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Abstract

Existing methods to detect vehicle tracks in coherent change detection images, a
product of combining two synthetic aperture radar images taken at different times
of the same scene, rely on simple, fast models to label track pixels. These models,
however, are often too simple to capture natural track features such as continuity and
parallelism. We present a simple convolutional network architecture consisting of a
series of 3-by-3 convolutions to detect tracks. The network is trained end-to-end to
learn natural track features entirely from data. The network is computationally efficient
and improves the F-score on a standard dataset to 0.988, up from 0.907 obtained by
the current state-of-the-art method.
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1 Introduction

Multiple synthetic aperture radar (SAR) images taken at different times of the same scene
can be combined to produce coherent change detection (CCD) images that can reveal subtle
surface changes such as those made by tire tracks [1, 2]. Our goal is to segment the vehicle
tracks in these images.

Vehicle track segmentation can be viewed as a binary labeling problem where a pixel is
labeled with a 1 if it belongs to a track and 0 otherwise. A simple approach is to train a
classifier on features extracted at each pixel. While this approach is simple and can produce
good results, it fails to complete disconnected tracks that are caused by sensor noise and
various environmental effects, such as vegetation and weather, that are prevalent in CCD
images.

A common approach to address this discontinuity problem in image segmentation is to
apply a pairwise Markov random field on adjacent pixels. In particular, pairwise Potts
models are very popular, partly due to their simplicity. More importantly, these models
allow for efficient inference via graph cuts [3]. A recent vehicle track segmentation approach
uses a pairwise Potts model with some success [4]. A major problem with these pairwise
models, however, is that they favor short, compact objects. Vehicle tracks, on the other
hand, are long, thin objects.

Several higher-order models for image segmentation have been proposed to address the
shortcomings of the simple pairwise model. In particular, the cooperative cut approach in-
troduces potential functions that operate on subsets of edges in the graph [5]. Inferencing
with cooperative cut is, in general, NP-hard. For a certain class of cooperative-cut potential
functions, exact inference is still possible via graph cuts [6]. A recent vehicle track segmen-
tation approach imposes higher-order constraints through the use of a constrained Delaunay
triangulation (CDT) to discover and complete missing pieces of tracks [7].

These models, however, still cannot capture important properties of natural tracks.
Specifically, it is not clear how track curvatures and their parallel nature can be enforced in
these models. This work presents an approach to vehicle track segmentation that captures
the properties of natural tracks. We use a simple convolutional network that consists of a
series of 3-by-3 convolutions to label track pixels. Unlike standard convolutional networks,
max pooling is not required, which destroys too much information for accurate dense pixel
labeling problems. Instead, we utilize dilated convolutions to increase the receptive field of
the network without sacrificing resolution. Using a 6-layer network, we improve the F-score
on a standard vehicle track data set to 0.988, up from 0.907 obtained by the CDT method.

The details of our approach are presented in Section 3. Experimental results are presented
in Section 4. Concluding thoughts are provided in Section 5.






2 Related Work

Unlike optical images, SAR images are noisy and unimodal [8], making the segmentation
task more difficult. Despite these challenges, several track segmentation algorithms have
been proposed. Given a search cue, e.g., starting location of a path, a single track pair
can be extracted by tracing parallel lines (tire tracks) starting at the search cue [9]. The
proposed method can find a single track provided that the user supplied the initial search
cue. A related method uses cubic spline fitting to extract vehicle tracks [10]. It is limited to
a single non-overlapping track. In practice, a scene can have an arbitrary number of tracks,
including no tracks. In addition, these tracks may come from different types of vehicles. Any
automatic technique must be able to account for these conditions.

A recent method addresses some of these limitations by finding the simplest set of tracks
that explains the observed data [11]. It is a greedy method that finds one track at a time,
until the objective function can no longer decrease. The obtained tracks, which are line
segments, are iteratively merged to form full tracks. The merging step is important as
the initially obtained tracks may not be complete and the merging procedure allows the
algorithm to discover missing parts of tracks. It is, however, also computationally expensive
as it considers every possible pairwise merges recursively until convergence. Furthermore,
the approach uses a parallel track template to find candidate tracks. It is unclear how that
approach can be generalized to find single tracks, such as those made by motorcycles, or
parallel tracks made by various vehicle sizes.

One closely related work is the pairwise Potts approach that uses the radial derivative
of the local Radon transform centered on each pixel as features [4]. The shortcoming of the
simple pairwise Potts model is a major limitation of this approach. In order to take into
account the long, thin characteristic of tracks, a recent work relies on the CDT, first used for
contour detection in natural images [12], to find missing pieces of tracks to complete them [7].
The approach first identifies initial high-quality track segments using the ridge feature [13].
The remaining segments are discovered using the CDT where the initially identified segments
form the constrained edges. A binary pairwise Potts model is then constructed on the edges
of the CDT to infer salient tracks. Although the approach still uses a pairwise Potts model,
the costs are associated with the edges (not image pixels) of the CDT, allowing it to overcome
the short-boundary problem associated with pairwise Potts models based on adjacent pixels.
A problem with the CDT approach is that it is sensitive to the initial constrained edges.
As a consequence, the obtained triangulation may miss some completion edges as shown in
Figure 1.
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Figure 1: The CDT is dependent on the constrained edges and may not discover all comple-
tion edges: (a) input track image and (b) obtained CDT. Completion edges are in green. A
large portion of the top track (red dots) is not discovered by the CDT. Best viewed in color.
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3 Track Segmentation

Let x be an input image and z be the corresponding ground-truth binary image where
z(i) = 1 if pixel ¢ is a track pixel and z(i) = 0, otherwise. Our goal is to build and
train a convolutional network that can predict z given x. It is possible to cast the track
detection problem into an object detection framework where a bounding box is placed around
a detected object. The result, however, might not be meaningful and can also be difficult
to accomplish. Several of the reasons are already mentioned. In particular, tracks are
elongated objects that do not have natural boundaries, e.g., a track may span an entire
image. A bounding box around such irregular objects is not very useful. As a result, we cast
the track detection problem into a dense pixel labeling, or binary segmentation, problem.

Our network is illustrated in Figure 2. As with many standard convolutional networks,
the input image is passed through a series of convolutions. Each convolution is followed by
ReLU [14]. Unlike standard networks, we do not utilize pooling or down-sampling layers,
which are often used to exponentially increase the receptive field of view of the network and,
at the same time, decrease the computations in latter layers. The use of pooling layers,
however, discards information that might be pertinent for track detection. In addition,
down sampling may decrease the resolution of the output image and an upsampling process
is needed to recover the original size. As a consequence, we provide an alternative to max
pooling in our network.

In order to obtain the same benefit of down sampling, e.g., increased field of view, without
sacrificing resolution, we use dilated convolutions [15]. Dilated convolution is similar to
standard convolution, but the filters can be dilated or upsampled by inserting zeros between
coefficients. Dilated convolution with a rate of 1 is the standard convolution. In general,
with a rate of r, there are r — 1 zeros inserted between coefficients. We use 3-by-3 dilated
convolutions in all layers. The dilation rate, however, increases so that the receptive field
becomes larger for latter layers. Note that increasing the dilation rate does not increase
computation because the effective kernel size is still 3-by-3.

Our network produces several side-output predictions, one after each convolutional layer.
These side-output predictions are then used in conjunction with the ground-truth image to
form the objective function. The use of side-output predictions is inspired by deep supervised
networks (DSN) [16]. The purpose of DSN is to improve the effectiveness of training the
hidden layers by informing them of the objective function directly, rather than relying on
the final layer to propagate the information back.

Let 2t ={i: 2(i) =1} and 2~ = {i : (i) = 0} be the set of track and non-track pixels,
respectively. Let o = |27[/(|z%| 4+ |z7]) and 5 = 1 — . Let y; be the side-output activation
of layer j. The objective function of this layer is the class-balanced cross-entropy loss:

Li=—p) logo(y;(i)) —a ) log(l—aly(i), (1)

i€zt i€z

where ¢ is the sigmoid function. The class-balanced objective function is important because
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Figure 2: The convolutional network for track segmentation. The input image is passed
through a series of dilated convolutions (the ¢ boxes). The network produces a side output
(the y boxes) after each convolutional layer. All side-output predictions use the same ground-
truth image to compute side losses, which are aggregated to form the total loss.

there are far fewer track pixels than non-track pixels. Without proper balancing, the network
will favor non-track pixels over track pixels.

In addition to the side-output layers, the network also has a weighted multi-scale context
fusion layer, yr = > ; w;y;, that linearly combines the activations of previous layers according
to weight w; for layer j. The fusion weights are essentially 1-by-1 convolution. The loss
function of this fusion layer is also the above class-balanced cross-entropy loss. The final
objective function is the sum of all the side-output losses and the fusion loss.

12



4 Experimental Results

In the following experiments, we use a 6-layer track detection network. The details of the
network parameters are summarized in Table 1. Due to the increased dilation rate, the
receptive field of the last layer is relatively large at 127 pixels, allowing the network to
connect and form contiguous tracks.

We train the network using a mixture of real and simulated images. The 60 real CCD
images are 512-by-512 in size and contain vehicle tracks with hand-labeled ground truth.
The simulated, openly available dataset consists of 40 CCD images containing simulated
vehicle tracks along with ground truth [17]. Each 600-by-800 CCD image is generated from
a real SAR image pair and contains a single simulated tire track. We randomly select 30
images to train the network. The remaining 10 images are used to quantify the performance
of the network. In summary, we have 90 training images and 10 test images.

We train the network for 12000 iterations using stochastic gradient descent. The initial
learning rate is le-3 and is reduced by a factor of 10 after every 4000 iterations. The mini-
batch size is a single image and the weight decay is le-4. To enrich our small training set,
we randomly flip each image horizontally and vertically. In addition, we also add a small
Gaussian noise, N'(0, 1), to each image. Training takes 2.5 hours on a single K40 GPU.

The performance of the network is evaluated using the precision-recall framework and
the F-score (maximum of 2 - precision - recall /(precision +recall)). This is accomplished by
thresholding the output image to obtain a binary image. We then morphologically thinned
the binary image to produce a single-pixel wide track image. A ground-truth track pixel is
correctly detected if and only if there is a predicted track pixel that is within a Euclidean
distance of 3 pixels from it (true positive). Any predicted track pixel that does not have a
corresponding ground-truth pixel is considered a false positive. A buffer of 3 pixels is used
because ground-truth track pixels are actually several pixels wide.

The precision-recall curves of various output layers are shown in Figure 3. For compar-
ison, we also include the result using the CDT method [7], which is just a single point on
the plot as it is a hard-output track detector. The network substantially outperforms the
CDT method. By incorporating output from multiple layers, the fusion layer achieves the
best F-score of 0.988, slightly better than layer 6.

We observe that earlier layers tend to identify primitive track features, while latter layers
can see coarser, global features that are more relevant to tracks. In particular, latter layers
can bridge gaps, forming more contiguous tracks. This can be seen in the examples shown
in Figure 4 of real vehicle tracks. In terms of running time, with a 2000-by-2000 image, the
network takes 2.5 seconds. We use Tensorflow to implement the network.
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Table 1: Summary of 6-layer track detection network.

Layer | Dilation Rate Output Channels Receptive Field
1 1 32 3
2 2 32 7
3 4 64 15
4 8 64 31
5 16 128 63
6 32 128 127

1
0.98 4
0.96 4
0.941 b

[F=0.988] Fusion
[F=0.987] Layer 6
[F=0.978] Layer 5

Precision
o
[{e]
N
1

[F=0.907] CDT
0.9} 1
0.88 1
0.86} : 1
0.84 ‘ ‘ ‘ ‘
0.95 0.96 0.97 0.98 0.99 1

Figure 3: Precision-recall curves of a 6-layer network at various output layers ranked by their
F-score (number in square bracket). For comparison, the results using the CDT method is
also included. The network improves substantially over the state-of-the-art CDT method.
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Figure 4: Example results on real SAR CCD images from the UUR dataset. The top row
is the input image and the subsequent rows correspond to the output of different layers in
ascending order. The last row is the output of the fusion layer. With larger receptive fields,

the latter layers are able to form contiguous tracks more definitively than earlier layers,
which tend to identify only primitive track characteristics.
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5 Discussion and Conclusion

We have presented an approach to segment vehicle tracks in SAR CCD images. The approach
uses a simple convolutional network that captures track features at various scales through
the use of dilated convolutions. The resulting network improves substantially over the cur-
rent state-of-the-art CD'T method. This improvement comes from the network’s ability to
complete tracks in the latter layers, as those have large receptive fields.

The design of our network is flexible, allowing for an arbitrary number of layers. The
results also suggest that latter layers tend to do better than earlier layers. This naturally
leads to the possibility of improving the network’s performance by adding additional layers.
This does come at an increase in computational cost. This cost can be substantial for
networks that do not use max pooling, as the sizes of the latter layers do not decrease.
In preliminary experiments, we find that adding one or two more layers only improves the
accuracy marginally, but the increase in computational cost is more noticeable. Investigating
this trade-off and extending our network to detect other types of tracks are topics for future
research.
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