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Motivating problem: =
Community detection

Laboratories

= Determine groupings of data objects given sets of
relationships amongst those objects

= Relationships may be represented in a graph or hypergraph
= Graphs represent pairwise relationships
= Hypergraphs represent relationships among groups of things
= Applications
Finding emerging research trends from documents (Jung et al., 2014)

Clustering categorical data (Gibson et al., 2000)

Image segmentation (Agarwal et al., 2005)

Metabolic networks (Guimera et al., 2004)




Outline

= |ntroduction to hypergraphs
= Description of spectral clustering algorithm

= Exploration of eigenvalue problems occurring in spectral
clustering

= Spectral clustering results

* Explore the usage of hypergraphs to model relational data

« Understand how to effectively use eigensolvers in spectral
analysis of this data
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What is a hypergraph? ) i,

Graph Hypergraph

Docs
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= Generalization of graph
= Hyperedges represent multiway relationships between vertices
= A hyperedge is a set of vertices of arbitrary size
= Hyperedges can connect more than 2 vertices




What is a hypergraph? ) i,
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Hypergraph incidence
matrix

= Multiway relationships can be represented nonambiguously
= Did A, B, and C write a paper together?

= Relational data is hypergraph incidence matrix
= We can convert a hypergraph to a graph via clique expansion 5
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Hypergraph clique expansion

Hyperedges Graph Edges

Vertices




Weighted hypergraph clique expansion M.

Hyperedges Graph Edges
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Unifying expansions and Laplacians: Agarwal et al., 2006



Computational advantages of
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hypergraphs
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Hypergraph incidence matrix Graph Incidence matrix

= Hypergraphs require significantly less storage space than
graphs generated using clique expansion
EDN
ecEy
= Hypergraphs require fewer operations for a matrix-vector
multiplication
8




How do we detect communities in
graphs and hypergraphs?

= Spectral clustering (Ng, et al., 2002)

= Compute the smallest eigenpairs of the normalized graph or
hypergraph Laplacian (Zhou, et al., 2006)

Le=1-D, **(H,H," — D,)D, ™/
Ly=1-D, Y?H,D,”*H,"D,~1/?

= Laplacian is never explicitly formed

1 1 Va| Vs | s

1

Yo | %2 V3 V3

Yo Yo V3 V3
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How do we detect communities in ..
graphs and hypergraphs?

Laboratories

= Spectral clustering (Ng, et al., 2002)

= Compute the smallest eigenpairs of the normalized graph or
hypergraph Laplacian (Zhou, et al., 2006)

Le=1-D, **(H,H," — D,)D, ™/
Ly=1-D, Y?H,D,”*H,"D,~1/?

= Perform k-means clustering on those eigenvectors
= Partition a set of observations into clusters in which each observation
belongs to the cluster with the nearest mean

= Quality of our results is measured using the Jaccard index

= T=true cluster assignments
| TNP|

- |TUP|

= P =predicted cluster assignments J(T,P)
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Randomly Generated Hypergraphs .
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Solving eigenvalue problems ) .

= Which eigensolver should we use?
= How many eigenpairs should we compute?

= How accurate do the eigenpairs need to be?
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Choice of eigensolver ) i,

= We use the eigensolvers available in Trilinos/Anasazi

= Locally Optimal Block Preconditioned Conjugate Gradient method
(LOBPCG)

= TraceMin-Davidson

= Riemannian Trust Region method (RTR)




Experimental results ) .

= Experiments were conducted on a 24 core machine with 128
GB of memory using 16 MPI processes

= Runtime parameters

= 10 matrices of each type

Number of clusters

Nodes per cluster 10,000 10,000 10,000
Intra/Inter-cluster hyperedges 40,000/ 50,000 20,000/ 200,000 20,000/ 200,000
Intra/Inter-cluster h-edge cardinality 5/5 10/3 5/5

= 5 k-means trials per matrix
= Eigensolver: LOBPCG

= Number of computed eigenpairs: same as number of clusters*

= Tolerance: le-3*
14

*unless otherwise stated



How do graph and hypergraph
results compare?
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How do graph and hypergraph
results compare?
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How do graph and hypergraph
runtimes compare?

16
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Jaccard index was always 1



How many eigenvectors should we
calculate?
1
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How many eigenvectors should we
calculate?

60
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How many eigenvectors should we
calculate?
1
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What tolerance should we use? ) &5,
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eigenvectors for tolerance of 10! were random



Conclusions ) i

= Graph vs hypergraph
= Preliminary results suggest a dramatic runtime difference between
eigensolver computation for graph and hypergraph case
= Larger Jaccard indices for hypergraph over graph for several problem
classes
= Eigensolver
= Low tolerances are acceptable
= Choice of number of eigenvectors is very important
= LOBPCG is effective for problems we studied

= Currently exploring real world problems where hypergraphs
may be a better choice

22
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BACKUP SLIDES
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Comparison of eigensolvers ) &5
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Should we compute the eigenpairs oé
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the Laplacian or the shifted Laplacian?

G3
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&£ 15 "
)
€ 10 -
= W eigensolver
2 2
B k-means
O _
graph shifted  hypergraph  shifted
Laplacian graph Laplacian hypergraph
Laplacian Laplacian
Number of clusters 10
Nodes per cluster 10,000
IE Ezpfgsgipf Shitea toperorarh [T
P P b n P n hyperedges 200,000
LOBPCG iterations  15.6 15.6 8.9 I [ s 5
K-means iterations  56.9 79.4 31.8 28.1 h-edge cardinality 5

25




National
Laboratories

the Laplacian or the shifted Laplacian?
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Should we compute the eigenpairs o@

graph shifted graph hypergraph shifted

Laplacian Laplacian Laplacian hypergraph
Laplacian

Number of clusters 10
Nodes per cluster 10,000
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- o L
LOBPCG iterations  15.6 15.6 e Eme s 5
K-means iterations  56.9 79.4 31.8 28.1 h-edge cardinality 5
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Formulation of the eigenvalue
problem
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= Computing the smallest eigenpairs of
Ly=1-D,"*?(H,H," — D,)D, */? L,=1-D,Y?H,D,”*H,"D,~1/?

is equivalent to computing the largest eigenpairs of the
shifted Laplacians

Sy =Dy, *(H,H," — D,)D,/? S, =D,”Y?H,D, *H,TD,~1/?

Computing the largest eigenpairs tends to be cheaper
Laplacians are singular (but null space is known)

" L, L, and S, are symmetric positive definite, but S, is not
S, can be shifted even more to make it positive definite

27



Plot of eigenvalues
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Matrix-vector multiply runtime 1) .
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Plot of eigenvectors
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Unweighted graph vs hypergraph

clustering
Graph Approach
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Hypergraph Approach

Jaccard Index
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Weighted graph vs hypergraph =
clustering
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Graph Approach Hypergraph Approach
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Should the null space be provided ..
to k-means?
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laplacian: 0, toler - raph: 0
.E 08 1 D.QE 1
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# of eigenvectors used in k-means (withbof eigbspackrs used in k-means (with null-space)

= nClusters: 10
= nVerts: 10,000
= nEdges in cluster: 40,000

= nEdges between clusters: 50,000
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Graph vs hypergraph

graph Jaccard index data
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cardinality within cluster
cardinality outside of cluster

= nClusters: 5
= nVerts: 10,000

= nEdges in cluster: 20,000

results

hypergraph Jaccard index data
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4 4

cardinality within cluster
cardinality outside of cluster

= nEdges between clusters: 200,000
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Their labeling

Our labeling

real data set: zoo ) i
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