides
the community an important new foundation for testing and
reference purposes.

SAND2016-2383C



This paper is structured as follows: Section II reviews
MPI RMA and multi-threading modes available in MPI,
providing background for this work. Section III discusses
the miniapps and micro-benchmarks in depth, detailing their
design and the considerations taken into account during the
design process. Section IV expounds on our experimental
design and environment for running the evaluation section
of this paper. Sections V and VI show the results of testing
with the micro-benchmarks on a large production system.
Section VII concludes the results portion of the paper with an
assessment of three mini-apps; HPCCG, miniFE and miniMD.
Section VIII provides details of the related work. Finally,
Section IX draws conclusions and discusses plans for future
work.

II. BACKGROUND

A. MPI RMA

MPI first provided a one-sided communication inter-
face in the MPI 2.0 specification [10]. It provided three
synchronization methods for RMA: MPI_Win_fence,
MPI_Win_lock, and “Post/Start/Complete/Wait” (PSCW).
MPI RMA works by allowing one-sided put, get, and accu-
mulate operations on shared windows of memory during an
exposed time period, or epoch. Synchronization must occur
between different epochs to ensure that the memory window
is in a determinant state. This synchronization is key to enable
reasoning about the current content of memory and its use in
an application. The three provided synchronization methods
can be divided into two basic types, active target synchroniza-
tion and passive target synchronization. MPI_Win_fence
and PSCW both require the target of the RMA operations
to participate in the operations through a call to fence or
Post/Wait calls, and are therefore active target synchronization
methods. MPI_Win_lock does not require that the target
call lock, only the origin, and therefore is a passive target
synchronization method.

The 2.0 RMA approach was somewhat lacking in flexibility.
Because of this, the one-sided (RMA) interface was updated in
the MPI-3 specification releases [13]. MPI_Win_lock_all
was introduced to solve two problems. First, MPI-2 required
that when using locks only one target could be locked at any
given time. This was resolved with MPI_Win_lock_all
as it allows an origin to obtain a shared lock on multiple
targets at the same time. Second, finer grained data movement
synchronization was provided through the MPI_Win_flush
call that allows for assurance that remote operations on the
window were complete. Also added in MPI 3.0 were request
generating RMA operations (MPI_RPut etc.), new memory
models (unified vs. separate), and new window types. The
new window types enabled windows that can attached to
memory after creation, windows with memory allocated by
MPI, and shared memory windows. This paper focuses on
the basic operation of RMA in MPI with multi-threading and
as such does not explore memory models or window types
in great depth. The interested reader is referred to [3] for

more information on these RMA features and a history of
their development.

B. MPI Multi-threading

MPI provides several threading modes. The default thread-
ing mode, MPI_THREAD_SINGLE, requires the guarantee
that each process has only one execution thread at all
times. MPI_THREAD_FUNNELED relaxes the single thread
requirements by allowing multiple execution threads but
requires that only one thread, specifically the one that
called MPI_Init_thread, be the only thread that can
make MPI calls. MPI_THREAD_SERIALIZED further re-
laxes guarantees by allowing multi-threaded processes and
allowing any thread to call MPI but guaranteeing that only
one thread at a time can make MPI calls (serialization
is assured outside the MPI library). Finally, MPI provides
MPI_THREAD_MULTIPLE which allows for multi-threaded
processes and any thread may call MPI and they may do
so concurrently. Some MPI implementations opt to treat the
single, funneled, and serialized threading models similarly, as
they all guarantee that only a single thread is in the MPI library
at any given time.

MPI has provided MPI_THREAD_MULTIPLE, beginning
in MPI-2.0 [10]. MPI_THREAD_MULTIPLE is not widely
adopted, and consequently the multi-threaded mode of MPI is
not yet heavily tuned in MPI implementations. MPI RMA with
multi-threading is not widely used due to a lack of benchmarks
and application code utilizing the combination of methods.
However, with new proposals to allow for more exposure of
threads to MPI, such as the MPI Endpoints work [4], [15], the
use of multi-threaded MPI may increase. RMA is a promising
communication mechanism for future extreme scale systems;
therefore, it is reasonable to predict that multi-threaded RMA
may be used in future MPI programs. This paper seeks to
provide, to the best of the authors’ knowledge, the first pub-
licly available MPI RMA multi-threaded micro-benchmarks.
These micro-benchmarks will provide the foundation to begin
optimizing RMA thread multiple as application developers
explore alternative MPI communication and threading models
in the future.

III. BENCHMARKS AND MINI-APPLICATIONS

This work introduces four micro-benchmarks and three
mini-applications to evaluate different aspects of RMA per-
formance and how it affects application performance. In this
section, we describe the various elements of the resulting suite.

A. Benchmarks

The RMA-MT test suite includes four micro-benchmarks:
• latency,
• bandwidth,
• single direction message rate, and
• halo exchange message rate.
The goal of these micro-benchmarks is to measure the per-

formance difference between multi-threaded RMA operations
using the default locking scheme of MPI and a reduced locking



scheme. For each benchmark, four different synchronization
methods (fence, PSCW, lock/unlock, and lock all/unlock all)
and two RMA operations (Put and Get) are explored. Ad-
ditionally, these micro-benchmarks allow evaluation of the
effectiveness of multi-threaded RMA operations for a varying
thread count and message size.

The RMA synchronization methods used in the micro-
benchmarks cover all four common methods: fence,
lock/unlock, lockall/unlockall, and post/start/complete/wait. It
is important to note that RMA synchronization cannot be
called on the same window from multiple threads. This is
because the RMA synchronization is done at per-rank level.
To avoid calling these synchronization methods multiple times
per rank, thread-level synchronization is used. When each
thread is launched, it updates a simple counter and waits for
a broadcast from the parent thread, which signifies that all
threads have been created and are ready to begin message
transfer. Once each Put/Get thread is waiting, the original
thread begins the timer, broadcasts to the Put/Get threads to
continue, and runs the RMA synchronization. This method
of timing is used to avoid measuring the extra time involved
in creating and starting threads. While this is more idealized
than would be expected in real applications, the overall thread
creation overhead should be relatively small when using a
thread pool for performing communication.

1) Latency: RMA operations are not ideal for latency
operations due to the overhead of synchronization and that
latency tests measure the round trip time of a single message.
Despite these shortcomings, a simple multi-threaded latency
test is included in the RMA-MT benchmark suite, which
provides some insight into the impact multiple threads has
on message latency.

For this benchmark, each thread is launched and waits for a
broadcast from the parent thread before beginning a single
data transfer. This removes any artifacts of initializing the
threads. After the call to the non-blocking data transfer, each
thread waits for an additional broadcast. Receipt of the second
broadcast signifies that all child threads have completed a data
transfer and that the initial thread has completed the RMA
synchronization.

2) Bandwidth: The bandwidth micro-benchmarks evaluate
the potential bandwidth for different RMA synchronization
schemes with a varying number of threads. The tests perform
a large number of put or get calls between synchronization
calls and bandwidth is measured over all iterations. For RMA
operations, bandwidth is important to typical use cases because
multiple data transfers can utilize a single RMA synchroniza-
tion, amortizing the cost. The RMA-MT bandwidth micro-
benchmarks do not “warm-up” the caches before commencing.
Therefore, the resulting average bandwidth reflects this warm-
up penalty.

Similar to the latency test, each thread launched by the
parent thread waits for an initial broadcast, which signifies
that RMA synchronization has occurred. This also signals
that all data transfer threads have been launched and are
ready to transfer data. Once receiving the broadcast, each data

transfer thread performs multiple iterations of put or get to
the shared target buffer offset by its thread ID. Following the
completion of the data transfer operations, each thread waits
for a second broadcast, signifying the completion of a closing
RMA synchronization.

3) Message Rate: Message Rate is a subset of the
RMA-MT micro-benchmarks, based on the Sandia Micro-
benchmarks [5]. Single threaded, two-sided versions of the
SMB’s have been used in past work [1], [2]. These tests look
at different message sizes, peer counts, and two different com-
munication patterns. For this work, applicable communication
patterns were extended to evaluate RMA synchronization
methods, RMA transfer methods and multiple threads. Com-
munication patterns dealing with two-sided specific commu-
nication were not relevant to RMA communication and were
not extended. The synchronization methods in these tests are
fence, lock, PSCW, and lockall. The lockall implementation
calls flush after every transfer operation, to provide multi-
threaded progress.

a) Message Rate (Single Direction): The single direction
communication pattern looks much like the bandwidth test. It
starts up sender ranks that communicate with a paired receiver
rank. The primary difference between the two is that single
direction uses larger number of ranks. It uses these ranks to
test the communication of group of nodes, rather than being
limited a single pair.

b) Message Rate (Halo Exchange): The halo exchange
test emulates application behavior by implementing a com-
monly used communication pattern. This test has every rank
transfer data to a number of neighbors. In the default case,
the benchmark communicates with six neighbors. Due to it’s
prominence in HPC applications, three of the four two-sided
Sandia Micro-benchmarks use this communication pattern,
with different variations in the manner and order in which
sends and recvs are posted. For the RMA-MT versions of
the halo exchange tests, only one version was needed to map
to RMA, since RMA doesn’t have an unexpected message
equivalent.

B. Miniapps

This subsection presents the modifications made to a sub-
set the Mantevo Suite [9]. We focused on three Miniapps:
HPCCG, MiniFE, and MiniMD. These were selected to
stress the diversity of problems that can use RMA and
to stress the RMA components of an MPI implementa-
tion in different ways. HPCCG was implemented using the
Lock all/Unlock all to test the most recent synchronization
method. This was added in MPI 3.0 to support passive target
RMA. MiniFE and MiniMD both use Fence as it fits well
with the design of those miniapps and was performant in the
microbenchmarks tests, especially for MVAPICH.

1) HPCCG: HPCCG is a conjugate gradient code focusing
on the sparse iterative solver. It is designed to be very scalable
and is approximately 3100 lines of code. It uses a halo
exchange communication on a 27-point stencil. Therefore,



this communication pattern is somewhat similar to the mes-
sage rate halo-exchange micro-benchmark, however this mini-
app performs calculation and only communicates at message
sizes that are relevant to the computation. In order to adapt
HPCCG to use RMA data transfers with multi-threading, each
ranks spawns a communication thread per neighbor in the
halo-exchange. Each process creates a thread for each of
the neighbors it needs to communicate with and then uses
that thread to drive the traffic solely to that neighbor. This
means the number of threads created is not an independent
variable for the results shown for this mini-app. The message
size used in the MPI_Put is the same as those used in
the MPI_Isend in the two-sided version of the mini-app.
HPCCG uses lock all/unlock all synchronization semantics.

2) MiniFE: MiniFE is a finite elements code and is similar
to HPCCG because it focuses on a similar problem, but it has
substantially more features. The code is around 8000 lines. Its
main loop, much like HPCCG, is a conjugate gradient solver.
Again, MPI_Put calls replace the MPI_Isend. MiniMD
uses fence synchronization semantics.

3) MiniMD: MiniMD is a molecular dynamics code fo-
cused on recreating the behavior of LAMMPS. The code is
under 3000 lines. It’s limited to Leonard Jones pair interac-
tions. MiniMD uses two communication phases per iteration.
The first being a forward communication, and the second being
a reverse communication. In both cases, we have replaced the
MPI_Isend call with MPI_Put. MiniMD like MiniFE uses
fence synchronization semantics.

IV. EXPERIMENTAL METHODOLOGY

All of the tests were run on a Skybridge production cluster,
which consists of 1,848 dual-socket nodes (totaling 29,568
cores). Each node contains 2X Intel E5-2670, 2.60GHz, 8-
core processors with 64 GiB (32 per socket) of DDR3-1600,
memory. Each node is connected by a Qlogic onload 4X QDR
IB interconnect across a Fat Tree topology. The fabric utilizes
three 648-port core switches and 108 36-port edge switches
(both Qlogic).

There are two versions of MPI used for the tests. For
MVAPICH, we used the 2.1 release downloaded from the
official website. For Open MPI, we used a copy of the v2.x
branch of the ompi-release candidate development repository
on GitHub pulled on October 20th 2015. Both were compiled
using Intels 15.0.4 compilers, and unless noted otherwise, were
compiled with THREAD MULTIPLE support. MVAPICH
was compiled using the ch3:psm netmod, while Open MPI
was given the runtime flags to specify the use of the openib
Byte Transfer Layer (BTL), due to development issues with
the PSM Message Transfer Layer (MTL).

All versions of the micro-benchmarks used many hundreds
of iterations within the test. Each test was run 10 times. The
results presented are the average of those 10 runs in each
figure in Sections V and VI. All figures shown include vertical
bars, although some may not be visible due to small standard
deviations. For the miniapp runs, 3 runs were performed. All
results are the average of those 3 runs, with applicable error

bars for the standard deviation. While thread creation could
be expected to introduce variance that would result in larger
standard deviations than presented in the following sections,
the overheads of thread creation and joining are not included
in the performance results of the micro-benchmarks. As the
overheads due to thread creation/destruction can be highly
variable depending on the approach to threading used. For
example, thread pools have lower overheads than on-demand
creation/destruction of threads.

V. SINGLE THREADED RESULTS

Single threaded comparisons between one-sided and two-
sided communication in MPI have been explored before. We
primarily include the results of figure 1 to inform the reader
of the baseline performance values for the system under test.

In these figures, we reduce the amount of information
displayed by only presenting the best performing single-thread
synchronization methods for one-sided communication. When
reviewing the bandwidth performance of MVAPICH, the best
synchronization is Lock All, which has 2.1% greater through-
put on average across all message sizes than the next best
performing synchronization method (Lock). When comparing
maximum throughput, Lock All has a 4.0% increase over the
next best method (Lock). In the case of Open MPI, the best
performing synchronization in terms of bandwidth is PSCW,
which is 1.3% greater on average across all message sizes
than the next best method (Lock). The maximum throughput
of PSCW is 1.4% greater than the next best synchronization
method (Lock).

While the differences between one-sided synchronization
methods are small for single threaded communication, we see
more significant differences when comparing one-sided versus
two-sided bandwidth. There are sudden dips in bandwidth for
all the series, with the exception of Open MPI PSCW, as
different eager/rendezvous thresholds are activated. The Open
MPI revision used for these tests implemented RMA using
two sided network calls and has since been updated. Of all
the single thread techniques evaluated, Open MPI achieves the
best peak bandwidth using one-sided PSCW, just surpassing
3 GiB/s.

In the case of the single threaded latency results, again, we
only display the best performing synchronization method. For
MVAPICH this is PSCW, which has 2.6% decrease to latency
on average than the next best performing synchronization
method (Fence). When comparing minimum latency, PSCW
has a 5.2% decrease over the next best method (Fence). In the
case of Open MPI, the best performing synchronization is also
PSCW, which saw a decrease to latency of 12.4%, averaging
across all message sizes than the next best method (Fence).
The minimum latency of PSCW is 23% less than the next best
synchronization method (Fence).

While our benchmarks sample message sizes at powers of
two, we match the sampling of the original multi-threaded MPI
benchmarks [17], which lack samples between 1 and 16 Bytes.
In both cases of MVAPICH and Open MPI, the latency of one-
sided operations is significantly worse than the latency of two-



b
a

n
d

w
id

th
 (

M
iB

p
s
)

msg. size per process (B)

OMPI Bandwidth (single thread, one and two sided)

OpenMPI Two Sided OpenMPI PSCW

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8 16 32 64 128
256

512
1KiB

2KiB
4KiB

8KiB
16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

la
te

n
c
y
 (

s
)

msg. size. per process (B)

OMPI Latency (single thread, one and two sided)

OpenMPI Two Sided OpenMPI PSCW

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

1 16 32 64 128
256

512
1KiB

M
e

s
s
a

g
e

 R
a

te

Message Size (Bytes)

Mesage Rate, OMPI, halo exchange, 8 node, thread single

OpenMPI Two Sided OpenMPI Fence

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

8B 16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

b
a

n
d

w
id

th
 (

M
iB

p
s
)

msg. size per process (B)

MVAPICH Bandwidth (single thread, one and two sided)

MVAPICH two-sided MVAPICH lock-all

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 4 8 16 32 64 128
256

512
1KiB

2KiB
4KiB

8KiB
16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

la
te

n
c
y
 (

s
)

msg. size. per process (B)

MVAPICH Latency (single thread, one and two sided)

MVAPICH Two Sided MVAPICH PSCW

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

1 16 32 64 128
256

512
1KiB

M
e

s
s
a

g
e

 R
a

te

Message Size (Bytes)

Mesage Rate, MVAPICH, halo exchange, 8 node, thread single

MVAPICH Two Sided MVAPICH Lock

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

8B 16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

Fig. 1. Single threaded one sided and two sided bandwidth, latency, and message rate of MVAPICH and Open MPI for varying message size.

sided operations, which is somewhat expected as the maturity
of the one-sided code in MPI implementations is significantly
less than that of the two-sided communication code path. In
these experiments the best observed latency was seen in two-
sided MVAPICH (1.8µs).

For the message rate halo exchange results, we also only dis-
play the best synchronization method. For Open MPI, the best
was Fence, which did an average of 1.7% better than PSCW
and 12.9% better than Lock. For MVAPICH, Lock showed the
best performance, doing 12.1% and 11.8% better than Fence
and PSCW respectively. One anomaly in these results is the
spike in MVAPICH Performance at 2KiB message size. This is
also observed in Section VI and we will discuss it further there.
For messages smaller than 2KiB, MVAPICH provided one of
the few instances of RMA message rate performance exceeds
the two sided baseline. For those message sizes, MVAPICH
Lock does an average of 21.4% better than the baseline.

VI. MULTI-THREADED BENCHMARKS

In this section, we illustrate the use of our benchmark suite
and how it can provide insights about the underlying system.
We present and analyze the results of bandwidth, latency, and
message rate benchmarks for varying message sizes, thread
counts and MPI distributions. We have split these results into
two separate sections by MPI distribution and caution the
reader against making any comparison between the MVAPICH
and Open MPI distributions for multi-threaded runs. These
results shouldn’t be compared for two reasons. First, the
evaluated version of Open MPI is not a released version and
is currently under development. This version is not currently
fully tested and on occasion our experiments fail. Of course,
these failed runs have not been included in the performance

results. We have included a discussion of these failures at
the end of this section to illustrate the ability of our bench-
marks to evaluate correctness and functionality in addition to
performance. Secondly, the system benchmarked (Skybridge)
utilizes Qlogic onload network cards, which utilize the PSM
interface in MVAPICH. For Open MPI, because we ran into
functionality issues the RMA-MT in the PSM MTL, we used
the OpenIB BTL instead. These interfaces represent different
levels of optimization for the underlying hardware. Because
of this, a comparison between the two distributions may be
misleading, and as the goal of examining Open MPI was not
to assess performance as much as it was to use the benchmarks
and mini-apps to demonstrate their utility in debugging and
improving MPI implementations in development.

A. MVAPICH Release

1) Bandwidth: Our results from MVAPICH only reported
minor differences in throughput when comparing different
synchronization methods. For brevity, we only include the
plot for the Lock All synchronization method because there
is less than a 2% difference in average throughput across
synchronization methods. As a disclaimer, we should note
that the code paths for offload cards in MVAPICH have had
more effort put into performance optimizations for one-sided
communication, such that synchronization methods become
a contributing factor to performance. In figure 2 the results
require close examination; we see that the dips and peaks
in throughput occur as each series reaches the same per-
thread message size. To elaborate, as each thread reaches
the point where it sends 16 KiB of data, we see a sharp
reduction in throughput. This occurs at 16 KiB for single
thread results 32 KiB for two threads, and so on. Overall as we



b
a
n
d
w

id
th

 (
M

iB
p
s
)

msg. size per process (B)

Multithread MVAPICH Bandwidth (lockall)

1 thread
2 thread
4 thread

8 thread
12 thread
16 thread

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8 16 32 64 128
256

512
1KiB

2KiB
4KiB

8KiB
16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

Fig. 2. MVAPICH bandwidth results for one-sided (lockall) communication
with varying thread counts.

increase the number of threads to 16, we see a 19% reduction
in throughput. This occurs because the overheads of coarse
grained locks that become larger as thread counts increase.

2) Latency: The results of figures 3(a) & 3(b) show that for
small message sizes, there are significant differences to latency
across the four synchronization methods and thread counts.
Specifically, we see that PSCW and fence both outperform
Lock and Lock All performance significantly. PSCW achieves
44% and 27% of Lock All latency at 1 and 16 threads, re-
spectively. For PSCW and Fence, we see a increase to latency
of almost 5X or 88 and 90 µs respectively, as we increase
the thread count from 1 to 16 threads. Lock and Lock All
see an increase to latency of almost 8X or 303 and 365 µs
respectively, as the number of threads increase from 1 to 16.
Because there was not a significant difference in bandwidth
across the synchronization methods in the previous section,
the benchmark suite suggest that either PSCW or fence are
preferred for the given system when using MVAPICH.

3) Message Rate: Figure 4 presents the results of the halo
exchange message rate benchmark when run under MVA-
PICH. The single direction version of this micro-benchmark
has been omitted for space concerns. This figure shows the
total message throughput of the benchmark for each of the
synchronization methods. For space concerns only the RMA
Get transfer mechanism is shown. It should be noted that the
two sided baseline shown in each graph is a special case, as
it is run under a single threaded instance of MPI where the
multithreading has been turned off at compile. This was done
to compare RMA-MT to a current day implementation.

In figure 4(a) we can see the effect of the extra process
level synchronization of running under thread multiple. Fence
and PSCW were very similar, on average there was 2.3%
difference between the two. For small messages under 2KiB,
Fence, Lock, and PSCW didn’t show significant differences in
message throughput. Lock-All on the other hand, performed
significantly worse, averaging 49.5% throughput compared to
the baseline, while the others averaged 85.9%. Fence and
PSCW handled large messages the best out of all synchro-

nization methods, with fence achieving a message rate that
was 47.4% of the single threaded baseline.

Figure 4(b) shows the message rate throughput when run
on a thread per core. As shown in the graph, large message
rate throughput is roughly the same, which makes sense given
that the bottleneck quickly becomes the network, rather than
the MPI implementation itself. For small messages, there is a
large reduction in performance for Fence, Lock/Unlock, and
PSCW. Fence, for instance has average throughput of 68.2%
compared to the version with one thread.

The most unexpected result from this series of tests is
the spike in message rate for the baseline, Lock, and PSCW
at 2KiB. While bandwidth is expected to fluctuate in both
directions at the message size increases, message rate (which
is normalized for message size should go down. The increase
is unexpected, but has been confirmed in other work examining
RMA message rate for MVAPICH2 [7].

B. Open MPI development branch

1) Bandwidth: This section presents results about the per-
formance for different synchronization methods, thread counts
and message sizes of the chosen distribution. The keen reader
may observe the lack of Lock All data in this section. In our
experiments, we found the Lock All synchronization method
of this development branch failed too frequently at high
thread counts to confidently display results for, therefore it
is excluded.

Examining the results of figure 5(a)-5(b), it is evident that
for single threads, the bandwidth at 1MiB is extremely close
across the different synchronization methods (3065, 3062, and
3077 MiB/s for Lock, PSCW and Fence, respectively). How-
ever, we can see that when using 16 threads, synchronization
method plays an important role in the observed bandwidth,
with Fence seeing a decrease of 573 MiB/s or 21% compared
to Lock. Focusing on Fence, as we scale up the number of
threads from 1 to 16, we see a decrease to bandwidth of 849
MiB/s or 28%.

2) Latency: The results of Open MPI latency (shown in
figure 6(a)-6(b)) tell a different story than the bandwidth
results earlier. For small message sizes (under 1KiB) we see
that fence and PSCW provide significantly better latency at
high thread counts, with PSCW providing the best latency
overall. In the worst case (Lock), we see that as we increase
thread count from 1 to 16, we see an increase of 235 µs or
6X. In the best case of PSCW, the increase is only 102 µs
or 5X. Importantly, our benchmark suite shows that PSCW is
preferred when using Open MPI to achieve the both the best
bandwidth and latency.

3) Message Rate: Figure 7 presents the results of the halo
exchange message rate benchmark when run under Open MPI.
It should be noted that the two sided baseline shown in each
graph is a special case, as it is run under a single threaded
instance of MPI where the multithreading has been turned
off at compile. This was done to compare RMA-MT to a
current best practices for running MPI. Again, Fence and
PSCW performance was very similar (within 3.2% of each



la
te

n
c
y
 (

s
)

message size per process (B)

Multithread MVAPICH Latency - 1 Thread

Fence
Lock

PSCW
Lock All

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

1 2 4 8 16 32 64 128
256

512
1KiB

la
te

n
c
y
 (

s
)

message size per process (B)

Multithread MVAPICH Latency - 16 Threads

Fence
Lock

PSCW
Lock All

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

16 32 64 128
256

512
1KiB

Fig. 3. MVAPICH latency results for various one-sided synchronization methods and thread counts.

M
e
s
s
a
g
e
 R

a
te

Message Size (Bytes)

Mesage Rate, MVAPICH, halo exchange, 8 node, 1 thread

Fence
Lock

PSCW

Lock All
Two Sided Baseline

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

8B 16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

M
e
s
s
a
g
e
 R

a
te

Message Size (Bytes)

Mesage Rate, MVAPICH, halo exchange, 8 node, 16 thread

Fence
Lock

PSCW

Lock All
Two Sided Baseline

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

8B 16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

Fig. 4. MVAPICH message rate comparison in a multithreaded context

other). In this graph we can see the effects of using multiple
cache lines, when we see the drop in performance from 64
byte to 128 byte message sizes. For small messages, the effects
of RMA-MT are clear. Those effects have less impact as we
increase message size. For example, Fence performs at 43.4%
of the baseline for 8 byte messages. However, once we get
up to 1 MiB, it performs at 96.4% the rate of the baseline.
Figure 7(b) shows the message rate throughput when run with
one thread per core. The trends here are strikingly similar to
their single threaded counterparts, averaging a 1.3% difference
overall.

4) Development Branch Failures: The Open MPI micro-
benchmark results for latency and bandwidth presented here
consisted of 840 runs of our MPI benchmark, where each
run performs hundreds of one-sided communications across 20
different message sizes. Because we were using a development
branch of Open MPI we had a number of runs where errors
were detected. These errors were limited to multithreaded runs
and are enumerated as follows: three segmentation faults, 22
assertions, and 6 cases where the target or origin buffer did
not pass a checksum, representing an error in less than 1% of
the runs.

For the message rate micro-benchmarks, we ran roughly
2160 runs across all the combinations of message size, syn-
chronization method, and transfer operation. We observed 81
failures in those runs. It should be noted that the message
rate benchmark does more iterations than the other micro-
benchmarks and thus has a higher probability of hitting
an error. Of the errors we observed for message rate only
12.3% were associated with Get operations, only 16.0% were
associated with single threaded runs, and only 19.8% were
associated with message sizes less than 64 KiB.

As previously mentioned Lock All saw a significantly
larger number of errors, so was not included in our results.
Fortunately, our benchmarks have brought these errors to the
attention of Open MPI developers so that they may be fixed
before release.

C. Discussion

Many of the results in this section show a degradation in
performance when using RMA-MT. This degradation is due to
a number of factors, one of the most apparent is thread level
synchronization. Ideally, RMA would require little locking
within MPI as it doesn’t use most of the shared data structures



b
a
n
d
w

id
th

 (
M

iB
p
s
)

msg. size per process (B)

Multithread OpenMPI Bandwidth - 1 Thread

Fence Lock PSCW

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8 16 32 64 128
256

512
1KiB

2KiB
4KiB

8KiB
16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

b
a
n
d
w

id
th

 (
M

iB
p
s
)

msg. size per process (B)

Multithread OpenMPI Bandwidth - 16 Thread

Fence Lock PSCW

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

16 32 64 128
256

512
1KiB

2KiB
4KiB

8KiB
16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

Fig. 5. Open MPI bandwidth results for various one-sided synchronization methods and thread counts.

la
te

n
c
y
 (

s
)

msg. size. per process (B)

Multithread OpenMPI Latency - 1 Thread

Fence Lock PSCW

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

1 2 4 8 16 32 64 128
256

512
1KiB

la
te

n
c
y
 (

s
)

msg. size. per process (B)

Multithread OpenMPI Latency - 16 Thread

Fence Lock PSCW

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

16 32 64 128
256

512
1KiB

Fig. 6. Open MPI latency results for various one-sided synchronization methods and thread counts.

such as the match list. However, examining the version of
MVAPICH used for this study, a lock encapsulates the the
entire call into MPI. This is due to multi-threaded RMA in
MPI being underutilized and thus unoptimized. The bench-
marks in this study provide performance data and RMA-MT
capable code that MPI implementations may use to optimize
their performance. In addition to synchronization costs, RMA
performance has the potential to be degraded by contention
for shared memory resources as seen in [6].

VII. MINIAPP RESULTS

This section presents the results from running the modified
mini-applications. Each test was run with 16 ranks per node,
had a weak scaling problem size, and had the problem size
adjusted to run for roughly a minute. The tests were run
from 16 to 512 ranks using both MVAPICH and Open MPI.
from HPCCG. Figure 8 graphs the performance of our tests
normalized compared to the performance of the original non-
RMA version.

A. HPCCG

For HPCCG, the results in Figure 8 demonstrate the RMA-
MT overhead for HPCCG using one thread per communication
between communicating rank pairs (neighbors). These runs
used a 1603 per rank problem size resulting in an average
runtime of 57.8 seconds for the 16 rank MVAPICH baseline
and 56.9 seconds for the 16 rank Open MPI baseline. As
shown on the graph, the MVAPICH RMA-MT runs are
very close to the baseline; because the standard deviation of
these runtimes is often on the order of half a second, this
performance difference is not statistically significant.

In contrast, the message rate halo exchange, which has an
identical communication pattern, had performance difference
was statistically significant performance gap. This is promising
as it means that the performance gap left to bridge with
application communication patterns may be less than that
implied from the micro-benchmark results for future RMA-
MT codes. This shows that the RMA-MT approach with
Unlock all/Lock all is scaling well.

For Open MPI, we see a more significant increase in runtime
of up to 2.9% at 256 ranks. It should be noted, that given the



M
e
s
s
a
g
e
 R

a
te

Message Size (Bytes)

Mesage Rate, OpenMPI, halo exchange, 8 node, 1 thread

Fence
Lock

PSCW
Two Sided Baseline

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

8B 16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

M
e
s
s
a
g
e
 R

a
te

Message Size (Bytes)

Mesage Rate, OpenMPI, halo exchange, 8 node, 16 thread

Fence
Lock

PSCW
Two Sided Baseline

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

8B 16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

Fig. 7. Single-threaded comparison of the different RMA operations

P
e
rc

e
n
t 
o
v
e
rh

e
a
d
 f
o
r 

M
u
lt
i-
th

re
a
d
e
d
 R

M
A

Number of Ranks

Runtime comparison for HPCCG, MiniMD, and MiniFE

HPCCG-MVA
HPCCG-OMPI

MiniMD-MVA
MiniMD-OMPI

MiniFE-MVA
MiniFE-OMPI

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

16 32 64 128
256

512

Fig. 8. RMA-MT mini-app run time overhead compared to the regular
version

significant amount of errors in lock-all for Open MPI observed
in previous sections, this result should be looked at skeptically.

B. MiniMD

For MiniMD, the results in Figure 8 show the RMA-MT
overhead for MiniMD using one thread per communication
between communicating rank pairs (neighbors). Our MiniMD
implementation differs from our HPCCG implementation in
that it uses Fence as the mechanic for window synchronization.
These runs used a 1503 per 16 ranks problem size resulting in
an average runtime of 54.9 seconds for the 16 rank MVAPICH
baseline and 54.5 seconds for the 16 rank Open MPI baseline.

Unlike HPCCG, the MVAPICH RMA-MT test show a large
performance degradation from the baseline. This is due to the
larger amount of communication calls in MiniMD, and the
extra window synchronization required. Given this, we see an
overhead of up to 7.8%. For Open MPI, we see a smaller
change, of up to 2.4% overhead compared with the baseline.

C. MiniFE

Finally, Figure 8 shows the RMA overhead for MiniFE
using one thread for each communication pair. The commu-

nication pattern is similar to HPCCG, as they both are proxy
apps for conjugate gradient problems; to differentiate them we
have used the fence synchronization mechanism for MiniFE
rather than lockall. The problem size that used for these tests
was a 3303.

The results for MVAPICH show the highest the RMA-
MT overheads of any benchmark, ranging from 16.3% to
44.1%. While this is larger than the other mini-applications,
it is not entirely unexpected. Both MiniMD and the message
rate micro-benchmarks have significant overhead when using
fence as a synchronization method. Because MiniFE uses a
substantially larger problem than MiniMD, communication
becomes more of a bottle neck. For Open MPI, MiniFE has
an overhead of up to 3.0%, much smaller but again larger than
the overhead that it had for MiniMD.

VIII. RELATED WORK

Several MPI benchmark suites have been enhanced to sup-
port measuring MPI-3 RMA performance. The OSU Bench-
mark Suite from Ohio State University [14] supports several
different measurements associated with MPI-3 RMA opera-
tions, including different window creation and synchroniza-
tion methods. It also supports several benchmarks for the
OpenSHMEM one-sided operations. However, it does not
currently measure operations in the context of multiple threads.
Likewise, the Intel MPI Benchmark suite [12] also has several
benchmarks for measuring MPI-3 RMA performance and
allows for measuring the impact of the different MPI thread
levels, but does not currently measure performance involving
multiple threads within an MPI rank.

Understanding the relationship between threads and the
performance of communication operations has also been the
subject of previous research. A test suite specifically for
measuring the performance of MPI communication for multi-
threaded processes was presented in [17]. This suite was
used to measure the performance of MPI point-to-point and
collective communication functions in open source and ven-
dor MPI implementations on three different platforms. More
recently, the emergence of many-core processors has motivated



closer examination of the interaction of threading, one-sided
operations, and the need for achieving more concurrency from
the network. Proposals have been made to better support
thread safety and performance optimizations for threaded
programs in OpenSHMEM [16], and a proposal for endpoints
in MPI [15] seeks to offer enhanced network performance
for multi-threaded MPI applications. Similar examinations are
occurring for low-level one-sided communication layers as
well, including extensions to the GASNet [8] networking
programming interface. Several of the issues with extracting
more concurrency from the networking hardware and software
stack were explored in [11].

IX. CONCLUSIONS AND FUTURE WORK

This paper has presented the design of multi-threaded
RMA micro-benchmarks and mini-applications. It has used
the micro-benchmarks and mini-app developed to explore the
performance of multi-threaded RMA on production systems,
providing the first performance numbers available for such
MPI usage models. Using the micro-benchmarks it was de-
termined that up to 99% performance degradation can occur
when using multiple threads to perform RMA operations for
small messages in a current release of MVAPICH. However,
there were a limited number of cases where multiple threads
aided communication. The mini-apps saw a variety of perfor-
mance effects; MiniFE and MiniMD both had a performance
penalty when using MVAPICH. MiniFE in particular had a
sizable penalty of up to roughly 44%. Open MPI saw less of
a performance penalty for the miniapps which had a perfor-
mance penalty of up to 4%. The slowdown using threads was
not unexpected when compared to previous thread multiple
studies [4] that have found similar multi-threading related
slowdowns. However, unlike previous studies, this work has
explored MPI RMA in a multi-threading context, which has
fewer serialization requirements for ordering guarantees than
typical two-sided point to point communications in MPI. This
paper also demonstrated the use of this benchmark suite to
drive development by testing functionality and correctness,
in addition to the performance. This showed that the Open
MPI development branch has a number of issues, ranging
from triggering asserts to incorrect data transfer. The miniapps
also have the ability to test functionality, correctness, and
performance as the number of ranks and nodes is scaled up.

Future work in this area concerns using the benchmarks
developed to determine if performance enhancements can
be made to existing MPI implementations for RMA thread-
multiple. Given that RMA does not require the strict ordering
requirements of two-sided MPI communication, this approach
is expected to be parallelizable in existing implementations
with some modifications. Another future work is expanding the
mini-app suite to utilize additional synchronization methods
such as passive target. Other MPI one sided functions, such
as MPI Accumulate, can be added in future revisions of the
benchmark suite. In addition, converting more mini-apps to use
RMA thread multiple communication, and utilizing different
synchronization, transfer methods, and algorithms, such as

those that support asynchronous one sided communication,
will provide further insight into the methods of optimizing
application code using RMA-MT like communication patterns
and help to evaluate where performance improvements could
be made in MPI implementations.

The micro-benchmarks used in this paper will be open-
sourced for use by the community. When released they will
be available from http://www.cs.sandia.gov/smb/.

REFERENCES

[1] B. W. Barrett, R. Brightwell, R. Grant, S. D. Hammond, and K. S.
Hemmert. An evaluation of MPI message rate on hybrid-core processors.
International Journal of High Performance Computing Applications,
28(4):415–424, 2014.

[2] B. W. Barrett, S. D. Hammond, R. Brightwell, and K. S. Hemmert. The
impact of hybrid-core processors on MPI message rate. In Proceedings
of the 20th European MPI Users’ Group Meeting, pages 67–71. ACM,
2013.

[3] J. Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur.
An implementation and evaluation of the MPI 3.0 one-sided communica-
tion interface. Concurrency and Computation: Practice and Experience,
2013.

[4] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir,
and R. Thakur. Enabling communication concurrency through flexible
MPI endpoints. International Journal of High Performance Computing
Applications, 28(4):390–405, 2014.

[5] D. Doefler and B. W. Barrett. Sandia MPI microbenchmark suite (SMB).
Technical report, Sandia National Laboratories, 2009.

[6] T. Groves, R. E. Grant, and D. Arnold. NiMC: Characterizing and elimi-
nating network-induced memory contention. In 30th IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2016), 2016.

[7] J. R. Hammond, S. Ghosh, and B. M. Chapman. Implementing
OpenSHMEM using MPI-3 one-sided communication. In OpenSHMEM
and Related Technologies. Experiences, Implementations, and Tools,
pages 44–58. Springer, 2014.

[8] P. Hargrove. GASNet-EX collaboration. https://sites.google.com/a/lbl.
gov/gasnet-ex-collaboration, 2015.

[9] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich. Improving performance via mini-applications. Sandia
National Laboratories, Tech. Rep, 2009.

[10] S. Huss-Lederman, B. Gropp, A. Skjellum, A. Lumsdaine, B. Saphir,
J. Squyres, et al. MPI-2: Extensions to the message passing interface.
University of Tennessee, available online at http://www. mpiforum.
org/docs/docs. html, 1997.

[11] K. Z. Ibrahim, P. H. Hargrove, C. Iancu, and K. Yelick. An evaluation of
one-sided and two-sided communication paradigms on relaxed-ordering
interconnect. In IEEE International Parallel and Distributed Processing
Symposium, May 2014.

[12] Intel. Intel MPI benchmarks 4.0. https://software.intel.com/en-us/
articles/intel-mpi-benchmarks, 2015.

[13] MPI Forum. MPI: A message-passing interface standard version 3.0.
Technical report, University of Tennessee, Knoxville, 2012.

[14] Ohio State University. OSU micro-benchmarks 4.4.1. http://mvapich.
cse.ohio-state.edu/benchmarks/, 2015.

[15] S. Sridharan, J. Dinan, and D. D. Kalamkar. Enabling efficient multi-
threaded MPI communication through a library-based implementation of
MPI endpoints. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, November
2014.

[16] M. ten Bruggencate, D. Roweth, and S. Oyanagi. Thread-safe SHMEM
extensions. In S. Poole, O. Hernandez, and P. Shamis, editors, Open-
SHMEM and Related Technologies. Experiences, Implementations, and
Tools, volume 8356 of Lecture Notes in Computer Science, pages 178–
185. Springer International Publishing, 2014.

[17] R. Thakur and W. D. Gropp. Test suite for evaluating performance
of MPI implementations that support MPI THREAD MULTIPLE. In
F. Cappello, T. Herault, and J. Dongarra, editors, Recent Advances in
Parallel Virtual Machine and Message Passing Interface, volume 4757
of Lecture Notes in Computer Science, pages 46–55. Springer Berlin
Heidelberg, 2007.


