
Data-driven time parallelism and model reduction

Kevin Carlberg1, Lukas Brencher2,
Bernard Haasdonk2

Sandia National Laboratories1

University of Stuttgart2

SIAM Conference on UQ
April 7, 2016

Data-driven time parallelism Carlberg, Brencher, Haasdonk 1 / 23

SAND2016-2344C

Model reduction at Sandia

CFD model

100 million cells
200,000 time steps

High simulation costs

6 weeks, 5000 cores
6 runs maxes out Cielo

Barrier

Real time (rapid design) Many query (UQ)

Data-driven time parallelism Carlberg, Brencher, Haasdonk 2 / 23

Cavity-flow problem

Unsteady Navier–Stokes

DES turbulence model

1.2 million degrees of
freedom

Re = 6.3× 106

M∞ = 0.6

CFD code: AERO-F
[Farhat et al., 2003]

Data-driven time parallelism Carlberg, Brencher, Haasdonk 3 / 23

GNAT model [C. et al., 2011, C. et al., 2013]

x̂n = arg min
ẑ∈RN̂

‖ (PΦR)+ Prn (Φẑ) ‖2
2

Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores

Data-driven time parallelism Carlberg, Brencher, Haasdonk 4 / 23

GNAT performance

vorticity field pressure field

GNAT
ROM

FOM

FOM: 5 hour x 48 CPU

GNAT ROM: 32 min x 2 CPU.

+ 229x CPU-hour savings. Good for many query.

- 9.4x walltime savings. Bad for real time.

Why?

Data-driven time parallelism Carlberg, Brencher, Haasdonk 5 / 23

GNAT: strong scaling (Ahmed body) [C., 2011]

CPU(C
P
U
×

T
F
O
M
)/
(C

P
U
×

T
R
O
M
)

0 2 4 6 8 10 12 14 16

200

250

300

350

400

450

(a) CPU-hour savings

CPU

T
F
O
M
/T

R
O
M

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

(b) Walltime savings

+ Significant CPU-hour savings (max: 438 for 4 CPU)

- Modest walltime savings (max: 7 for 12 CPU)

Spatial parallelism is quickly saturated!

Data-driven time parallelism Carlberg, Brencher, Haasdonk 6 / 23

Time-parallel algorithms [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime

T0 T1 T2 TM̄�1 TM̄

H
h

t0
t1 t2

tM

Fine propagator: time step h

F(x ; τ1, τ2)

Coarse propagator: time step H

G(x ; τ1, τ2)

Parareal iteration k (sequential and parallel steps):

xm+1
k+1 = G(xm

k+1;Tm,Tm+1) + F(xm
k ;Tm,Tm+1)− G(xm

k ;Tm,Tm+1)

Data-driven time parallelism Carlberg, Brencher, Haasdonk 7 / 23

Illustration: sequential and parallel steps

time step

st
a
te

v
a
ri
a
b
le

0 10 20 30 40 50 60
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

xm+1
0 = G(xm

0 ;Tm,Tm+1)

time step

st
a
te

v
a
ri
a
b
le

0 10 20 30 40 50 60
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

F(xm
0 ;Tm,Tm+1)

time step

st
a
te

v
a
ri
a
b
le

0 10 20 30 40 50 60
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

xm+1
1 =F(xm

0 ;Tm,Tm+1)
+G(xm

1 ;Tm,Tm+1)−G(xm
0 ;Tm,Tm+1)

time step

st
a
te

v
a
ri
a
b
le

0 10 20 30 40 50 60
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

F(xm
1 ;Tm,Tm+1)

Data-driven time parallelism Carlberg, Brencher, Haasdonk 8 / 23

Coarse propagator

Critical: coarse propagator should be fast, accurate, stable

Existing coarse propagators

Same integrator [Lions et al., 2001b, Bal and Maday, 2002]

Coarse spatial discretization
[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]

Simplified physics model
[Baffico et al., 2002, Maday and Turinici, 2003, Blouza et al., 2011,

Engblom, 2009, Maday, 2007]

Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]

Reduced-order model (on the fly) [Farhat et al., 2006,

Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

Can we leverage offline data to improve the coarse propagator?

Data-driven time parallelism Carlberg, Brencher, Haasdonk 9 / 23

Model reduction
full-order model (FOM)

ẋ(t, p) = f (x ; t, p), x(0, p) = x0(p)

Offline: snapshot collection

X i := [x(0, pi) · · · x(tM , pi)] ∈ RN×M[
X 1 · · · X ntrain

]
= UΣV T

Online: projection
trial subspace Φ =

[
u1 · · · uN̂

]
∈ RN×N̂

x ≈ x̃(t, p) = Φx̂(t, p)

test subspace Ψ ∈ RN×N̂

� Ψ = Φ: Galerkin � Ψ = (αoI − δtβ0
∂f
∂x)Φ: LSPG

[C. et al., 2015a]

˙̂x(t, p) = (ΨTΦ)−1ΨT f (Φx̂ ; t, p), x̂(0, p) = ΦTx0(p)

Data-driven time parallelism Carlberg, Brencher, Haasdonk 10 / 23

Revisit the SVD

X1 X2 X3 = U ⌃ VT[]

ŵ
j

n
0 M

0

time step

x̂1

First row of V T

jth row of V T contains a basis for time evolution of x̂j

Construct Ξj : basis for time evolution of x̂j

Ξj :=
[
ξ1
j · · · ξ

ntrain
j

]
, ξij := [vM(i−1)+1,j · · · vMi ,j]

T

Data-driven time parallelism Carlberg, Brencher, Haasdonk 11 / 23

First attempt [C. et al., 2015b]

1 compute forecast by gappy POD in time domain:

ŵ
j

n
0 M

0

time step

x̂1

n
0 M

0

ŵ
j

n
0 M

0

time step

x̂1

n
0 M

0

x̂1 so far; memory α = 4; forecast; temporal basis

z j = arg min
z∈Raj

‖Z (m − 1,α)Ξjz − Z (m − 1,α)g(x̂j)‖2

Time sampling: Z (k ,β) :=
[
ek−β · · · ek

]T
Time unrolling: g(x̂j) : x̂j 7→ [x̂j(t0) · · · x̂j(tM)]T

2 use eT
mΞjz j as initial guess for x̂j(tm) in Newton solver

Data-driven time parallelism Carlberg, Brencher, Haasdonk 12 / 23

First attempt: structural dynamics [C. et al., 2015b]

100 K. Carlberg et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 79–103

(a) Reduction-factor improvement. (b) Speedup improvement.

Fig. 15. Performance of forecasting methods quantified over all reduced-order models, problems, and online prediction points. The mean (solid
line), maximum (dashed line), and minimum (dotted) are reported.

From this set of experiments, we conclude that the proposed technique can improve ROM performance even for
problems with relatively large parameter variation.

4.6. Average performance

Finally, we summarize the performance of the forecasting techniques over the complete set of experiments. Fig. 15
reports average, minimum, and maximum values of the reduction-factor improvement k, and speedup improvement s
over all experiments (i.e., all three experiments in Sections 4.3–4.5, all three reduced-order models, and both online
points q?,1 and q?,2). Here, k = /no and s = S/Sno can each be computed for a given ROM simulation; a subscript
‘no’ indicates the value of the variable for a zero initial guess (i.e., polynomial extrapolation with ↵ = 0). First, note
that the proposed method always outperforms polynomial forecasting in the mean, maximum, and minimum achieved
performance for both reduction-factor improvement k and speedup improvement s. Secondly, the maximum, mini-
mum, and average performance of polynomial forecasting were all made worse by increasing the polynomial degree.

Finally, the best average performance was achieved for a forecast memory of ↵max = 9 and Newton-iteration
criterion of ⌧ = 0. In this case, the iteration-reduction factor was increased by 63% on average; the speedup was
improved by 22% on average. Critically, note that these temporal-complexity gains incur no additional error, and so
they strictly serve to improve the performance of the ROMs with no penalty.

5. Conclusions

This paper has described a method for decreasing the temporal complexity of nonlinear reduced-order models in
the case of implicit time integration. The method exploits knowledge of the dynamical system’s temporal behavior in
the form of ‘time-evolution bases’; one such basis is generated for each generalized coordinate of the time integrator’s
unknown during the (offline) training stage. During the (online) deployed stage, these time-evolution bases are used
– along with the solution at recent time steps – to forecast the unknown at future time steps via Gappy POD. If this
forecast is accurate, the Newton-like solver will converge in very few iterations, leading to computational-cost savings.

Numerical experiments demonstrated the potential of the method to significantly improve the performance of
nonlinear reduced-order models, even in the presence of high-frequency content in the dynamics. The experiments
also demonstrated the effect of input parameters on the method’s performance, and provided a parameter study to
analyze the effect of the method’s parameters.

Future work includes developing an approach to directly handle frequency and phase shifts in the response, as well
as time-shifted temporal behavior.

Acknowledgments

The authors acknowledge Julien Cortial for providing the original nonlinear-truss code that was modified to
generate the numerical results, as well as the anonymous reviewers for their insightful suggestions.

memory ↵memory ↵

sp
ee

d
u
p

im
pr

ov
em

en
t

100 K. Carlberg et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 79–103

(a) Reduction-factor improvement. (b) Speedup improvement.

Fig. 15. Performance of forecasting methods quantified over all reduced-order models, problems, and online prediction points. The mean (solid
line), maximum (dashed line), and minimum (dotted) are reported.

From this set of experiments, we conclude that the proposed technique can improve ROM performance even for
problems with relatively large parameter variation.

4.6. Average performance

Finally, we summarize the performance of the forecasting techniques over the complete set of experiments. Fig. 15
reports average, minimum, and maximum values of the reduction-factor improvement k, and speedup improvement s
over all experiments (i.e., all three experiments in Sections 4.3–4.5, all three reduced-order models, and both online
points q?,1 and q?,2). Here, k = /no and s = S/Sno can each be computed for a given ROM simulation; a subscript
‘no’ indicates the value of the variable for a zero initial guess (i.e., polynomial extrapolation with ↵ = 0). First, note
that the proposed method always outperforms polynomial forecasting in the mean, maximum, and minimum achieved
performance for both reduction-factor improvement k and speedup improvement s. Secondly, the maximum, mini-
mum, and average performance of polynomial forecasting were all made worse by increasing the polynomial degree.

Finally, the best average performance was achieved for a forecast memory of ↵max = 9 and Newton-iteration
criterion of ⌧ = 0. In this case, the iteration-reduction factor was increased by 63% on average; the speedup was
improved by 22% on average. Critically, note that these temporal-complexity gains incur no additional error, and so
they strictly serve to improve the performance of the ROMs with no penalty.

5. Conclusions

This paper has described a method for decreasing the temporal complexity of nonlinear reduced-order models in
the case of implicit time integration. The method exploits knowledge of the dynamical system’s temporal behavior in
the form of ‘time-evolution bases’; one such basis is generated for each generalized coordinate of the time integrator’s
unknown during the (offline) training stage. During the (online) deployed stage, these time-evolution bases are used
– along with the solution at recent time steps – to forecast the unknown at future time steps via Gappy POD. If this
forecast is accurate, the Newton-like solver will converge in very few iterations, leading to computational-cost savings.

Numerical experiments demonstrated the potential of the method to significantly improve the performance of
nonlinear reduced-order models, even in the presence of high-frequency content in the dynamics. The experiments
also demonstrated the effect of input parameters on the method’s performance, and provided a parameter study to
analyze the effect of the method’s parameters.

Future work includes developing an approach to directly handle frequency and phase shifts in the response, as well
as time-shifted temporal behavior.

Acknowledgments

The authors acknowledge Julien Cortial for providing the original nonlinear-truss code that was modified to
generate the numerical results, as well as the anonymous reviewers for their insightful suggestions.

N
ew

to
n
-i
t

re
d
u
ct

io
n

100 K. Carlberg et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 79–103

(a) Reduction-factor improvement. (b) Speedup improvement.

Fig. 15. Performance of forecasting methods quantified over all reduced-order models, problems, and online prediction points. The mean (solid
line), maximum (dashed line), and minimum (dotted) are reported.

From this set of experiments, we conclude that the proposed technique can improve ROM performance even for
problems with relatively large parameter variation.

4.6. Average performance

Finally, we summarize the performance of the forecasting techniques over the complete set of experiments. Fig. 15
reports average, minimum, and maximum values of the reduction-factor improvement k, and speedup improvement s
over all experiments (i.e., all three experiments in Sections 4.3–4.5, all three reduced-order models, and both online
points q?,1 and q?,2). Here, k = /no and s = S/Sno can each be computed for a given ROM simulation; a subscript
‘no’ indicates the value of the variable for a zero initial guess (i.e., polynomial extrapolation with ↵ = 0). First, note
that the proposed method always outperforms polynomial forecasting in the mean, maximum, and minimum achieved
performance for both reduction-factor improvement k and speedup improvement s. Secondly, the maximum, mini-
mum, and average performance of polynomial forecasting were all made worse by increasing the polynomial degree.

Finally, the best average performance was achieved for a forecast memory of ↵max = 9 and Newton-iteration
criterion of ⌧ = 0. In this case, the iteration-reduction factor was increased by 63% on average; the speedup was
improved by 22% on average. Critically, note that these temporal-complexity gains incur no additional error, and so
they strictly serve to improve the performance of the ROMs with no penalty.

5. Conclusions

This paper has described a method for decreasing the temporal complexity of nonlinear reduced-order models in
the case of implicit time integration. The method exploits knowledge of the dynamical system’s temporal behavior in
the form of ‘time-evolution bases’; one such basis is generated for each generalized coordinate of the time integrator’s
unknown during the (offline) training stage. During the (online) deployed stage, these time-evolution bases are used
– along with the solution at recent time steps – to forecast the unknown at future time steps via Gappy POD. If this
forecast is accurate, the Newton-like solver will converge in very few iterations, leading to computational-cost savings.

Numerical experiments demonstrated the potential of the method to significantly improve the performance of
nonlinear reduced-order models, even in the presence of high-frequency content in the dynamics. The experiments
also demonstrated the effect of input parameters on the method’s performance, and provided a parameter study to
analyze the effect of the method’s parameters.

Future work includes developing an approach to directly handle frequency and phase shifts in the response, as well
as time-shifted temporal behavior.

Acknowledgments

The authors acknowledge Julien Cortial for providing the original nonlinear-truss code that was modified to
generate the numerical results, as well as the anonymous reviewers for their insightful suggestions.

memory ↵memory ↵

sp
ee

d
u
p

im
pr

ov
em

en
t

100 K. Carlberg et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 79–103

(a) Reduction-factor improvement. (b) Speedup improvement.

Fig. 15. Performance of forecasting methods quantified over all reduced-order models, problems, and online prediction points. The mean (solid
line), maximum (dashed line), and minimum (dotted) are reported.

From this set of experiments, we conclude that the proposed technique can improve ROM performance even for
problems with relatively large parameter variation.

4.6. Average performance

Finally, we summarize the performance of the forecasting techniques over the complete set of experiments. Fig. 15
reports average, minimum, and maximum values of the reduction-factor improvement k, and speedup improvement s
over all experiments (i.e., all three experiments in Sections 4.3–4.5, all three reduced-order models, and both online
points q?,1 and q?,2). Here, k = /no and s = S/Sno can each be computed for a given ROM simulation; a subscript
‘no’ indicates the value of the variable for a zero initial guess (i.e., polynomial extrapolation with ↵ = 0). First, note
that the proposed method always outperforms polynomial forecasting in the mean, maximum, and minimum achieved
performance for both reduction-factor improvement k and speedup improvement s. Secondly, the maximum, mini-
mum, and average performance of polynomial forecasting were all made worse by increasing the polynomial degree.

Finally, the best average performance was achieved for a forecast memory of ↵max = 9 and Newton-iteration
criterion of ⌧ = 0. In this case, the iteration-reduction factor was increased by 63% on average; the speedup was
improved by 22% on average. Critically, note that these temporal-complexity gains incur no additional error, and so
they strictly serve to improve the performance of the ROMs with no penalty.

5. Conclusions

This paper has described a method for decreasing the temporal complexity of nonlinear reduced-order models in
the case of implicit time integration. The method exploits knowledge of the dynamical system’s temporal behavior in
the form of ‘time-evolution bases’; one such basis is generated for each generalized coordinate of the time integrator’s
unknown during the (offline) training stage. During the (online) deployed stage, these time-evolution bases are used
– along with the solution at recent time steps – to forecast the unknown at future time steps via Gappy POD. If this
forecast is accurate, the Newton-like solver will converge in very few iterations, leading to computational-cost savings.

Numerical experiments demonstrated the potential of the method to significantly improve the performance of
nonlinear reduced-order models, even in the presence of high-frequency content in the dynamics. The experiments
also demonstrated the effect of input parameters on the method’s performance, and provided a parameter study to
analyze the effect of the method’s parameters.

Future work includes developing an approach to directly handle frequency and phase shifts in the response, as well
as time-shifted temporal behavior.

Acknowledgments

The authors acknowledge Julien Cortial for providing the original nonlinear-truss code that was modified to
generate the numerical results, as well as the anonymous reviewers for their insightful suggestions.

N
ew

to
n
-i
t

re
d
u
ct

io
n

+ Newton iterations reduced by up to ∼2x

+ Speedup improved by up to ∼1.5x

+ No accuracy loss

+ Applicable to any nonlinear ROM

- Insufficient for real-time computation

Can we apply the same idea for the coarse propagator?

Data-driven time parallelism Carlberg, Brencher, Haasdonk 13 / 23

Coarse propagator for coordinate j and time interval m

Offline: Construct time-evolution basis Ξm
j

ŵ
j

n
0 M

0

time step

x̂1

⌅1
1 ⌅2

1 ⌅4
1⌅3

1 ⌅5
1

Online: Coarse propagator Gmj defined via forecasting:
1 Compute α time steps with fine propagator
2 Compute forecast via gappy POD
3 Select last timestep of forecast

Gmj : (x̂ j ;Tm,Tm+1) 7→ eT
H/hΞm

j

[
Z (α + 1,α)Ξm

j

]+  F(x̂ j ;Tm,Tm + h)
...

F(x̂ j ;Tm,Tm + hα)


Data-driven time parallelism Carlberg, Brencher, Haasdonk 14 / 23

Ideal-conditions speedup
Theorem

If g(x̂j) ∈ range(Ξj), j = 1, ... , N̂, then the proposed method
converges in one parareal iteration and realizes a theoretical
speedup of M̄

M̄(M̄ − 1)α/M + 1
.

α=1

α=2

α=4

α=8

α=12

processors M̄

sp
e
e
d
u
p

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Ideal-conditions speedup for M = 5000
Data-driven time parallelism Carlberg, Brencher, Haasdonk 15 / 23

Ideal-conditions speedup with initial guesses
Corollary

If f is nonlinear, g(x̂j) ∈ range(Ξj), j = 1, ... , N̂, and the
forecasting method also provides Newton-solver initial guesses,
then

1 the method converges in one parareal iteration, and

2 only α nonlinear systems of algebraic equations are solved in
each time interval.

The method then realizes a theoretical speedup of

M

(M̄α) + (M/M̄ − α)τr

relative to the sequential algorithm without forecasting. Here,

τr =
residual computation time

nonlinear-system solution time
.

Data-driven time parallelism Carlberg, Brencher, Haasdonk 16 / 23

Ideal-conditions speedup with initial-guesses

α=1

α=2

α=4

α=8

α=12

processors M̄

sp
e
e
d
u
p

0 5 10 15 20 25 30 35

0

20

40

60

80

100

120

Ideal-condition speedup for M = 5000, τr = 1/10

Significant speedups possible by leveraging time-domain data!

Data-driven time parallelism Carlberg, Brencher, Haasdonk 17 / 23

Stability

Theorem

If the fine propagator is stable, i.e.,

‖F(x ; τ1, τ2)‖ ≤ (1 + CFH)‖x‖,

then the proposed method is also stable, i.e.,

‖x̂m
k+1‖ ≤ Cm exp(CFmH)‖x̂0‖.

Cm :=
∑m

k=1

(k
m

)
βkγ

mαk(H/h)m−k

βk := exp(−CFk(H − hα)) ≤ 1

γ := max(maxm,j 1/‖Z (α+1,α)Ξm
j ‖, 1/σmin(Z (α+1,α)Ξm

j))

Data-driven time parallelism Carlberg, Brencher, Haasdonk 18 / 23

Example: inviscid Burgers equation [Rewienski, 2003]

∂u(x , τ)

∂τ
+

1

2

∂
(
u2 (x , τ)

)
∂x

= 0.02ep2x

u(0, τ) = p1, ∀τ ∈ [0, 25]

u(x , 0) = 1, ∀x ∈ [0, 100] ,

Discretization: Godunov’s scheme

(p1, p2) ∈ [2.5, 3.5]× [0.02, 0.075]

h = 0.1, M = 250 fine time steps

FOM: N = 500 degrees of freedom

ROM: LSPG [C. et al., 2011] with POD basis dimension N̂ = 100

ntrain = 4 training points (LHS sampling); random online point

Two coarse propagators: Backward Euler and forecasting

Data-driven time parallelism Carlberg, Brencher, Haasdonk 19 / 23

Forecasting outperforms backward Euler

Backward Euler Forecasting

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

time step

x
1
0
1

0 100 200 300 400 500 600
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Iteration 1

time step

x
1
0
1

0 100 200 300 400 500 600
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

spatial variable x

c
o
n
se
rv
e
d
v
a
ri
a
b
le

U

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

spatial variable x

c
o
n
se
rv
e
d
v
a
ri
a
b
le

U

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

Data-driven time parallelism Carlberg, Brencher, Haasdonk 20 / 23

Parareal performance

α = 6

α = 10

α = 14

Backward Euler

number of processors M̄

p
a
ra
re
a
l
it
er
a
ti
o
n
s

2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

α = 6

α = 10

α = 14

Backward Euler

number of processors M̄

sp
ee
d
u
p

2 2.5 3 3.5 4 4.5 5 5.5 6
0.5

1

1.5

2

2.5

3

3.5

+ Forecasting : minimum possible iterations

- Backward Euler : maximum possible iterations

More parallelism successfully exposed!

Data-driven time parallelism Carlberg, Brencher, Haasdonk 21 / 23

Conclusions

Use temporal data to reduce ROM simulation time

offline: time-evolution bases from right singular vectors
online: use as coarse propagator

1 compute α time steps with fine propagator
2 use gappy POD to forecast

+ theory: excellent speedup and stability
+ ideal parareal performance observed
+ significant improvement over Backward Euler
+ no additional error introduced
+ generally applicable

References:
K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth.
“Time-parallel reduced-order models via forecasting,” in
preparation.
K. Carlberg, J. Ray, and B. van Bloemen Waanders.
“Decreasing the temporal complexity for nonlinear, implicit
reduced-order models by forecasting,” CMAME, Vol. 289, p.
79–103 (2015).

Data-driven time parallelism Carlberg, Brencher, Haasdonk 22 / 23

Questions?

ŵ
j

n
0 M

0

time step

x̂1

⌅1
1 ⌅2

1 ⌅4
1⌅3

1 ⌅5
1

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

time step

x
1
0
1

0 100 200 300 400 500 600
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Backward Euler

Iteration 1

time step

x
1
0
1

0 100 200 300 400 500 600
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Forecasting

Data-driven time parallelism Carlberg, Brencher, Haasdonk 23 / 23

Acknowledgments

This research was supported in part by an appointment to the
Sandia National Laboratories Truman Fellowship in National
Security Science and Engineering, sponsored by Sandia
Corporation (a wholly owned subsidiary of Lockheed Martin
Corporation) as Operator of Sandia National Laboratories
under its U.S. Department of Energy Contract No.
DE-AC04-94AL85000.

Data-driven time parallelism Carlberg, Brencher, Haasdonk 24 / 23

Baffico, L., Bernard, S., Maday, Y., Turinici, G., and Zérah, G.
(2002).
Parallel-in-time molecular-dynamics simulations.
Physical Review E, 66(5):057701.

Bal, G. and Maday, Y. (2002).
A “parareal” time discretization for non-linear pdes with
application to the pricing of an american put.
In Recent developments in domain decomposition methods,
pages 189–202. Springer Berlin Heidelberg.

Blouza, A., Boudin, L., and Kaber, S. M. (2011).
Parallel in time algorithms with reduction methods for solving
chemical kinetics.
Communications in Applied Mathematics and Computational
Science, 5(2):241–263.

C., K. (2011).
Model Reduction of Nonlinear Mechanical Systems via
Optimal Projection and Tensor Approximation.

Data-driven time parallelism Carlberg, Brencher, Haasdonk 24 / 23

PhD thesis, Stanford University.

C., K., Barone, M., and Antil, H. (2015a).
Galerkin v. discrete-optimal projection in nonlinear model
reduction.
arXiv e-print, (1504.03749).

C., K., Bou-Mosleh, C., and Farhat, C. (2011).
Efficient non-linear model reduction via a least-squares
Petrov–Galerkin projection and compressive tensor
approximations.
International Journal for Numerical Methods in Engineering,
86(2):155–181.

C., K., Farhat, C., Cortial, J., and Amsallem, D. (2013).
The GNAT method for nonlinear model reduction: effective
implementation and application to computational fluid
dynamics and turbulent flows.
Journal of Computational Physics, 242:623–647.

C., K., Ray, J., and van Bloemen Waanders, B. (2015b).

Data-driven time parallelism Carlberg, Brencher, Haasdonk 24 / 23

Decreasing the temporal complexity for nonlinear, implicit
reduced-order models by forecasting.
Computer Methods in Applied Mechanics and Engineering,
289:79–103.

Chen, F., Hesthaven, J. S., and Zhu, X. (2014).
On the use of reduced basis methods to accelerate and
stabilize the parareal method.
In Reduced Order Methods for Modeling and Computational
Reduction, pages 187–214. Springer.

Cortial, J. and Farhat, C. (2009).
A time-parallel implicit method for accelerating the solution of
non-linear structural dynamics problems.
International Journal for Numerical Methods in Engineering,
77(4):451.

Engblom, S. (2009).
Parallel in time simulation of multiscale stochastic chemical
kinetics.
Multiscale Modeling & Simulation, 8(1):46–68.

Data-driven time parallelism Carlberg, Brencher, Haasdonk 24 / 23

Farhat, C. and Chandesris, M. (2003).
Time-decomposed parallel time-integrators: theory and
feasibility studies for fluid, structure, and fluid-structure
applications.
International Journal for Numerical Methods in Engineering,
58(9):1397–1434.

Farhat, C., Cortial, J., Dastillung, C., and Bavestrello, H.
(2006).
Time-parallel implicit integrators for the near-real-time
prediction of linear structural dynamic responses.
International Journal for Numerical Methods in Engineering,
67:697–724.

Farhat, C., Geuzaine, P., and Brown, G. (2003).
Application of a three-field nonlinear fluid-structure
formulation to the prediction of the aeroelastic parameters of
an F-16 fighter.
Computers & Fluids, 32(1):3–29.

Data-driven time parallelism Carlberg, Brencher, Haasdonk 24 / 23

Fischer, P. F., Hecht, F., and Maday, Y. (2005).
A parareal in time semi-implicit approximation of the
navier-stokes equations.
In Domain decomposition methods in science and engineering,
pages 433–440. Springer.

Guibert, D. and Tromeur-Dervout, D. (2007).
Adaptive parareal for systems of odes.
In Domain decomposition methods in science and engineering
XVI, pages 587–594. Springer.

Lions, J., Maday, Y., and Turinici, G. (2001a).
A “parareal” in time discretization of pdes.
Comptes Rendus de l’Academie des Sciences Series I
Mathematics, 332(7):661–668.

Lions, J.-L., Maday, Y., and Turinici, G. (2001b).
Résolution d’edp par un schéma en temps “parareal”.
Comptes Rendus de l’Académie des Sciences-Series
I-Mathematics, 332(7):661–668.

Data-driven time parallelism Carlberg, Brencher, Haasdonk 24 / 23

Maday, Y. (2007).
Parareal in time algorithm for kinetic systems based on model
reduction.
High-dimensional partial differential equations in science and
engineering, 41:183–194.

Maday, Y. and Turinici, G. (2003).
Parallel in time algorithms for quantum control: Parareal time
discretization scheme.
International journal of quantum chemistry, 93(3):223–228.

Rewienski, M. J. (2003).
A Trajectory Piecewise-Linear Approach to Model Order
Reduction of Nonlinear Dynamical Systems.
PhD thesis, Massachusetts Institute of Technology.

Ruprecht, D. and Krause, R. (2012).
Explicit parallel-in-time integration of a linear
acoustic-advection system.
Computers & Fluids, 59:72–83.

Data-driven time parallelism Carlberg, Brencher, Haasdonk 24 / 23

	Motivation

