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Batteries

= A battery converts stored chemical
energy into electrical energy through
an electrochemical oxidation-
reduction reaction

= Anode: oxidized species
= (Cathode: reduced species
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Lithium-ion Batteries
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Degradation Mechanisms

Loss of Primary Active Material (Li* ion Inventory)
Loss of Secondary Active Material (LiCoO,)

Loss of Secondary Active Material (Graphite)
Increased Impedance of Cell and Electrodes
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Degradation Mechanisms

Loss of Primary Active Material (Li* ion Inventory)
Loss of Secondary Active Material (LiCoO,)

Loss of Secondary Active Material (Graphite)
Increased Impedance of Cell and Electrodes
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Solid Electrolyte Interphase (SEI) formation

. Reduction of electrolyte to form passive surface
film

. Largest impact during first few cycles

. Increases impedance and charge transfer
resistance

Potential vs Li/Li*
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1.  Loss of Primary Active Material (Li* ion Inventory)
2. Loss of Secondary Active Material (LiCoO,)
3.  Lossof Secondary Active Material (Graphite)
@ Oxygen
4. Increased Impedance of Cell and Electrodes | o L
Anisotropic expansion/contraction As-fired LiCoO, powder Cycled 50 Tirnles Severely strained particle

Electrode disordering

Internal strains and dislocation defects

Fracture of particles

Contact loss between electrically conductive
components

Deactivation of Li ions, cracks, pores
Triggered by strain caused by volumetric changes

W. Haifeng et al. Journal of the Electrochemical Society 146 (1999) 473-480

D. Wang et al.
Journal of Power
Sources 140 (2005)
125-128
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Degradation Mechanisms

Exfoliation of Graphite
Loss of Primary Active Material (Li* ion Inventory) N At N
Loss of Secondary Active Material (LiCoO,)
Loss of Secondary Active Material (Graphite)

Increased Impedance of Cell and Electrodes
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Exfoliation of particles

* Solvent molecules intercalate between graphene layers and
lead to particle cracking and loss of active material

Structural disorder and damage

» Triggered by volumetric expansion

Contact Loss in composite material

*  Due to expansion of graphite (10% linear expansion at full
charge)

H. Buqga et al. ]our;z-l of P

ower
Sources 153 (2006) 385-390
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Degradation Mechanisms

C cled L1CoO2 Electrode

Loss of Primary Active Material (Li* ion Inventory)
Loss of Secondary Active Material (LiCoO,)

Loss of Secondary Active Material (Graphite)
Increased Impedance of Cell and Electrodes

Scale: 9 mm=1 micron
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D. Aurbach et al., Electrochimica
Acta 00 (2002) 1-13

Film formation and thickening

» SEI on graphite anode Cycled Graph1te Electrode
* Electrolyte oxidation at LiCoO, electrode D1 B /NS re

Increased Cell Resistance
Degradation of binder conductivity

Imitial SEI film

Thicker SEI film

Carbon Particles

] Lee etal. Carbon 52 (2013) G ng et al ]ournal of
388-397 Power Sources 117 (2003)
160-169

Current collector

G. Ning et al. Journal of Power Sources 117 (2003) 160 169 9




Degradation Mechanisms

Relative contributions depend on physical and chemical nature of the system, temperature, and c-rate

1.  Lossof Primary Active Material (Li* ion Inventory) ———— Raman Analysis
2. Loss of Secondary Active Material (LiCoO,)
3.  Loss of Secondary Active Material (Graphite)
4. Increased Impedance of Cell and Electrodes

2" discharge

Intensity (arb. units)

1stcharge

;A uncycled

400 450 500 550 600 650 700
Raman Shift (cm™)

Electrochemical Testing
Microscopy Techniques

Current Interrupt (CI) Methods

4.2

4
Pulse

@
®» »
AN
=

w  w

Cell Voltage (V)
~

=
14
[N}
AN

{

H
w

Time

—_ EMT:=1500k¢  WD= 9Smm  SignalA=SE2 Width = 17.31

Hypothesis: Chemical mechanisms of degradation in a Li-ion battery dominate capacity loss at
low strain rates, whereas, mechanical degradation dominates at high strain rates.




Develop Model to Estimate Lithiation State

Develop Model:

1. Formation Cycle Test (Cycle 1 and 2)
2. State of Charge Test (Cycle 4)
Implement:

3. Long Term Cycle Test (Cycle 10, 20, 40, 80)

4.20 100% SOC

4.00
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3.60
3.40

Potential vs Li (V)

3.20

+ Formation

3.00 ' Uncycled 0% SOC @ State of Charge

SS top casing

SS wave spring
SS spacers
Ex-situ cathode

Coverslip window

SS bottom casing

Snyder et al. Journal of The Electrochemical Society (accepted March 2016)

Cell Information

LiCoO,/Graphite/1.2 M LiPF, EC:EMC (3:7 w/w)
C-rate : C/10

Temperature: 25 °C

Disassembled within Argon filled glove box

Raman Analysis Information

System: Witec Alpha 200R

Laser : Nd:YAG at 532 nm

Objective: 50 x, 0.55 NA (600 nm spot size)
Power: 250 uW

Integration time : 300 s per particle




Formation Study
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Raman Analysis
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Raman Analysis
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Raman Analysis
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Snyder et al. Journal of The Electrochemical Society (accepted)

4.  All particles were in a relatively homogenous state
of lithiation at the slow rates (C/10)

15
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Current Interrupt Testing
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Rate Dependency
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* Under fast rates, mechanical degradation dominates capacity loss - thus results in insignificant
changes to resistance. Meanwhile at slow rates, chemical mechanisms dominate which result in
increased measured resistance. At moderate rates, a combination of mechanical and chemical

mechanisms contribute to capacity fade.

« Considerations: cell to cell variability, rate capability, polarization effects, and repeatability
« Testing for physical evidence is underway (thickening of SEI, fracture of particles, etc.)
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Thesis Statement

= Chemical mechanisms of degradation in a Li-ion battery
dominate capacity loss at low strain rates, whereas,
mechanical degradation dominates at high strain rates.

1

0.9

xinLi CoO

06

PN

Raman

i ?‘"‘-{N_.“»‘_‘i i |
¢ Raman LOW RateS
L4 Electrochemical

0 10 20 30 40 50 60 70 80

Cycle Number

Loss of Li* inventory due to SEI
thickening and other side reactions is
the primary mechanism responsible for
capacity fade.

w

/10 Current Interrupt

©

N
T

low rates

NONONN
N B
—

Resistance (Normalized to Inital Resistance)

1 L : PR a
0.840 0.860 0.880 0.900 0.920 0.940 0.960 0.980 1.000
Capacity (Normalized to Intial Capacity Value)

+C/2(2) ©C/10 8C/10(2) 4C/5 aC/5(2) +C/2 o2C

At low rates an increased cell
impedance is responsible a larger
portion of capacity loss compared to at
high rates where other mechanisms
begin to dominate.
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Raman Spectroscopy
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Upcoming Raman work

In-situ Cell

@ s s

Stainless Steel Wave-spring

= Loss of Li* Inventory in Commercial Cell (1C for 500+ cycles)

= |n-situ studies

Stainless Steel Spacer Disk
tainiess. Stool Spacer Disk

= Kinetic limitations at accelerated c-rates

LiCoD;, Cathode on Aluminum
- Separator
Graphite Anode on Copper
j 5mm Round Coversiip
v Stainless Steel Cup

Raw Raman Data

= Electrode SOC homogeneity

+Li >?

to 50% SOC

C/10
Non-uniform charge/discharge

Inhomogeneous SOC distribution Uniform charge/discharge
" Homogenous SOC distribution
® 350V 394V 397V 403V 404V 432V 440V

Snyder et al. Journal of the
Electrochemical Society (submitted)

W LiCoO, (discharged) M: LiCoO, (charged) M:carbon

Liy 595C00,

Nishi et al. Journal of the Electrochemical Society 160
(2013) A1785-A1788




commercial anodes

=  High surface area = more SEI growth more initial consumption of Li and

more SE| area

=  Will use G8 anodes (graphite optimized for anode use) in

future testing

No Electrolyte Additives to form more stable SEI
= Unstable SEI = more cracks/reforming and consumption of Li*

= High surface area Graphite anodes (using KS-6) compared to I3
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R-square: 0.9975 |
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Snyder et al. Journal of The Electrochemical Society (submitted)
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Raman Analysis

Compare
to
Capacity
Loss Data

SOC Assign x Fit Determine | | yjidate
in particle Average
Study Li,Co0O, Spectrum State Model
1
Preprocessing

* Exclude data outside 400-700 cm!
* Linear Background Removal

* Cosmic Ray Removal

* Normalize Intensity

Fit to Linear Combination of SOC spectra - use

weights in peak regions to maximize fit

Compare Average Fit to Average Data - ensure

fits represent the data well
Export coefficients and R? fit value

C4305-SOCFit
Repeat for
all particles

450 500 550 600 650 700
Raman Shift [cm-1]

Intensity

C4305-SOCFit Averages

Iy

‘
450 500 550 600 650 700
Raman Shift[cm™]
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Raman Analysis

SOC
Study

Assign x
in

Li, CoO,

Fit
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Raman Analysis

SOC Assign x Fit PR | Vaidate | |
in particle Average :

Stud . Model Capacity

y Li, CoO, Spectrum State Loss Data

Example Fit Output

1 0. 83

5 0 0.6 0.4 0 0 0 0.84 |\

3 0 e e 2 0 0 0.82  Average Lithiation State:
4 02 o8 0 0 0 0 0.90 x=0.8482 + 0.0314

5 0 0.8 0.2 0 0 0 0.86

6 0 0.1 0.8 0.1 0 0 0.79

7 0 0.7 03 0 0 0 0.85

8 0 0.9 0.1 0 0 0 0.87

9 0 0.8 0.1 0.1 0 0 0.85

10 0 0.8 02 0 0 0 0.86 Y



Raman Spectroscopy
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« Compositional mapping of
LiCoO, cathode - binder and
active material

475/553 Band Ratio

v

Lei et al. J. Phys. Chem. B 109 (2005) 952-957

e In-situ monitor of SOC of
individual LiNi; Coy 15Al, 00,
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403V
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Nishi et al. Journal of The Electrochemical
Society 160 (2013) A1785-A1788

LiCoO2/Li Half Cell (1C)

In-situ Analysis

Electrode mapping

Inhomogeneous SOC distribution
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Backu . .
In-situ Raman Analysis

Sicinless Steel Cup Electrolyte Peaks

Stainless Steel Wave-spring
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Stainless Steel Cup

Stainless Steel Wave-spring

Stainless Steel Spacer Disk
Stainless Steel Spacer Disk

LiCoO, Cathode on Aluminum

Separator

Graphite Anode on Copper

5mm Round Coverslip
Stainless Steel Cup
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Raman

Laser heating of

LlCoO2 Particles

Time=300s Surface: Temperatu

-

Density of LCO =5.05g/cc
Heat capacity: 71.62 J/molK
Thermal Conductivity: 2.165 W/mK

Depth of laser : 3 um (uniform heat
generated)

Laser spot = 600 nm

Laser Power = 0.25 mW

Total Time =300 s

Particle size: 6bum diameter

Bottom half surface kept at 293.14 K
(“conductive”)

Insulated on top half (“air”)

Max temperature = 318 K = 44.85°C
Max increase in temperature = 25°C

[ Study 1, Time Dependent

(,;c,,)eﬁ‘(’)—z + pCpu- VT = V- (ketVT) + Q +Qua + Qp

(PCplefi =pppCop + (1-6p)pC,
ket =6k, + (1-6,)k
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Results
G | model: ! T T T T
ET%:'? =m :+f: 1r *  raman vs. cycle80 .
Coefficents (with 95% confidence bounds): i untitled fit 1 |
Cc= 0 (fixed at bound) 0.98
Goodness of fit: 0.96 - .
SSE: 0.004546
F-sguare: 0.8523 0.94 _
Adjusted R-sguare: 0,8708
EMSE: 0.0241 0.92 -
=
4]
= 09 -
&
0.88 .
0.86 _
0.84 - _
0.82 .
08 « _
| | 1 | |
0.8 0.85 09 0.95 1
cycleB0

The fit explains 85.23% of the total variation in the data about the average




Raman Spectroscopy

= Molecules have vibrational modes dependent on: orientation,
atomic mass, bond order

= Change in polarizability (size, shape, or orientation of the
electron cloud that surrounds the molecules)

= QOccurs in symmetric stretching but not asymmetric stretching
= Visible right — molecules absorb and re-emit (some is
absorbed by the molecular vibrations — re-emit at new
frequency)

= |nelastic scattering
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Tools

= Electrochemical Techniques

= Current Interrupt

= @Gain insight to the cell resistance — electronic, ionic, and diffusional
response

= Discharge Current testing
= Vary the discharge current to look at rate capability of the cell
How does it evolve over cycling? As a function of different c-rate aging?
= Spectroscopic Techniques
= Raman
Probe individual LiCoO2 particles both in-situ and ex-situ
Look at structural changes —> Lithiation state (State of Charge)
= Microscopy Techniques

= SEM
Look at mechanical damage to particles after various rate cycling
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