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Model reduction at Sandia

CFD model

100 million cells
200,000 time steps

High simulation costs

6 weeks, 5000 cores
6 runs maxes out Cielo

Barrier

Real time (rapid design) Many query (UQ)
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Cavity-flow problem

Unsteady Navier–Stokes

DES turbulence model

1.2 million degrees of
freedom

Re = 6.3× 106

M∞ = 0.6

CFD code: AERO-F
[Farhat et al., 2003]
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GNAT model [C. et al., 2011, C. et al., 2013]

x̂n = arg min
ẑ∈RN̂

‖ (PΦR)+ Prn (Φẑ) ‖2
2

Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores
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GNAT performance

vorticity field pressure field

GNAT
ROM

FOM

FOM: 5 hour x 48 CPU

GNAT ROM: 32 min x 2 CPU.

+ 229x CPU-hour savings. Good for many query.

- 9.4x walltime savings. Bad for real time.

Why?
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GNAT: strong scaling (Ahmed body) [C., 2011]
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(b) Walltime savings

+ Significant CPU-hour savings (max: 438 for 4 CPU)

- Modest walltime savings (max: 7 for 12 CPU)

Spatial parallelism is quickly saturated!
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Time-parallel algorithms [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime

T0 T1 T2 TM̄�1 TM̄

H
h

t0
t1 t2

tM

Fine propagator: time step h

F(x ; τ1, τ2)

Coarse propagator: time step H

G(x ; τ1, τ2)

Parareal iteration k (sequential and parallel steps):

xm+1
k+1 = G(xm

k+1;Tm,Tm+1) + F(xm
k ;Tm,Tm+1)− G(xm

k ;Tm,Tm+1)
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Illustration: sequential and parallel steps
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Coarse propagator

Critical: coarse propagator should be fast, accurate, stable

Existing coarse propagators

Same integrator [Lions et al., 2001b, Bal and Maday, 2002]

Coarse spatial discretization
[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]

Simplified physics model
[Baffico et al., 2002, Maday and Turinici, 2003, Blouza et al., 2011,

Engblom, 2009, Maday, 2007]

Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]

Reduced-order model (on the fly) [Farhat et al., 2006,

Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

Can we leverage offline data to improve the coarse propagator?
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Model reduction
full-order model (FOM)

ẋ(t, p) = f (x ; t, p), x(0, p) = x0(p)

Offline: snapshot collection

X i := [x(0, pi ) · · · x(tM , pi )] ∈ RN×M[
X 1 · · · X ntrain

]
= UΣV T

Online: projection
trial subspace Φ =

[
u1 · · · uN̂

]
∈ RN×N̂

x ≈ x̃(t, p) = Φx̂(t, p)

test subspace Ψ ∈ RN×N̂

� Ψ = Φ: Galerkin � Ψ = (αoI − δtβ0
∂f
∂x )Φ: LSPG

[C. et al., 2015a]

˙̂x(t, p) = (ΨTΦ)−1ΨT f (Φx̂ ; t, p), x̂(0, p) = ΦTx0(p)
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Revisit the SVD

X1 X2 X3 = U ⌃ VT[ ]

ŵ
j

n
0 M

0

time step

x̂1

First row of V T

jth row of V T contains a basis for time evolution of x̂j

Construct Ξj : basis for time evolution of x̂j

Ξj :=
[
ξ1
j · · · ξ

ntrain
j

]
, ξij := [vM(i−1)+1,j · · · vMi ,j ]

T
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First attempt [C. et al., 2015b]

1 compute forecast by gappy POD in time domain:

ŵ
j

n
0 M

0

time step

x̂1

n
0 M

0

ŵ
j

n
0 M

0

time step

x̂1

n
0 M

0

x̂1 so far; memory α = 4; forecast; temporal basis

z j = arg min
z∈Raj

‖Z (m − 1,α)Ξjz − Z (m − 1,α)g(x̂j)‖2

Time sampling: Z (k ,β) :=
[
ek−β · · · ek

]T
Time unrolling: g(x̂j) : x̂j 7→ [x̂j(t0) · · · x̂j(tM)]T

2 use eT
mΞjz j as initial guess for x̂j(tm) in Newton solver
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First attempt: structural dynamics [C. et al., 2015b]

100 K. Carlberg et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 79–103

(a) Reduction-factor improvement. (b) Speedup improvement.

Fig. 15. Performance of forecasting methods quantified over all reduced-order models, problems, and online prediction points. The mean (solid
line), maximum (dashed line), and minimum (dotted) are reported.

From this set of experiments, we conclude that the proposed technique can improve ROM performance even for
problems with relatively large parameter variation.

4.6. Average performance

Finally, we summarize the performance of the forecasting techniques over the complete set of experiments. Fig. 15
reports average, minimum, and maximum values of the reduction-factor improvement k, and speedup improvement s
over all experiments (i.e., all three experiments in Sections 4.3–4.5, all three reduced-order models, and both online
points q?,1 and q?,2). Here, k = /no and s = S/Sno can each be computed for a given ROM simulation; a subscript
‘no’ indicates the value of the variable for a zero initial guess (i.e., polynomial extrapolation with ↵ = 0). First, note
that the proposed method always outperforms polynomial forecasting in the mean, maximum, and minimum achieved
performance for both reduction-factor improvement k and speedup improvement s. Secondly, the maximum, mini-
mum, and average performance of polynomial forecasting were all made worse by increasing the polynomial degree.

Finally, the best average performance was achieved for a forecast memory of ↵max = 9 and Newton-iteration
criterion of ⌧ = 0. In this case, the iteration-reduction factor was increased by 63% on average; the speedup was
improved by 22% on average. Critically, note that these temporal-complexity gains incur no additional error, and so
they strictly serve to improve the performance of the ROMs with no penalty.

5. Conclusions

This paper has described a method for decreasing the temporal complexity of nonlinear reduced-order models in
the case of implicit time integration. The method exploits knowledge of the dynamical system’s temporal behavior in
the form of ‘time-evolution bases’; one such basis is generated for each generalized coordinate of the time integrator’s
unknown during the (offline) training stage. During the (online) deployed stage, these time-evolution bases are used
– along with the solution at recent time steps – to forecast the unknown at future time steps via Gappy POD. If this
forecast is accurate, the Newton-like solver will converge in very few iterations, leading to computational-cost savings.

Numerical experiments demonstrated the potential of the method to significantly improve the performance of
nonlinear reduced-order models, even in the presence of high-frequency content in the dynamics. The experiments
also demonstrated the effect of input parameters on the method’s performance, and provided a parameter study to
analyze the effect of the method’s parameters.

Future work includes developing an approach to directly handle frequency and phase shifts in the response, as well
as time-shifted temporal behavior.

Acknowledgments

The authors acknowledge Julien Cortial for providing the original nonlinear-truss code that was modified to
generate the numerical results, as well as the anonymous reviewers for their insightful suggestions.

memory ↵memory ↵

sp
ee

d
u
p

im
pr

ov
em

en
t

100 K. Carlberg et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 79–103

(a) Reduction-factor improvement. (b) Speedup improvement.

Fig. 15. Performance of forecasting methods quantified over all reduced-order models, problems, and online prediction points. The mean (solid
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+ Newton iterations reduced by up to ∼2x

+ Speedup improved by up to ∼1.5x

+ No accuracy loss

+ Applicable to any nonlinear ROM

- Insufficient for real-time computation

Can we apply the same idea for the coarse propagator?
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Coarse propagator for coordinate j and time interval m

Offline: Construct time-evolution basis Ξm
j

ŵ
j

n
0 M

0

time step

x̂1

⌅1
1 ⌅2

1 ⌅4
1⌅3

1 ⌅5
1

Online: Coarse propagator Gmj defined via forecasting:
1 Compute α time steps with fine propagator
2 Compute forecast via gappy POD
3 Select last timestep of forecast

Gmj : (x̂ j ;Tm,Tm+1) 7→ eT
H/hΞm

j

[
Z (α + 1,α)Ξm

j

]+  F(x̂ j ;Tm,Tm + h)
...

F(x̂ j ;Tm,Tm + hα)


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Ideal-conditions speedup
Theorem

If g(x̂j) ∈ range(Ξj), j = 1, ... , N̂, then the proposed method
converges in one parareal iteration and realizes a theoretical
speedup of M̄

M̄(M̄ − 1)α/M + 1
.
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Ideal-conditions speedup for M = 5000
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Ideal-conditions speedup with initial guesses
Corollary

If f is nonlinear, g(x̂j) ∈ range(Ξj), j = 1, ... , N̂, and the
forecasting method also provides Newton-solver initial guesses,
then

1 the method converges in one parareal iteration, and

2 only α nonlinear systems of algebraic equations are solved in
each time interval.

The method then realizes a theoretical speedup of

M

(M̄α) + (M/M̄ − α)τr

relative to the sequential algorithm without forecasting. Here,

τr =
residual computation time

nonlinear-system solution time
.
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Ideal-conditions speedup with initial-guesses
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Significant speedups possible by leveraging time-domain data!
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Stability

Theorem

If the fine propagator is stable, i.e.,

‖F(x ; τ1, τ2)‖ ≤ (1 + CFH)‖x‖,

then the proposed method is also stable, i.e.,

‖x̂m
k+1‖ ≤ Cm exp(CFmH)‖x̂0‖.

Cm :=
∑m

k=1

(k
m

)
βkγ

mαk(H/h)m−k

βk := exp(−CFk(H − hα)) ≤ 1

γ := max(maxm,j 1/‖Z (α+1,α)Ξm
j ‖, 1/σmin(Z (α+1,α)Ξm

j ))
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Example: inviscid Burgers equation [Rewienski, 2003]

∂u(x , τ)

∂τ
+

1

2

∂
(
u2 (x , τ)

)
∂x

= 0.02ep2x

u(0, τ) = p1, ∀τ ∈ [0, 25]

u(x , 0) = 1, ∀x ∈ [0, 100] ,

Discretization: Godunov’s scheme

(p1, p2) ∈ [2.5, 3.5]× [0.02, 0.075]

h = 0.1, M = 250 fine time steps

FOM: N = 500 degrees of freedom

ROM: LSPG [C. et al., 2011] with POD basis dimension N̂ = 100

ntrain = 4 training points (LHS sampling); random online point

Two coarse propagators: Backward Euler and forecasting
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Forecasting outperforms backward Euler

Backward Euler Forecasting
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Parareal performance
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+ Forecasting : minimum possible iterations

- Backward Euler : maximum possible iterations

More parallelism successfully exposed!

Data-driven time parallelism Carlberg, Brencher, Haasdonk 21 / 23



Conclusions

Use temporal data to reduce ROM simulation time

offline: time-evolution bases from right singular vectors
online: use as coarse propagator

1 compute α time steps with fine propagator
2 use gappy POD to forecast

+ theory: excellent speedup and stability
+ ideal parareal performance observed
+ significant improvement over Backward Euler
+ no additional error introduced
+ generally applicable
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Questions?
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