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Introduction

 Polymeric foams ubiquitous in society and used in almost 
everything including packaging, insulation, cushioning

 Although a well-known engineering material, response is 
poorly understood under shock loading (aircraft, vehicles, 
sports equipment, etc.)

 Under impact pressures at or below 1 GPa, low-density foams 
(<0.1 g/cc or 6 pcf) can react and decompose

 Gap in literature on behavior of very low-density foams under 
shock impact (<0.1 g/cc or 6 pcf)
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Foams have complex 3D morphologies

 Present an approach that captures the response of these 
extremely heterogeneous samples to shock loading

 Includes response of composite behavior + polymer itself
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 Large foam samples rarely have uniform density

 Morphology changes considerably across wide density ranges

 Foams inherently multiphase—polymer matrix + gas (CO2,air?)
Open-cell (0<6pcf)

Closed cell?

Dattelbaum et al., JAP (2014)

0.868 g/cc 0.626 g/cc 0.488 g/cc 0.348 g/cc



Polyurethane foams decompose at 
low transition pressures under shock 

 According to Dattelbaum
et al., 2014, transition 
pressure scales with solid 
volume fraction

 Used different models to 
capture the inert response 
and compression of 
products (graphite or 
diamond)
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Dattelbaum et al., 
JAP (2014)



Polymer decomposition at high 
pressures
 Polyurethane decomposes at high pressure

 According to Dattelbaum et al., 2014 transition occurs at 26 Gpa

 Used separate models to capture inert response and 
decomposition at high pressures
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Dattelbaum
et al., JAP 
(2014)



Single composite modeling approach 
developed for low density foams

 Two-state Arrhenius Reactive Burn model adapted to foams
 Inert:  Mie-Gruneisen EOS with P-alpha model for foam compaction

 Transition: Single-step Arrhenius kinetics with Distributed Activation 
Energy (new to CTH)

 Decomposition: JCZS EOS in TIGER using same tabular EOS developed 
for solid PU high-pressure response

 Evidence of foam decomposition for in both legacy Marsh 
data and recent LANL data (Dattelbaum et al., 2014)

 Fill in gaps at low densities (<0.1 g/cc) by using recent STAR 
experiments for model validation

 Composite modeling approach needed to capture the 
complex response of three-dimensional structural materials 
having a PU matrix
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CTH: A Shock Physics Analysis Package

 Eulerian shock wave physics computer code solving conservation 
equations of mass, momentum, & energy for multimaterials (up to 
98) including gases, fluids, solids, & reactive mixtures; constitutive 
equations (material behavior in elastic, plastic, and shock regimes); 
and failure models

 Analytic & Tabular Equation-of-State representations 

 Advanced Strength & Fracture models

 Adaptive Mesh Refinement

 High Explosive models

 Parallel and Serial platforms

 Applications (CTH licensed to many organizations)

 large strain and/or high strain rate dynamics

 multiphase interactions

 examples include: high speed impact, blast-structural loads and 
deformations, armor/anti-armor, explosive detonation
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TIGER: A Thermochemical Equilibrium 
Code
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TIGER:  History of Development
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 Thermochemical equilibrium 
codes are commonly used to 
compute EOS of explosive 
products, liquids or gases

 Solves thermodynamic 
equations between product 
species to find chemical 
equilibrium for a given pressure 
and temperature

JCZS2i has 1757 
species: 490 
condensed & 1267 
gases with 189 
ions.



Gas Gun Data Reduction to Find 
Experimental Properties of Solid Matrix

Hugoniot Jump Conditions: 
Cons. of Mass and Momentum 
across a shock in PU foam

Crystalline density from P-
Hugoniot for PU at TMD

Density and pressure in the 
solid matrix
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Equilibrium stress calculations solved 
algebraically

Known:  Bulk properties from gas gun experiments [, P, u, s0, s0]

s 1

ss  01

Find:  Properties of solid matrix using conservation equations [ps, s, s]



P- Compaction Model to Describe 
Removal of Void in CTH for Foam

 Compaction relationship modified in CTH with general 
power law for applicability beyond metal foams

 Low-density PU foams react under shock loading before 
achieving full compaction
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Distension () determined from 
experimental data

 Distension parameter calculated experimentally from shock 
Hugoniot data (Marsh, Dattelbaum, Alexander, Reinhart)

 An exponent of 7.3 generally required to fit most of this data
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Transition from unreacted to reacted 
state with modified Arrhenius kinetics

 One step reaction 
kinetics using 
Arrhenius Reactive 
Burn model in CTH

 Coalescence of hot 
spots in shock-heated 
foams initiate reaction

 To represent complex 
reaction mechanisms 
in foam, modified 
activation energy by 
applying a normal 
distribution of states
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Composite modeling approach 
developed to capture PU reaction

 Two-state reactive burn model in 
CTH using Arrhenius kinetics 
adapted for PU captures three 
regimes:
 Inert: Mie-Gruneisen EOS

 Transition:  Single Step Arrhenius 
kinetics

 Decomposition: JCZS2 EOS in TIGER

 Product species mostly solid 
Carbon (60%) and gas

 Amount of carbon predicted 
compares well with LANL, 
although form of carbon not 
specified by JCZS EOS
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CTH Reactive foam models predict 
legacy Marsh data for PU foam

 Approach works 
well for available 
foam data with 
high pressure 
decomposition 
response (> 0.3 
g/cc)

 No high pressure 
data available at 
very low densities 
below 0.1 g/cc 
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Gap:  No 
higher 
pressure 
data

0.096 g/cc

0.348 g/cc

0.868 g/cc

PU solid
1.264 g/cc



Reactive foam models for 0.0868 g/cc 
PU foam with Distributed Activation E.

 Foam decomposition 
model predicts 
compaction in all foams, 
and reaction at higher 
densities, but more work 
needed to predict highly 
distended foams at 
0.0868 g/cc

 Originally used product 
stoichiometry from solid
PU

 Stoichiometry of PU 
foam different than PU 
solid, as obtained from 
KCP measurements 
reported by LANL
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Mie-Gruneisen w/P-alpha model traditional 
approach in CTH for modeling porous crush

 P- compaction model 
captures inert response of 
foam

 Shock heating causes 
significant volume 
expansion

 Traditional MGR/P-
approach assumes material 
remains a solid and 
insufficient for predicting 
foam decomposition to 
gaseous products

 Traditional method 
inadequate for predicting 
response of highly 
distended foams 17


