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Model reduction at Sandia

m CFD model m High simulation costs

m 100 million cells m 6 weeks, 5000 cores

m 200,000 time steps m 6 runs maxes out Cielo
m Real time (rapid design) m Many query (UQ)
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Cavity-flow problem

m Unsteady Navier-Stokes m Re = 6.3 x 10°

m DES turbulence model m M, ,=0.6

m 1.2 million degrees of m CFD code: AERO-F
freedom [Farhat et al., 2003]
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GNAT model [c. et al., 2011, C. et al., 2013]

(PoR)" Pr(02) |13

x" = arg min ||
2eRN

m Sample mesh: 4.1% nodes, 3.0% cells

-+ Small problem size: can run on many fewer cores
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GNAT performance

vorticity field pressure field

FOM

m FOM: 5 hour x 48 CPU

m GNAT ROM: 32 min x 2 CPU.

+ 229x CPU-hour savings. Good for many query.
- 9.4x walltime savings. Bad for real time.

Why?
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GNAT: strong scaling (Ahmed body) [c., 2011]
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+ Significant CPU-hour savings (max: 438 for 4 CPU)
- Modest walltime savings (max: 7 for 12 CPU)

Spatial parallelism is quickly saturated!
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Time-parallel algorithms [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime

to — H—> tm
t1 t; h
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To T Ts Tiy—1 T

m Fine propagator: time step h
F(x;71,72)

m Coarse propagator: time step H
G(x;71,72)

m Parareal iteration k (sequential and parallel steps):

kaill = g(xf(z_l; Tm, Tm+1) + ]:(X;(n; T, Tm+1) - g(x;(n; Tm, Tm+1)
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lllustration: sequential and parallel steps
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Coarse propagator

Critical: coarse propagator should be fast, accurate, stable

m Existing coarse propagators

Same integrator [Lions et al., 2001b, Bal and Maday, 2002]

Coarse spatial discretization

[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]
Simplified physics model

[Baffico et al., 2002, Maday and Turinici, 2003, Blouza et al., 2011,
Engblom, 2009, Maday, 2007]

Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]
Reduced-order model (on the fly) [Farhat et al., 2006,

Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

Can we leverage offline data to improve the coarse propagator?
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Model reduction
m full-order model (FOM)

x(t,p) = f(x;t,p), x(0,p) = x°(p)

m Offline: snapshot collection
X,‘ = [X(O,pi) s X(tM,p,')] € RNXM
(X1 - Xpy] = UZVT

m Online: projection )
m trial subspace ® = [uy -+ ug] € RV
x ~ X(t, p) = ®x(t, p)

m test subspace W € RN

B U =®: Galerkin w W = (a,/ — 5t 3L )d: LSPG

[C. et al., 2015a]

x(t,p) = (W'o)W f(®%;t,p), %(0,p) = ®"x(p)
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Revisit the SVD

[X: X2 X3] =

II I\ n

jth row of VT contains a basis for time evolution of X

time step

First row of VT

m Construct =;: basis for time evolution of X;

== [Ej 5"“3'"] &= M-+ vmig)T
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First attempt [c. et al., 2015b]

compute forecast by gappy POD in time domain:

0

time step B
X1 so far; memory « = 4; forecast; temporal basis

zi=argmin|Z(m—-1,0)Zjz— Z(m — 1, 0)g(X)]2

z€RY
m Time sampling: Z(k, ) := [ek_ﬁ ek]T
m Time unrolling: g(%) : & — [Xi(to) -+ K(tm)] "

T=.. as initi S(t )i
use e, =;z; as initial guess for Xj(tm) in Newton solver
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First attempt: structural dynamics [c. et al., 2015b]

o

smszrztizizoeacao ]

o

reduction

speedup
v

Newton-it

o

memory o memory «

+ Newton iterations reduced by up to ~2x
+ Speedup improved by up to ~1.5x

+ No accuracy loss

+ Applicable to any nonlinear ROM

- Insufficient for real-time computation

Can we apply the same idea for the coarse propagator?
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Coarse propagator for coordinate j and time interval m

m Offline: Construct time-evolution basis =¥

J
r | ———
=1 =2 =3 =4 ‘ =8
-1 -1 -1 -1 -1
0 M

time step

m Online: Coarse propagator QJf" defined via forecasting:
Compute « time steps with fine propagator
Compute forecast via gappy POD
Select last timestep of forecast
F(Xj; T, Ty + h)
G 2 (%5 Ty Trs1) = €/, =0 [Z(a +1,0)=0] " :
F(Xj; Ty Ty + hov)

Data-driven time parallelism Carlberg, Brencher, Haasdonk 14 /23



|deal-conditions speedup

Theorem

If g(%;) € range(Z;), j=1,..., N, then the proposed method
converges in one parareal iteration and realizes a theoretical

speedup of m
M(M — )a/M 41

—a=1 —
—a=2 -

0 5 10 15 20 _ 25 30 35
processors M
Ideal-conditions speedup for M = 5000
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|deal-conditions speedup with initial guesses

Corollary

If f is nonlinear, g(X;) € range(Z;), j=1,.., N, and the
forecasting method also provides Newton-solver initial guesses,
then

the method converges in one parareal iteration, and

only a nonlinear systems of algebraic equations are solved in
each time interval.

The method then realizes a theoretical speedup of

M
(Ma) 4+ (M/M — a)r,

relative to the sequential algorithm without forecasting. Here,

residual computation time
i —

nonlinear-system solution time’
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|deal-conditions speedup with initial-guesses
120

100 |

80 -

15 20 _ 25 30
processors M

35
Ideal-condition speedup for M = 5000, 7, = 1/10
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Stability

If the fine propagator is stable, i.e.,

[F(x;m, )l < (1 + CH)Ix]),
then the proposed method is also stable, i.e.,

%71l < Cm exp(Cme)onH

u Cm = ZT:l (,I:,)/kaymak(H/h)m_k
m [y :=exp(—Crk(H — ha)) <1
m = max(maxm;1/[|Z(a+1, &)=, 1/omin(Z(a+1, a)="))
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Example: inviscid Burgers equation [Rewienski, 2003]

du(x,7) 10 (u*(x,7)) _ pax
or + E Ox = 0.02e

u(0,7) = p1, V7 €[0,25]
u(x,0) =1, Vx € [0,100],

Discretization: Godunov's scheme

(p1, p2) € [2.5,3.5] x [0.02,0.075]

h = 0.1, M = 250 fine time steps

FOM: N = 500 degrees of freedom

ROM: LSPG [C. et al., 2011] with POD basis dimension N = 100

Ntrain = 4 training points (LHS sampling); random online point

Two coarse propagators: Backward Euler and forecasting
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Forecasting outperforms backward Euler

Backward Euler Forecasting
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Parareal performance

parageal iferationg

N

25 3 35 4 45 5 55
number of processors M

6

2.5 35, 4 45 5 55—-6
number of processors M

+ Forecasting: minimum possible iterations

Backward Euler: maximum possible iterations

More parallelism successfully exposed!
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Conclusions

Use temporal data to reduce ROM simulation time

m offline: time-evolution bases from right singular vectors
m online: use as coarse propagator
compute « time steps with fine propagator
use gappy POD to forecast
theory: excellent speedup and stability
ideal parareal performance observed
significant improvement over Backward Euler
no additional error introduced
generally applicable
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Questions?

-
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