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Motivating problem:  
Community detection 

 Determine groupings of data objects given sets of 
relationships amongst those objects 

 Relationships may be represented in a graph or hypergraph 
 Graphs represent pairwise relationships 

 Hypergraphs represent relationships among groups of things 

 Applications 
 Finding emerging research trends from documents (Jung et al., 2014) 

 Clustering categorical data (Gibson et al., 2000) 

 Image segmentation (Agarwal et al., 2005) 

 Metabolic networks (Guimera et al., 2004) 
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Outline 

 Introduction to hypergraphs 

 Description of spectral clustering algorithm 

 Exploration of eigenvalue problems occurring in spectral 
clustering 

 Spectral clustering results 
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• Explore the usage of hypergraphs to model relational data 

 

• Understand how to effectively use eigensolvers in spectral 

analysis of this data  



What is a hypergraph? 

 

 

 

 

 

 

 

 

 Generalization of graph 
 Hyperedges represent multiway relationships between vertices 

 A hyperedge is a set of vertices of arbitrary size 

 Hyperedges can connect more than 2 vertices 
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What is a hypergraph? 

 

 

 

 

 

 

 

 

 Multiway relationships can be represented nonambiguously 
 Did A, B, and C write a paper together? 

 Relational data is hypergraph incidence matrix 
 We can convert a hypergraph to a graph via clique expansion 
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Hypergraph clique expansion 
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Weighted hypergraph clique expansion 
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𝑤 𝑒𝑔 =
1
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 Hypergraphs require significantly less storage space than 
graphs generated using clique expansion 
 
 

 Hypergraphs require fewer operations for a matrix-vector 
multiplication 

Computational advantages of  
hypergraphs 
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How do we detect communities in 
graphs and hypergraphs? 

 Spectral clustering (Ng, et al., 2002) 
 Compute the smallest eigenpairs of the normalized graph or 

hypergraph Laplacian (Zhou, et al., 2006) 

 

 

 

 

 Laplacian is never explicitly formed 

𝐿𝐺 = 𝐼 − 𝐷𝑣
−1 2 𝐻𝑔𝐻𝑔

𝑇 − 𝐷𝑣 𝐷𝑣
−1 2  

𝐿𝐻 = 𝐼 − 𝐷𝑣
−1 2 𝐻ℎ𝐷𝑒

−1𝐻ℎ
𝑇𝐷𝑣

−1 2  
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How do we detect communities in 
graphs and hypergraphs? 

 Spectral clustering (Ng, et al., 2002) 
 Compute the smallest eigenpairs of the normalized graph or 

hypergraph Laplacian (Zhou, et al., 2006) 

 

 

 
 

 Perform k-means clustering on those eigenvectors 

 Partition a set of observations into clusters in which each observation 
belongs to the cluster with the nearest mean 

 Quality of our results is measured using the Jaccard index 
 T = true cluster assignments 

 P = predicted cluster assignments  

𝐿𝐺 = 𝐼 − 𝐷𝑣
−1 2 𝐻𝑔𝐻𝑔

𝑇 − 𝐷𝑣 𝐷𝑣
−1 2  

𝐿𝐻 = 𝐼 − 𝐷𝑣
−1 2 𝐻ℎ𝐷𝑒

−1𝐻ℎ
𝑇𝐷𝑣

−1 2  
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 Parameters 
 Clusters 

 Nodes per cluster 

 Intra-cluster hyperedges 

 Inter-cluster hyperedges 

 Hyperedge cardinalities 

 Intra-cluster 

 Inter-cluster 

 We also generate a ground truth 
clustering vector 

 

Incidence Matrix:  

11 



Solving eigenvalue problems 

 Which eigensolver should we use? 

 How many eigenpairs should we compute? 

 How accurate do the eigenpairs need to be? 
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Choice of eigensolver 

 We use the eigensolvers available in Trilinos/Anasazi 
 Locally Optimal Block Preconditioned Conjugate Gradient method 

(LOBPCG) 

  TraceMin-Davidson 

 Riemannian Trust Region method (RTR) 
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Experimental results 

 Experiments were conducted on a 24 core machine with 128 
GB of memory using 16 MPI processes 

 Runtime parameters 
 10 matrices of each type 

 

 

 

 

 

 5 k-means trials per matrix 

 Eigensolver: LOBPCG 

 Number of computed eigenpairs: same as number of clusters* 

 Tolerance: 1e-3* 
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G1 G2 G3 

Number of clusters 10 5 10 

Nodes per cluster 10,000 10,000 10,000 

Intra/Inter-cluster hyperedges 40,000 / 50,000 20,000 / 200,000 20,000 / 200,000 

Intra/Inter-cluster h-edge cardinality 5 / 5 10 / 3 5 / 5 

*unless otherwise stated 



How do graph and hypergraph  
results compare? 

G3  

Graph Hypergraph 

k-means iterations 79.4 28.1 

LOBPCG iterations 15.6 8.9 
15 

0

5

10

15

20

graph hypergraph

ru
n

ti
m

e
 (

s)
 

eigensolver

k-means

Number of clusters 10 

Nodes per cluster 10,000 

Intra/Inter-cluster 

hyperedges 

20,000 

200,000 

Intra/Inter-cluster  

h-edge cardinality 

5 

5 

0.967 0.999 

0

0.2

0.4

0.6

0.8

1

graph hypergraph

J
a
c
c
a
rd

 i
n

d
e
x

 

2.398 

14.60 



How do graph and hypergraph  
results compare? 

G2 

Graph Hypergraph 

k-means iterations 56.8 5.4 

LOBPCG iterations 31.1 6.5 
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How do graph and hypergraph  
runtimes compare? 
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How many eigenvectors should we 
calculate? 
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Less noisy data: G1 Number of clusters 10 

Nodes per cluster 10,000 

Intra/Inter-cluster 

hyperedges 

40,000 

50,000 

Intra/Inter-cluster  

h-edge cardinality 

5 

5 



How many eigenvectors should we 
calculate? 
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How many eigenvectors should we 
calculate? 
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Noisier data: G3 Number of clusters 10 
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What tolerance should we use? 
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Conclusions 

 Graph vs hypergraph 
 Preliminary results suggest a dramatic runtime difference between 

eigensolver computation for graph and hypergraph case 

 Larger Jaccard indices for hypergraph over graph for several problem 
classes 

 Eigensolver 
 Low tolerances are acceptable 

 Choice of number of eigenvectors is very important 

 LOBPCG is effective for problems we studied 

 Currently exploring real world problems where hypergraphs 
may be a better choice 
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BACKUP SLIDES 
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Comparison of eigensolvers 
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Should we compute the eigenpairs of 
the Laplacian or the shifted Laplacian? 
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Should we compute the eigenpairs of 
the Laplacian or the shifted Laplacian? 
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Formulation of the eigenvalue 
problem 

 Computing the smallest eigenpairs of  
 
 
is equivalent to computing the largest eigenpairs of the 
shifted Laplacians 

 
 

 Computing the largest eigenpairs tends to be cheaper 

 Laplacians are singular (but null space is known) 

 Lg, Lh, and Sh are symmetric positive definite, but Sg is not 

 Sg can be shifted even more to make it positive definite 

 

𝐿𝑔 = 𝐼 − 𝐷𝑣
−1 2 𝐻𝑔𝐻𝑔

𝑇 − 𝐷𝑣 𝐷𝑣
−1 2  𝐿ℎ = 𝐼 − 𝐷𝑣

−1 2 𝐻ℎ𝐷𝑒
−1𝐻ℎ

𝑇𝐷𝑣
−1 2  

𝑆𝑔 = 𝐷𝑣
−1 2 𝐻𝑔𝐻𝑔

𝑇 − 𝐷𝑣 𝐷𝑣
−1 2  𝑆ℎ = 𝐷𝑣

−1 2 𝐻ℎ𝐷𝑒
−1𝐻ℎ

𝑇𝐷𝑣
−1 2  
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Plot of eigenvalues 
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Matrix-vector multiply runtime 
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Plot of eigenvectors 
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Unweighted graph vs hypergraph 
clustering 

Graph Approach 
Hypergraph Approach 

Mean intra-cluster cardinality = 3 

Number of clusters 4, mean size 100 

Mean number of inter-cluster edges: 800 
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Weighted graph vs hypergraph 
clustering 
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Should the null space be provided  
to k-means? 

 

 

 

 

 

 

 

 nClusters: 10 

 nVerts: 10,000 

 nEdges in cluster: 40,000 

 nEdges between clusters: 50,000 
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Graph vs hypergraph results 

 

 

 

 

 

 

 

 nClusters: 5 

 nVerts: 10,000 

 nEdges in cluster: 20,000 

 nEdges between clusters: 200,000 
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A real data set: zoo 

Jaccard index: .815 
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