

Clustering network data through effective use of eigensolvers and hypergraph models

Alicia Klinvex, Michael Wolf, and Daniel
Dunlavy

*Exceptional
service
in the
national
interest*

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Motivating problem:

Community detection

- Determine groupings of data objects given sets of relationships amongst those objects
- Relationships may be represented in a graph or hypergraph
 - Graphs represent pairwise relationships
 - Hypergraphs represent relationships among groups of things
- Applications
 - Finding emerging research trends from documents (Jung et al., 2014)
 - Clustering categorical data (Gibson et al., 2000)
 - Image segmentation (Agarwal et al., 2005)
 - Metabolic networks (Guimera et al., 2004)

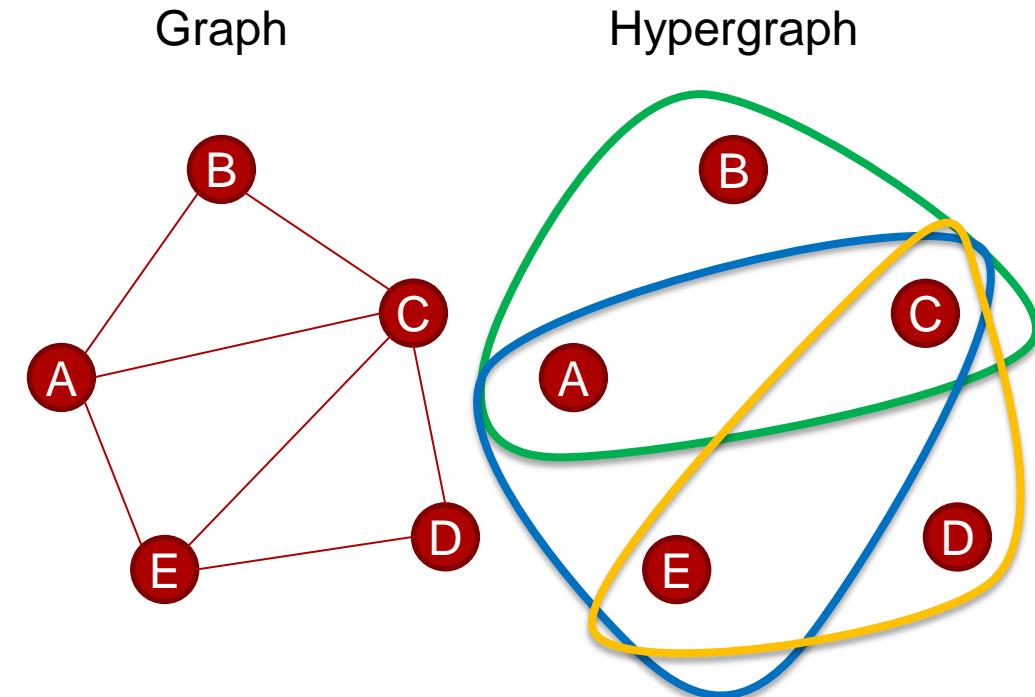
Outline

- Introduction to hypergraphs
- Description of spectral clustering algorithm
- Exploration of eigenvalue problems occurring in spectral clustering
- Spectral clustering results

- Explore the usage of hypergraphs to model relational data
- Understand how to effectively use eigensolvers in spectral analysis of this data

What is a hypergraph?

		Docs		
		1	2	3
		A	X	
		B	X	
		C	X	X
		D		X
		E		X

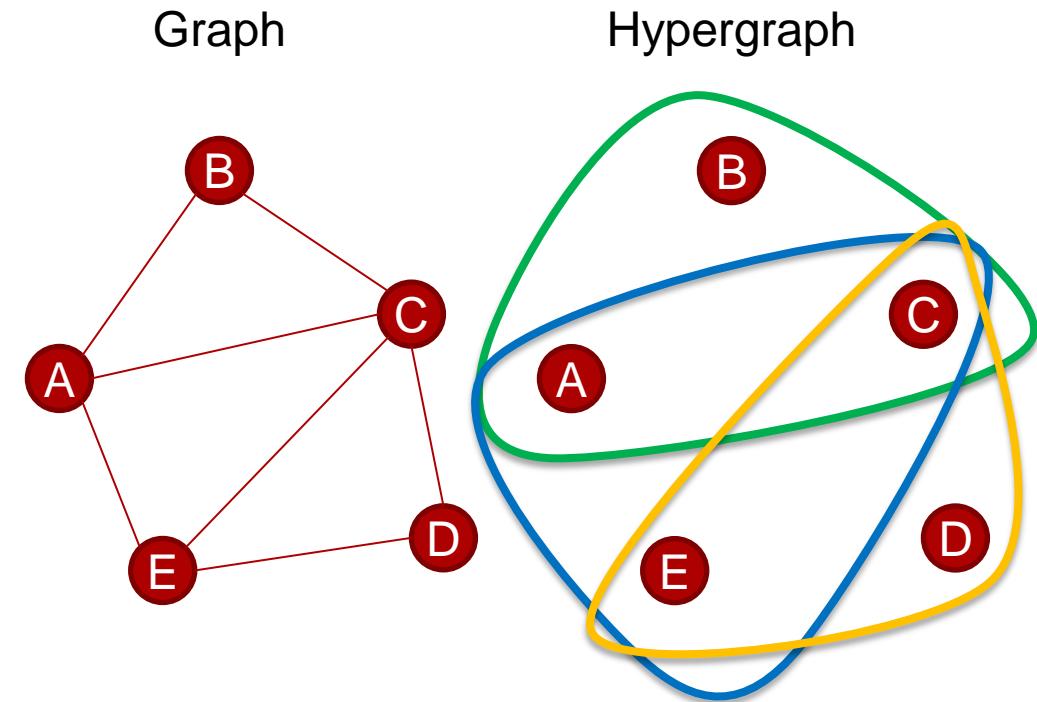


- Generalization of graph
 - Hyperedges represent multiway relationships between vertices
 - A hyperedge is a set of vertices of arbitrary size
 - Hyperedges can connect more than 2 vertices

What is a hypergraph?

		Docs		
		1	2	3
		A	1	1
		B	1	
		C	1	1
		D		1
		E	1	1

Hypergraph incidence matrix



- Multiway relationships can be represented nonambiguously
 - Did A, B, and C write a paper together?
- Relational data is hypergraph incidence matrix
 - We can convert a hypergraph to a graph via clique expansion

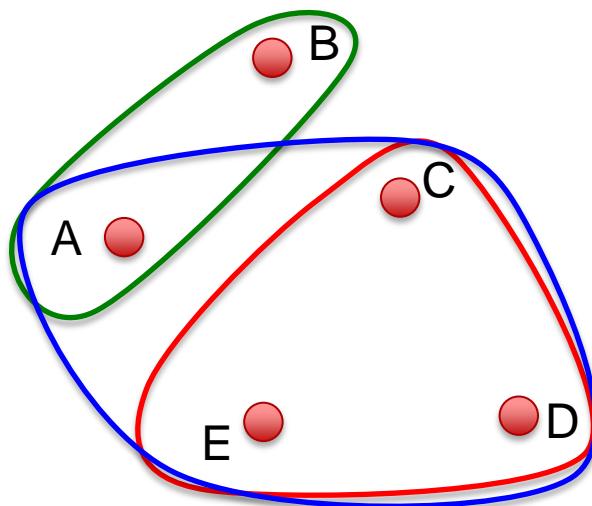
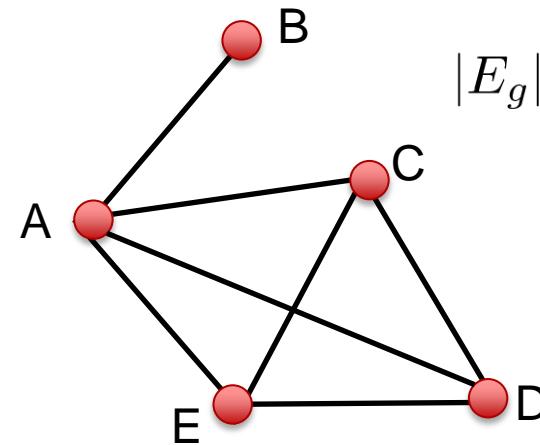
Hypergraph clique expansion

Hyperedges

	1	2	3
A	1		1
B	1		
C		1	1
D		1	1
E		1	1

Graph Edges

	1	2	3	4	5	6	7	8	9	10
A	X				X	X	X			
B	X									
C		X	X		X			X	X	
D		X		X		X		X		X
E			X	X			X		X	X



$$|E_g| = \sum_{e \in E_h} \binom{d(e)}{2}$$

Weighted hypergraph clique expansion

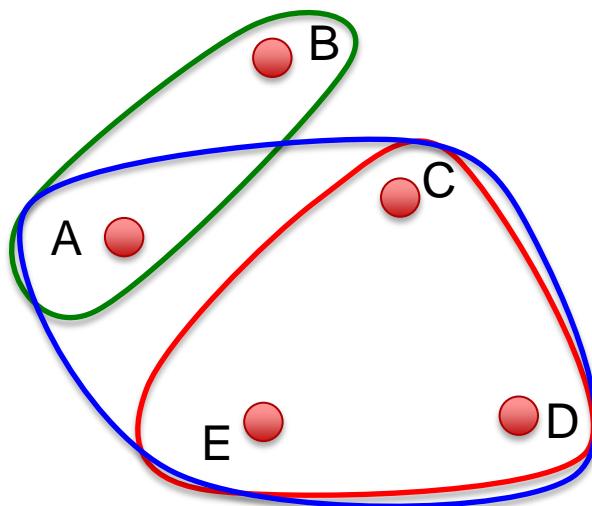
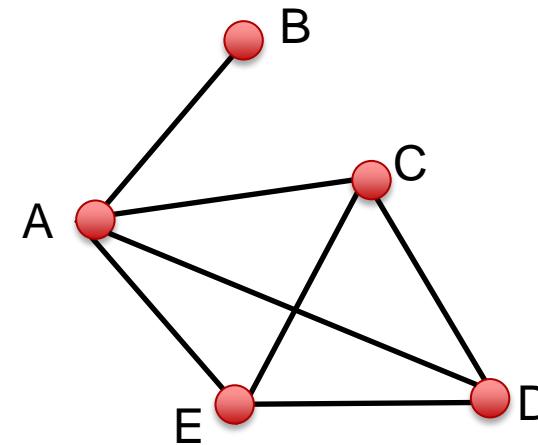
Hyperedges

	1	2	3
A	1		1
B	1		
C		1	1
D		1	1
E		1	1

Vertices

Graph Edges

	1	2	3	4	5	6	7	8	9	10
A	1				$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$			
B	1									
C		$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{3}$			$\frac{1}{3}$	$\frac{1}{3}$	
D		$\frac{1}{2}$		$\frac{1}{2}$		$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$
E			$\frac{1}{2}$	$\frac{1}{2}$			$\frac{1}{3}$		$\frac{1}{3}$	$\frac{1}{3}$



$$w(e_g) = \frac{1}{d(e_h) - 1}$$

Computational advantages of hypergraphs

1		1
1		
	1	1
	1	1
	1	1

Hypergraph incidence matrix

1				$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$			
1									
	$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{3}$			$\frac{1}{3}$	$\frac{1}{3}$	
	$\frac{1}{2}$		$\frac{1}{2}$		$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$
		$\frac{1}{2}$	$\frac{1}{2}$			$\frac{1}{3}$		$\frac{1}{3}$	$\frac{1}{3}$

Graph Incidence matrix

- Hypergraphs require significantly less storage space than graphs generated using clique expansion

$$|E_g| = \sum_{e \in E_h} \binom{d(e)}{2}$$

- Hypergraphs require fewer operations for a matrix-vector multiplication

How do we detect communities in graphs and hypergraphs?

- Spectral clustering (Ng, et al., 2002)
 - Compute the smallest eigenpairs of the normalized graph or hypergraph Laplacian (Zhou, et al., 2006)

$$L_G = I - D_v^{-1/2} (H_g H_g^T - D_v) D_v^{-1/2}$$

$$L_H = I - D_v^{-1/2} H_h D_e^{-1} H_h^T D_v^{-1/2}$$

- Laplacian is never explicitly formed

1		1
1		
	1	1
	1	1
	1	1

1					$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$		
1									
	$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{3}$			$\frac{1}{3}$	$\frac{1}{3}$	
	$\frac{1}{2}$		$\frac{1}{2}$		$\frac{1}{3}$		$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
		$\frac{1}{2}$	$\frac{1}{2}$			$\frac{1}{3}$		$\frac{1}{3}$	$\frac{1}{3}$

How do we detect communities in graphs and hypergraphs?

- Spectral clustering (Ng, et al., 2002)
 - Compute the smallest eigenpairs of the normalized graph or hypergraph Laplacian (Zhou, et al., 2006)

$$L_G = I - D_v^{-1/2} (H_g H_g^T - D_v) D_v^{-1/2}$$

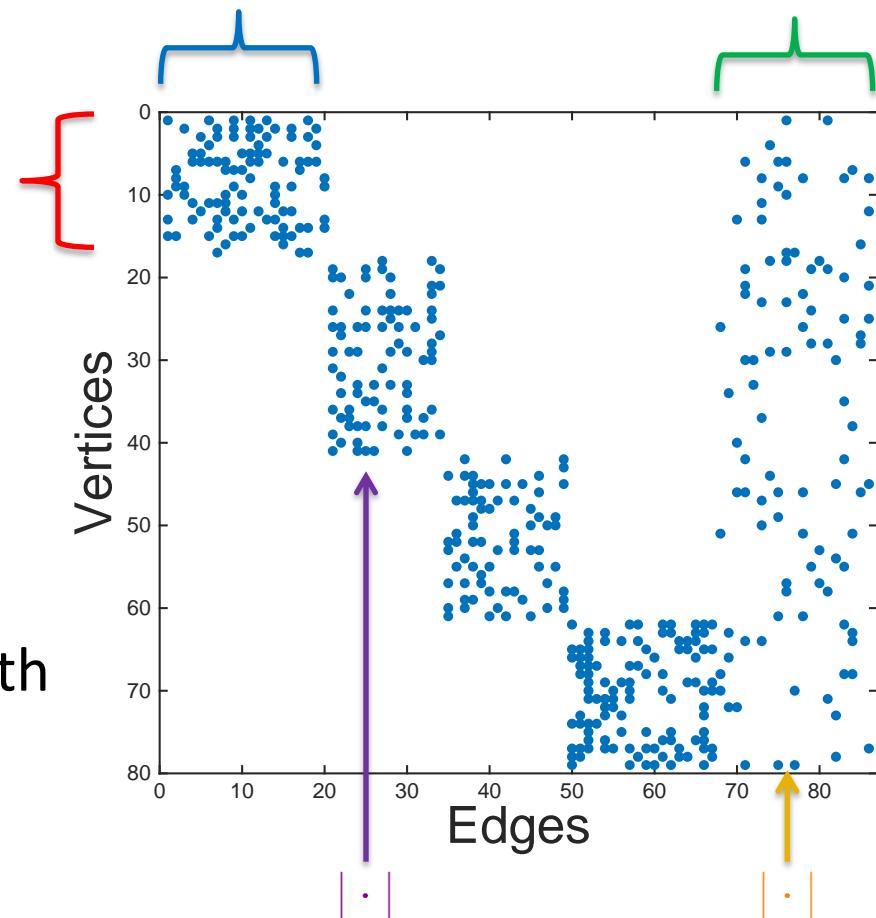
$$L_H = I - D_v^{-1/2} H_h D_e^{-1} H_h^T D_v^{-1/2}$$

- Perform k-means clustering on those eigenvectors
 - Partition a set of observations into clusters in which each observation belongs to the cluster with the nearest mean
- Quality of our results is measured using the Jaccard index
 - T = true cluster assignments
 - P = predicted cluster assignments

$$J(T, P) = \frac{|T \cap P|}{|T \cup P|}$$

Randomly Generated Hypergraphs

- Parameters
 - Clusters
 - Nodes per cluster
 - Intra-cluster hyperedges
 - Inter-cluster hyperedges
 - Hyperedge cardinalities
 - Intra-cluster
 - Inter-cluster
- We also generate a ground truth clustering vector



Incidence Matrix: H_h

Solving eigenvalue problems

- Which eigensolver should we use?
- How many eigenpairs should we compute?
- How accurate do the eigenpairs need to be?

Choice of eigensolver

- We use the eigensolvers available in Trilinos/Anasazi
 - Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)
 - TraceMin-Davidson
 - Riemannian Trust Region method (RTR)

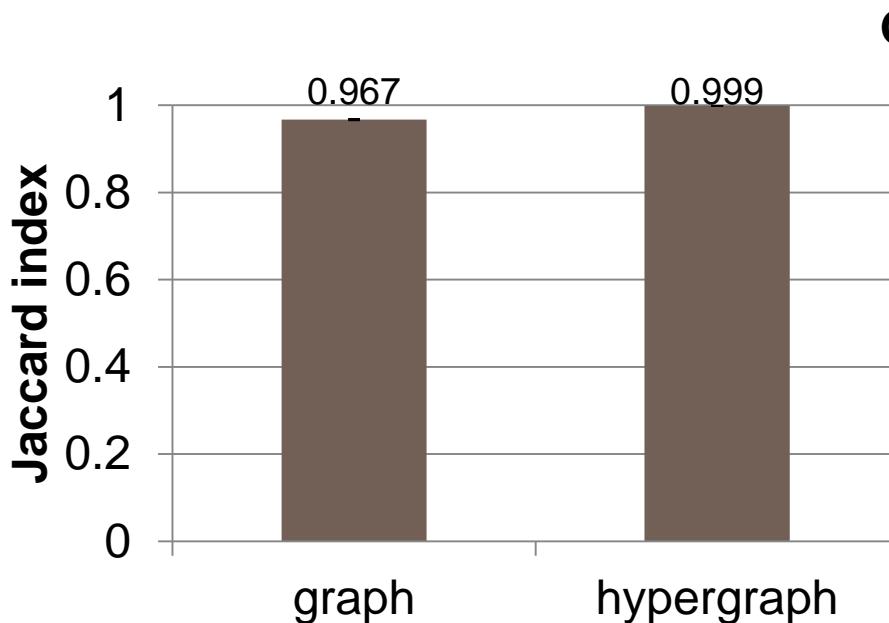
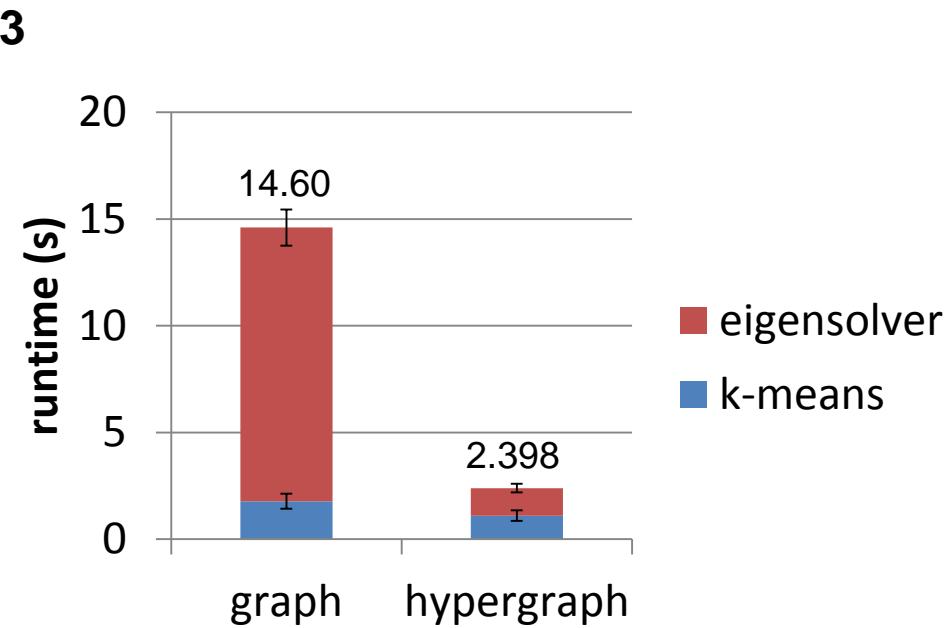
Experimental results

- Experiments were conducted on a 24 core machine with 128 GB of memory using 16 MPI processes
- Runtime parameters
 - 10 matrices of each type

	G1	G2	G3
Number of clusters	10	5	10
Nodes per cluster	10,000	10,000	10,000
Intra/Inter-cluster hyperedges	40,000 / 50,000	20,000 / 200,000	20,000 / 200,000
Intra/Inter-cluster h-edge cardinality	5 / 5	10 / 3	5 / 5

- 5 k-means trials per matrix
- Eigensolver: LOBPCG
- Number of computed eigenpairs: same as number of clusters*
- Tolerance: 1e-3*

How do graph and hypergraph results compare?

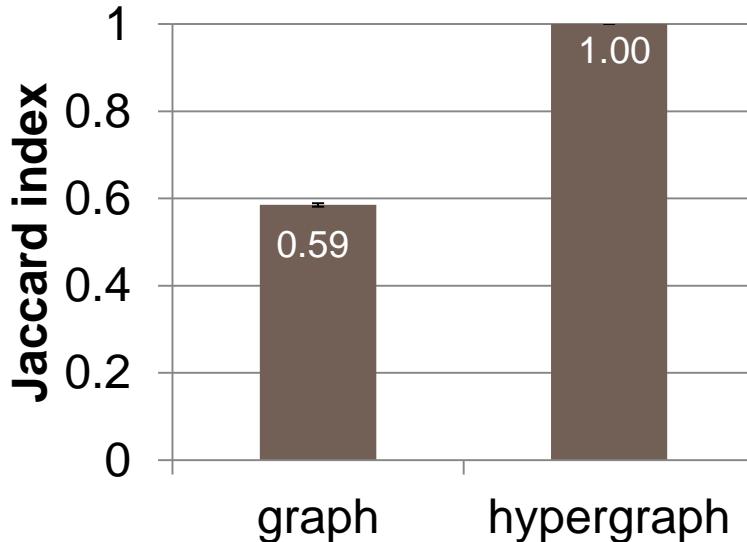
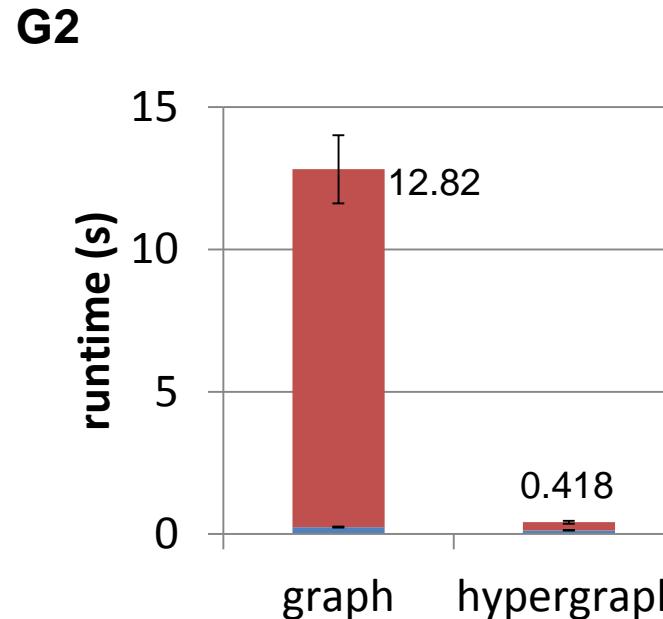


	Graph	Hypergraph	
k-means iterations	79.4	28.1	Number of clusters 10
LOBPCG iterations	15.6	8.9	Nodes per cluster 10,000

Intra/Inter-cluster hyperedges 200,000

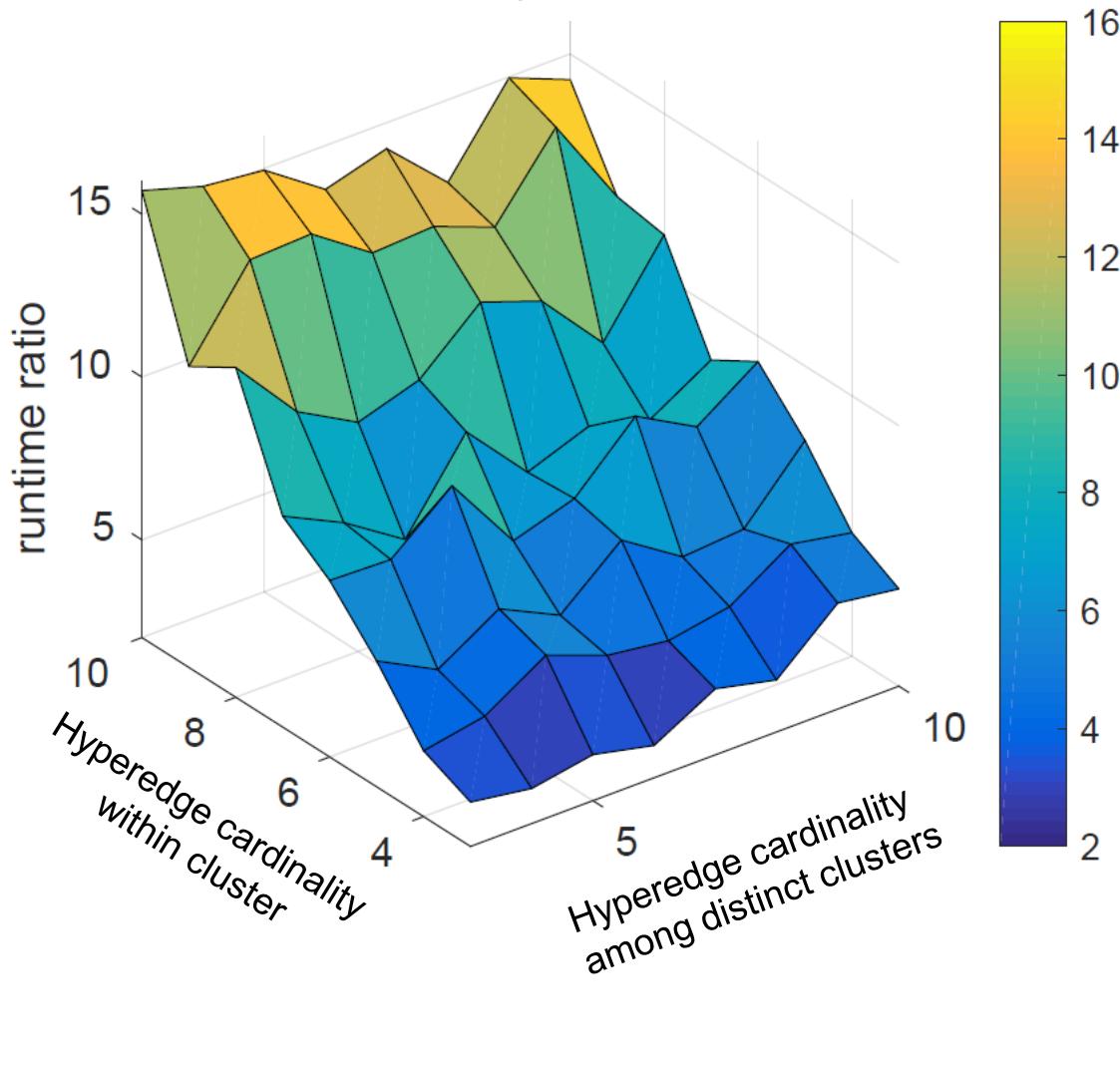
Intra/Inter-cluster h-edge cardinality 5 5

How do graph and hypergraph results compare?



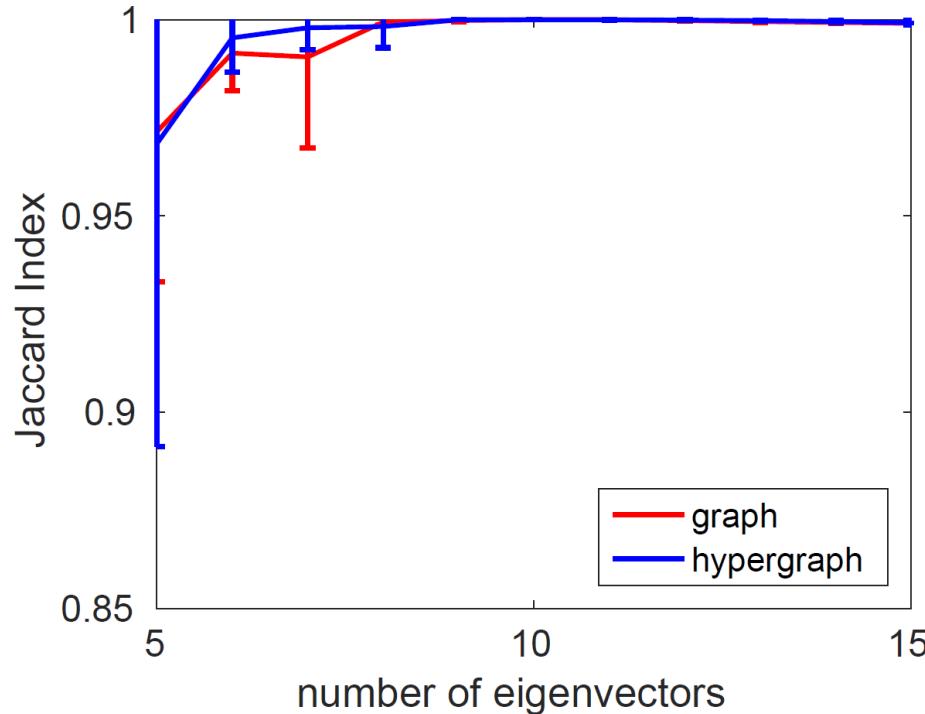
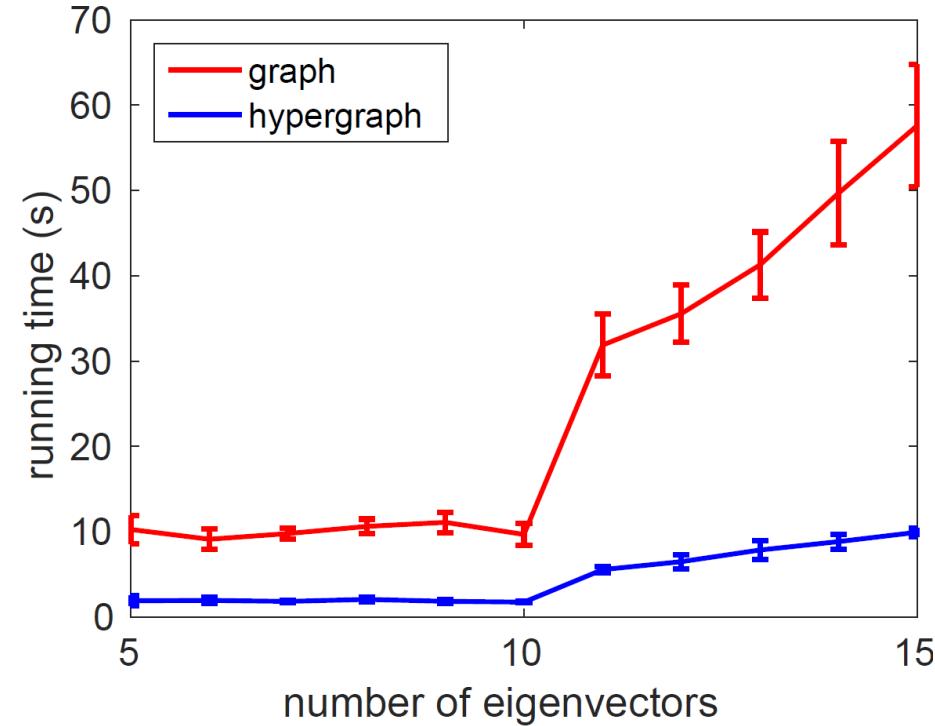
	Graph	Hypergraph	Number of clusters	5
k-means iterations	56.8	5.4	Nodes per cluster	10,000
LOBPCG iterations	31.1	6.5	Intra/Inter-cluster hyperedges	20,000 200,000
			Intra/Inter-cluster h-edge cardinality	10 3

How do graph and hypergraph runtimes compare?



Number of clusters	5
nodes per cluster	10,000
Intra/Inter-cluster hyperedges	40,000 50,000

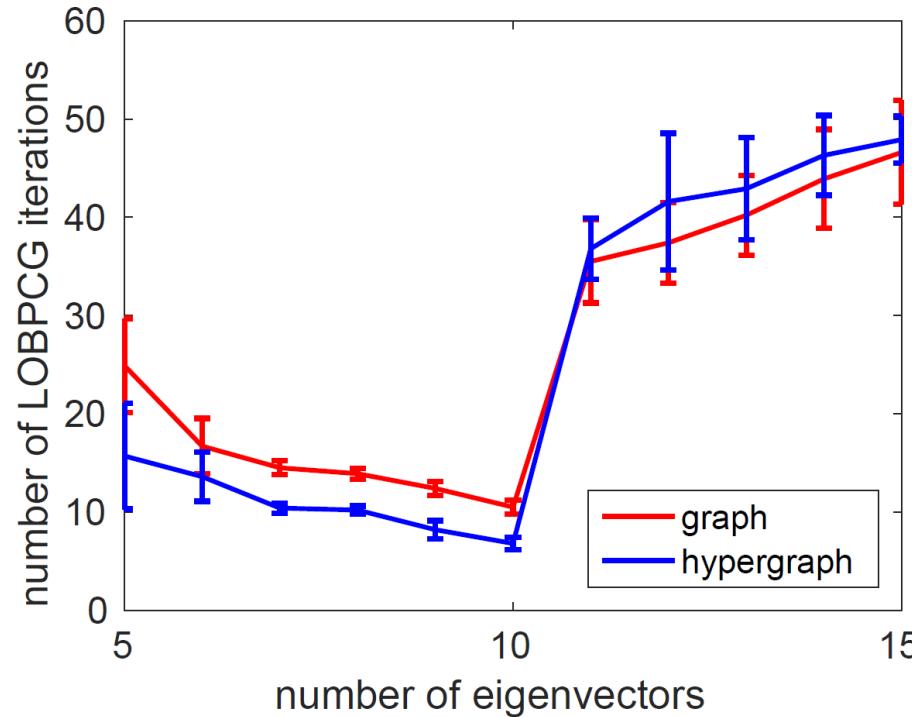
How many eigenvectors should we calculate?



Less noisy data: G1

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	40,000
Intra/Inter-cluster h-edge cardinality	5
h-edge cardinality	5

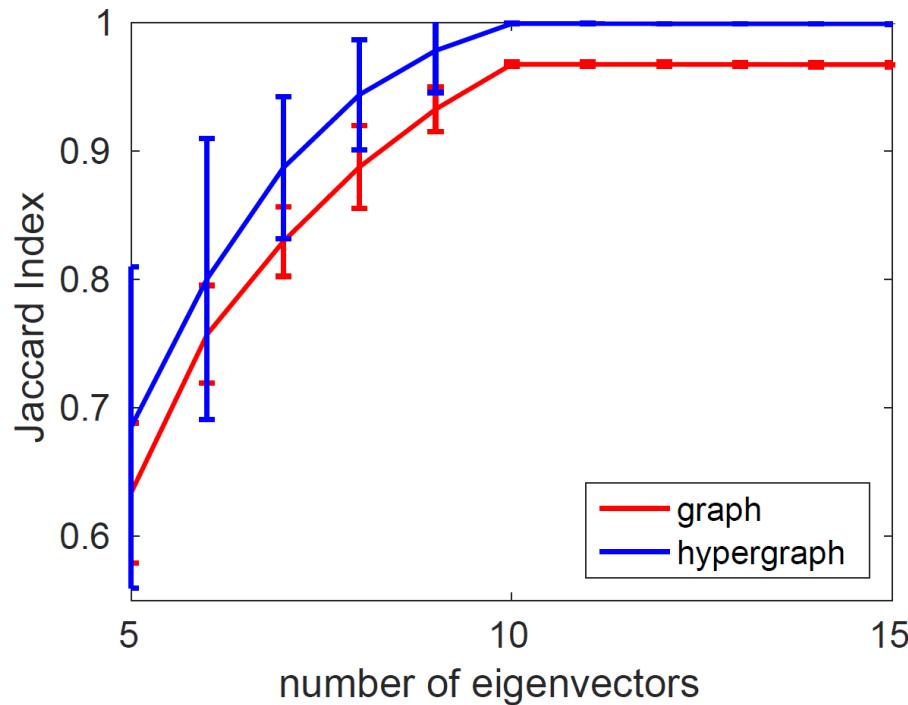
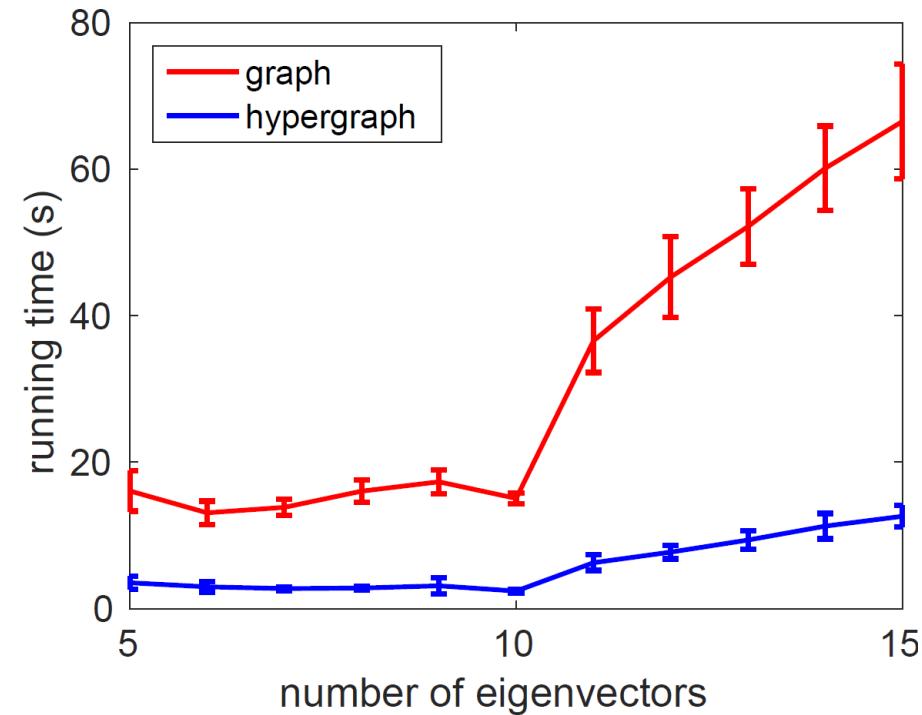
How many eigenvectors should we calculate?



Less noisy data: G1

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	40,000
Intra/Inter-cluster h-edge cardinality	5
Intra/Inter-cluster h-edge cardinality	5

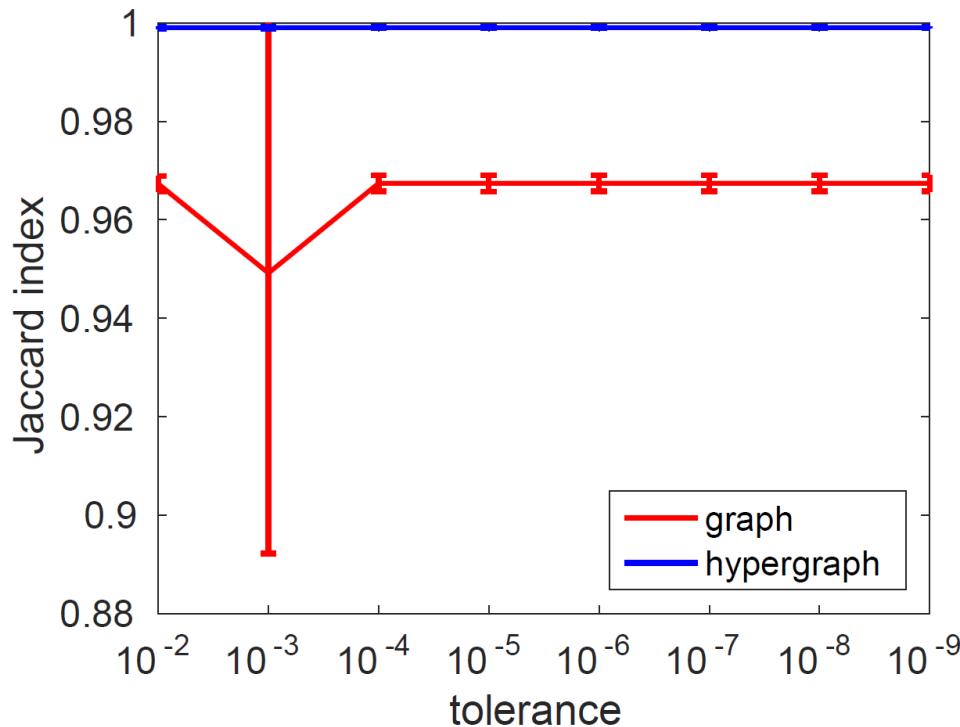
How many eigenvectors should we calculate?



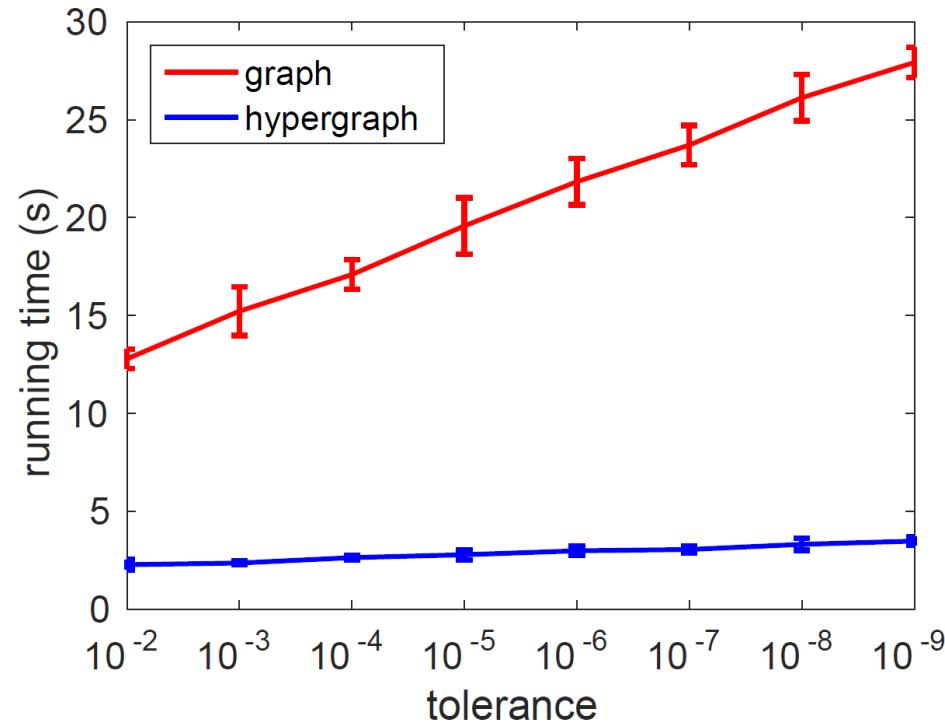
Noisier data: G3

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000
Intra/Inter-cluster h-edge cardinality	200,000
Intra/Inter-cluster h-edge cardinality	5
Intra/Inter-cluster h-edge cardinality	5

What tolerance should we use?



G3



Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000
Intra/Inter-cluster h-edge cardinality	200,000
Intra/Inter-cluster h-edge cardinality	5
Intra/Inter-cluster h-edge cardinality	5

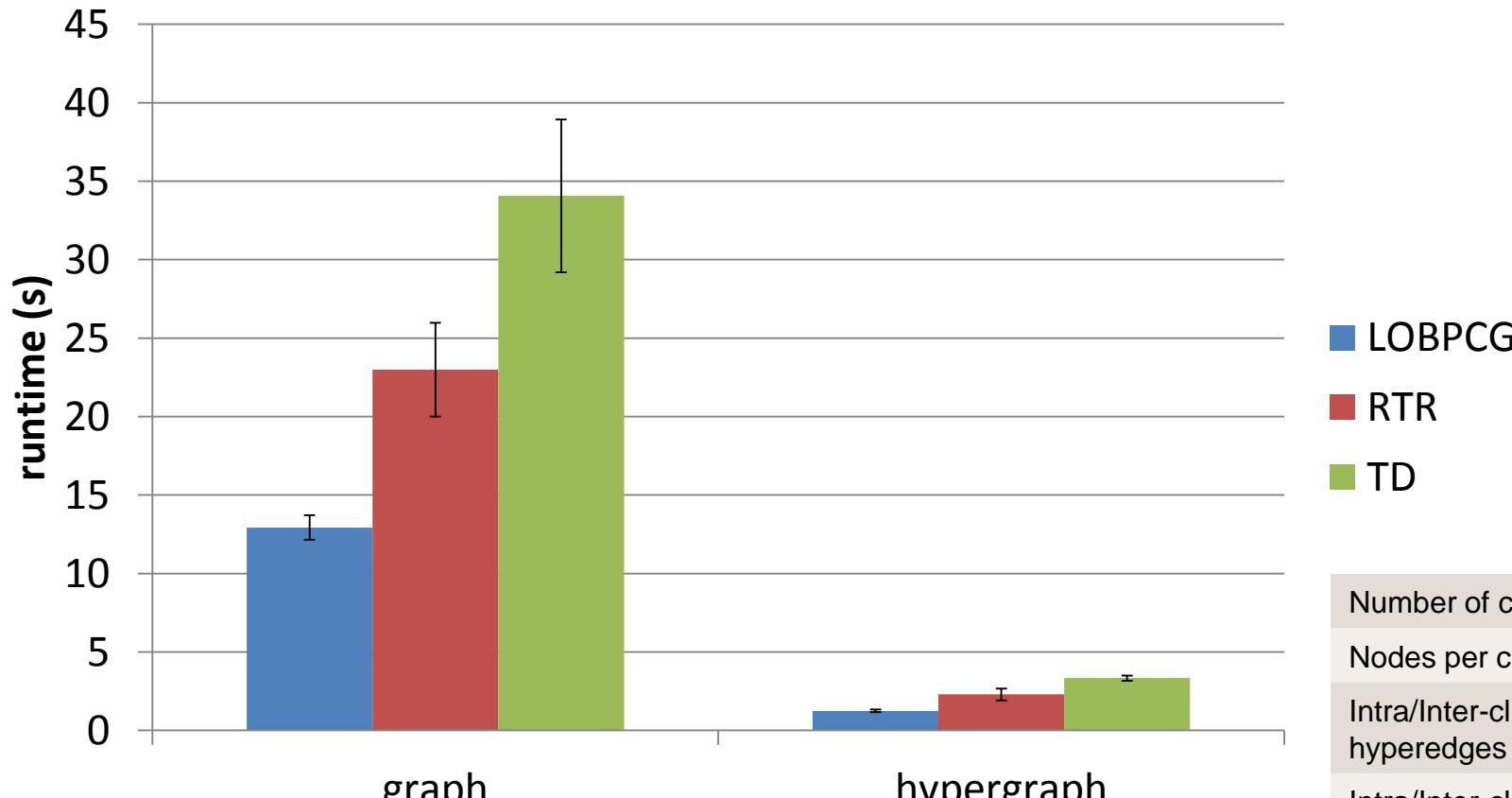
Conclusions

- Graph vs hypergraph
 - Preliminary results suggest a **dramatic runtime difference** between eigensolver computation for graph and hypergraph case
 - **Larger Jaccard indices** for hypergraph over graph for several problem classes
- Eigensolver
 - Low tolerances are acceptable
 - Choice of number of eigenvectors is very important
 - LOBPCG is effective for problems we studied
- Currently exploring real world problems where hypergraphs may be a better choice

BACKUP SLIDES

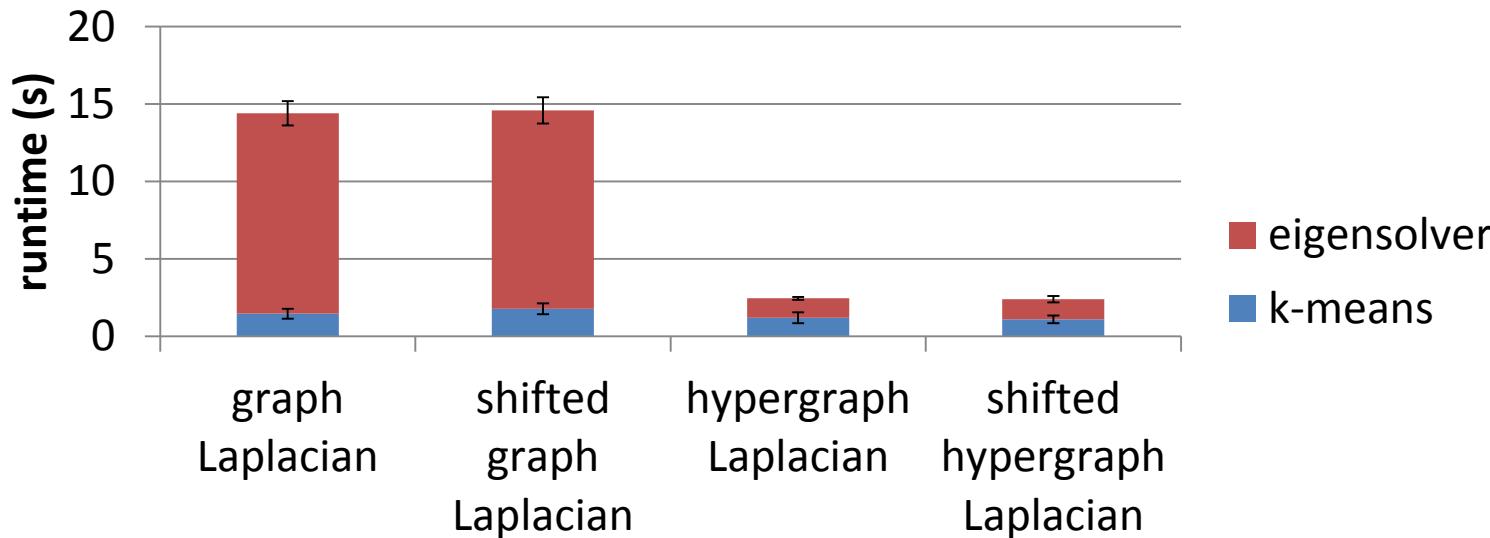
Comparison of eigensolvers

G3



Should we compute the eigenpairs of the Laplacian or the shifted Laplacian?

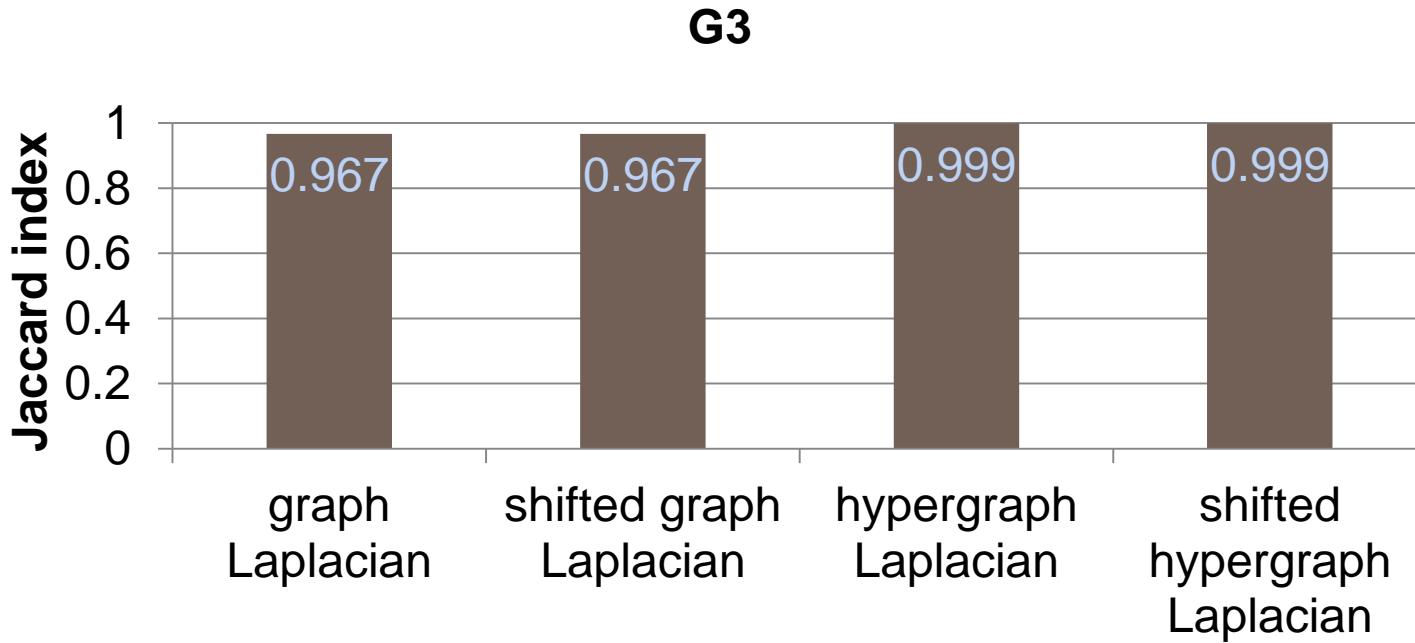
G3



	Graph Laplacian L_g	Shifted graph Laplacian S_g	Hypergraph Laplacian L_h	Shifted hypergraph Laplacian S_h
LOBPCG iterations	15.6	15.6	8.9	8.9
K-means iterations	56.9	79.4	31.8	28.1

Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000
Intra/Inter-cluster h-edge cardinality	5
Intra/Inter-cluster h-edge cardinality	5

Should we compute the eigenpairs of the Laplacian or the shifted Laplacian?



	Graph Laplacian L_g	Shifted graph Laplacian S_g	Hypergraph Laplacian L_h	Shifted hypergraph Laplacian S_h	Number of clusters	10
LOBPCG iterations	15.6	15.6	8.9	8.9	Nodes per cluster	10,000
K-means iterations	56.9	79.4	31.8	28.1	Intra/Inter-cluster hyperedges	20,000 200,000

Formulation of the eigenvalue problem

- Computing the smallest eigenpairs of

$$L_g = I - D_v^{-1/2} (H_g H_g^T - D_v) D_v^{-1/2} \quad L_h = I - D_v^{-1/2} H_h D_e^{-1} H_h^T D_v^{-1/2}$$

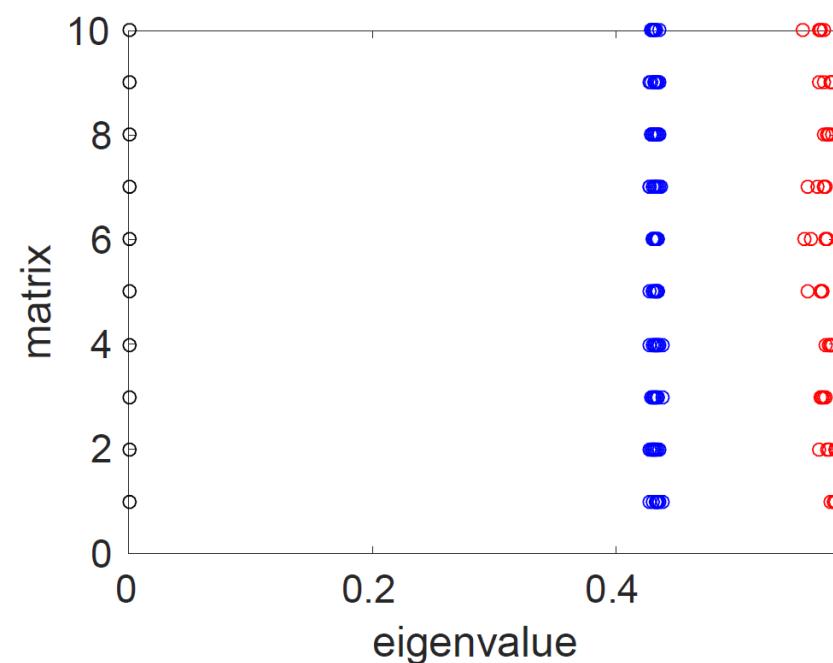
is equivalent to computing the largest eigenpairs of the shifted Laplacians

$$S_g = D_v^{-1/2} (H_g H_g^T - D_v) D_v^{-1/2} \quad S_h = D_v^{-1/2} H_h D_e^{-1} H_h^T D_v^{-1/2}$$

- Computing the largest eigenpairs tends to be cheaper
- Laplacians are singular (but null space is known)
- L_g , L_h , and S_h are symmetric positive definite, but S_g is not
- S_g can be shifted even more to make it positive definite

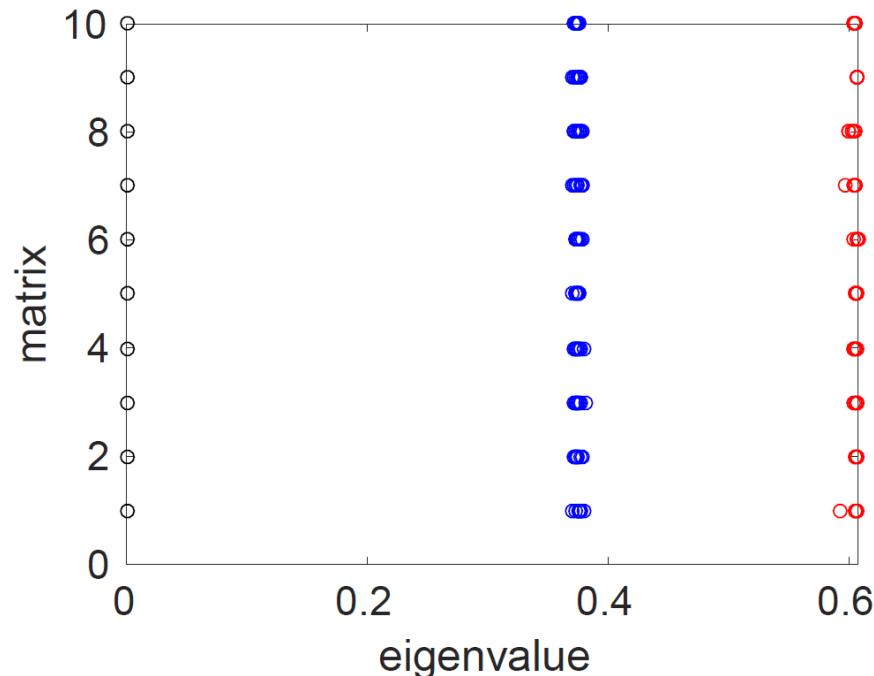
Plot of eigenvalues

graph



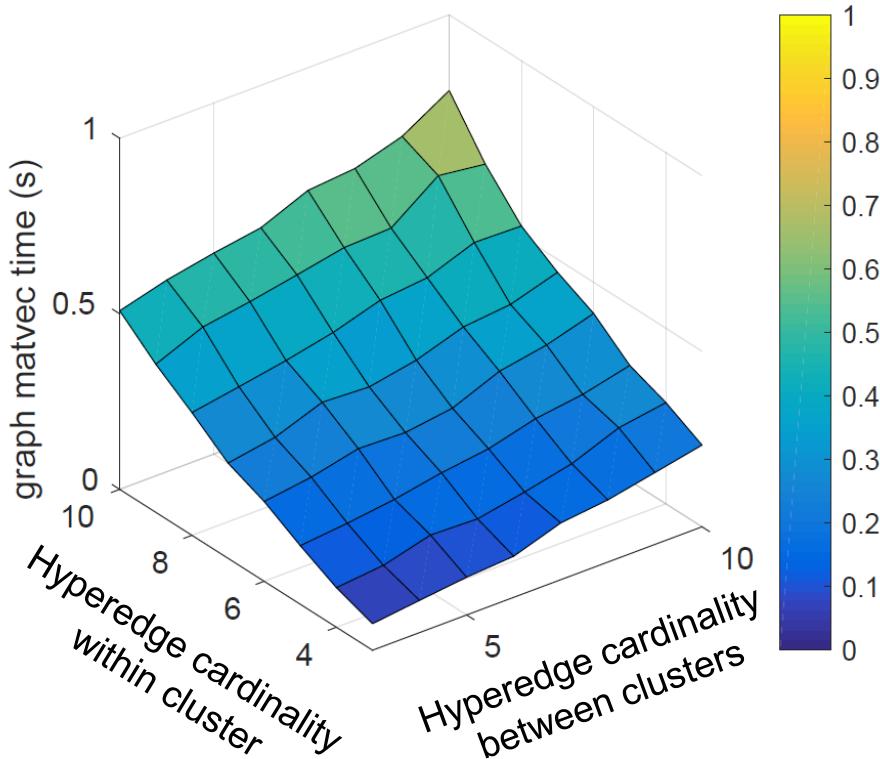
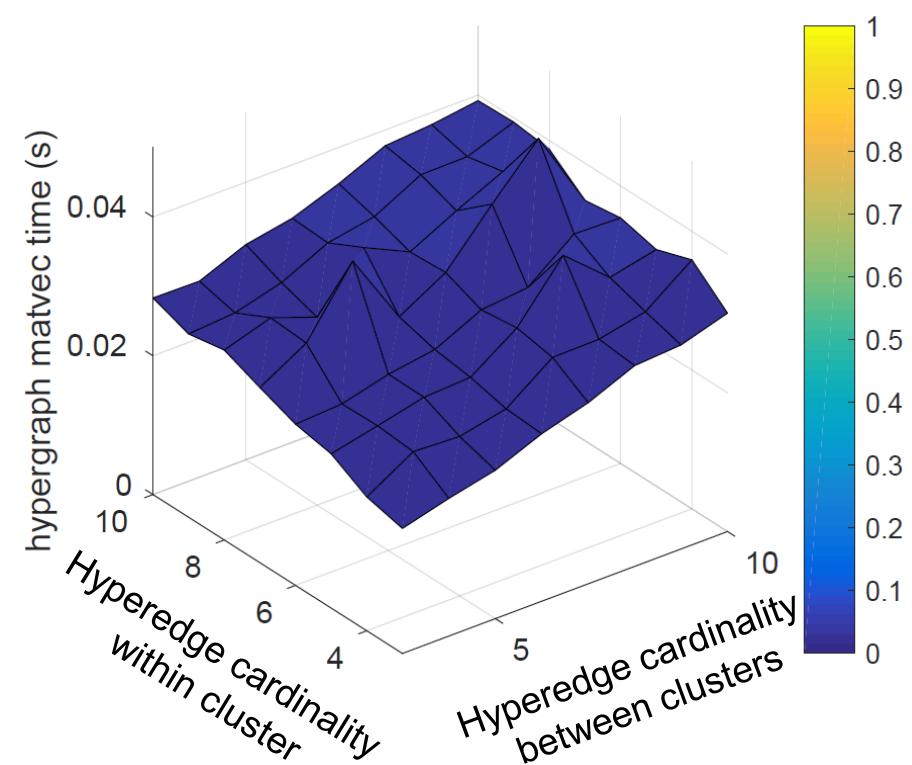
G3

hypergraph



Number of clusters	10
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000 200,000
Intra/Inter-cluster h-edge cardinality	5 5

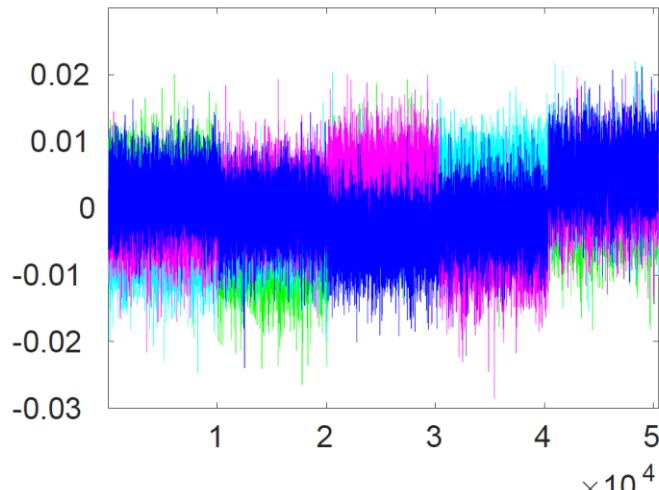
Matrix-vector multiply runtime



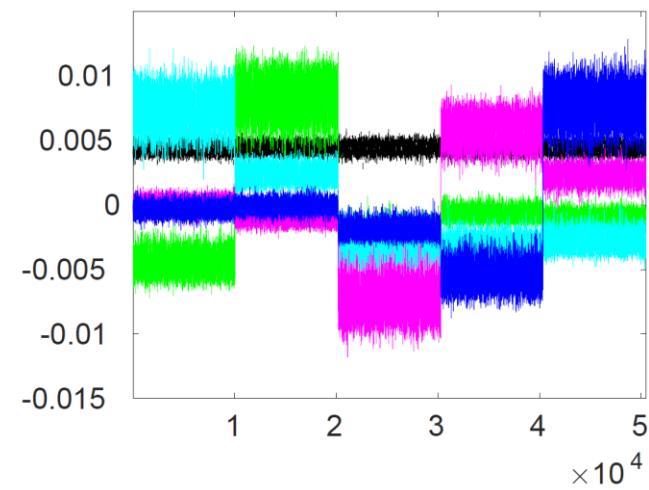
Number of clusters	5
nodes per cluster	10,000
Intra/Inter-cluster hyperedges	40,000 50,000

Plot of eigenvectors

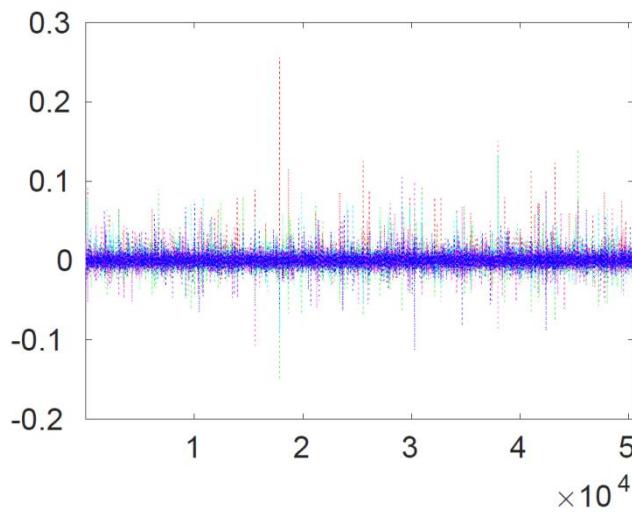
G2



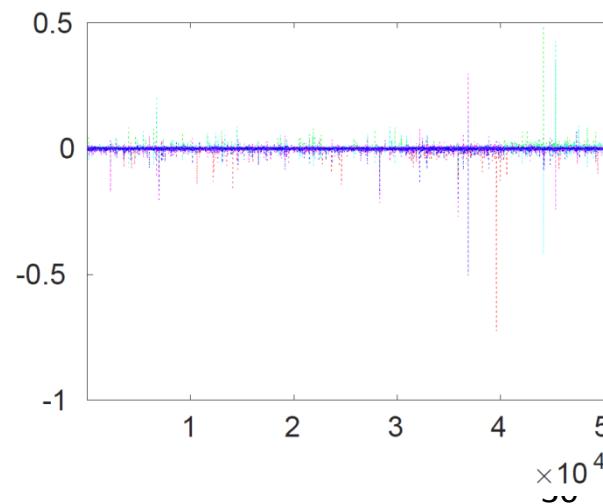
graph



hypergraph

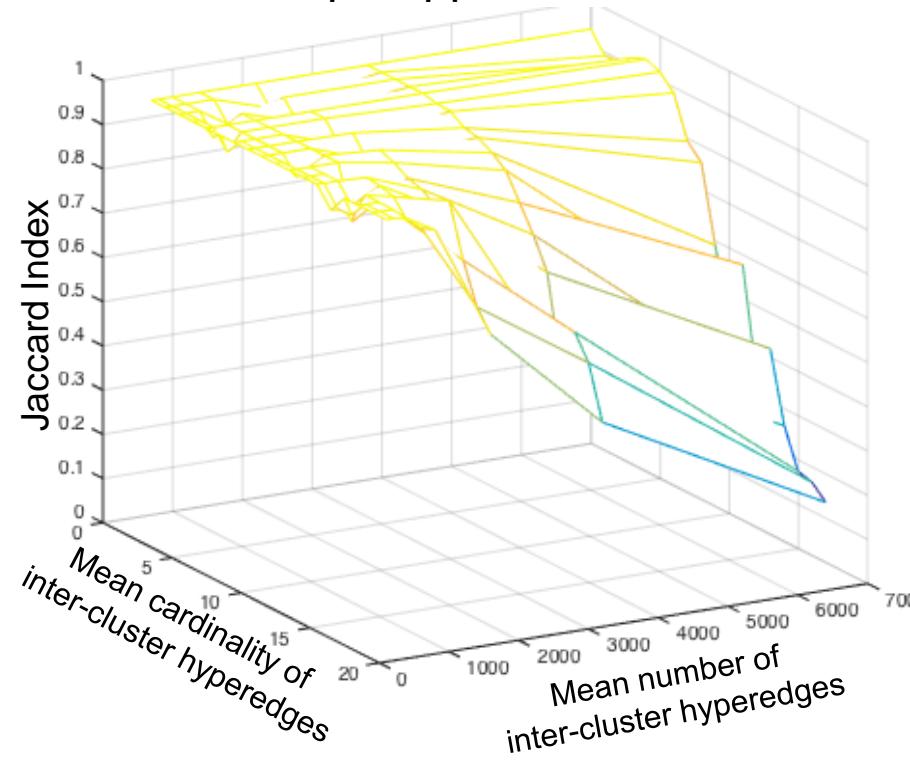


Number of clusters	5
Nodes per cluster	10,000
Intra/Inter-cluster hyperedges	20,000 200,000
Intra/Inter-cluster h-edge cardinality	10 3

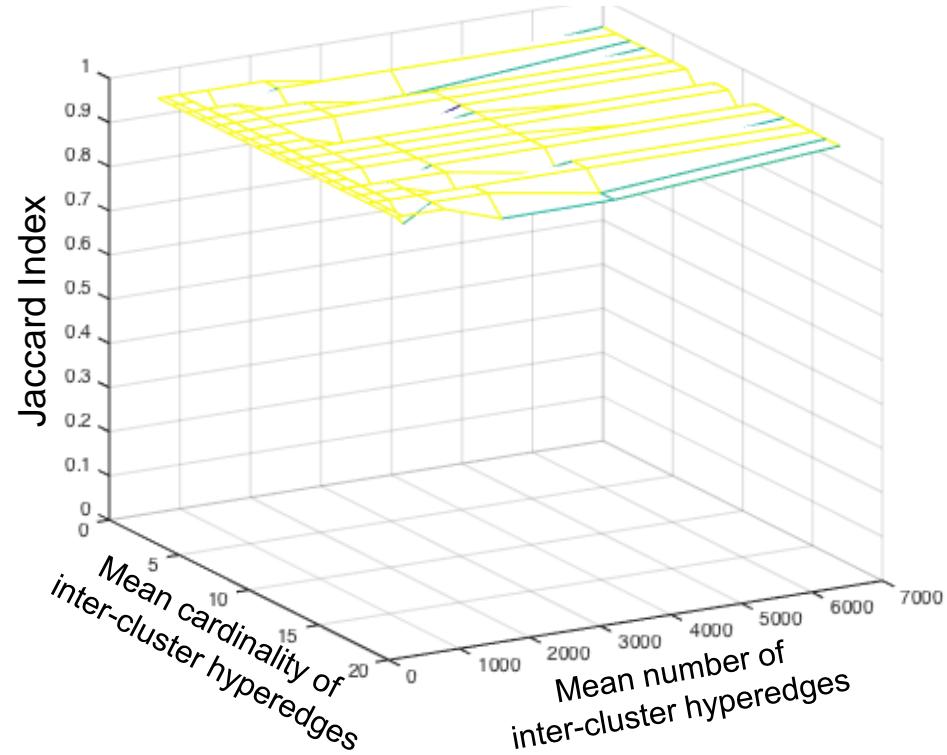


Unweighted graph vs hypergraph clustering

Graph Approach



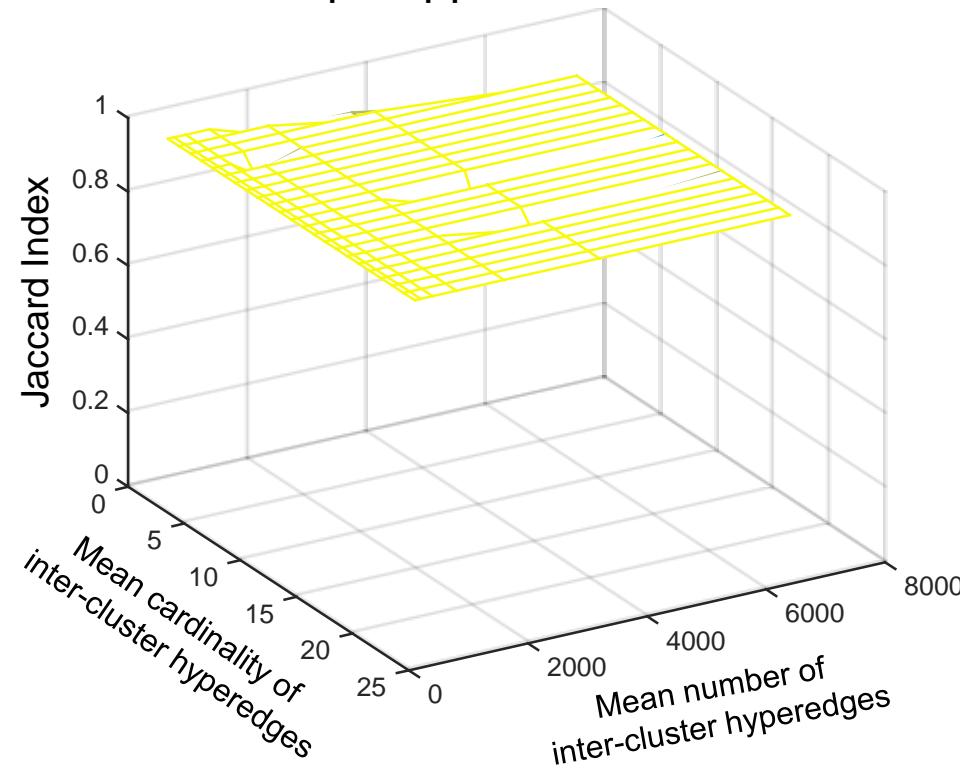
Hypergraph Approach



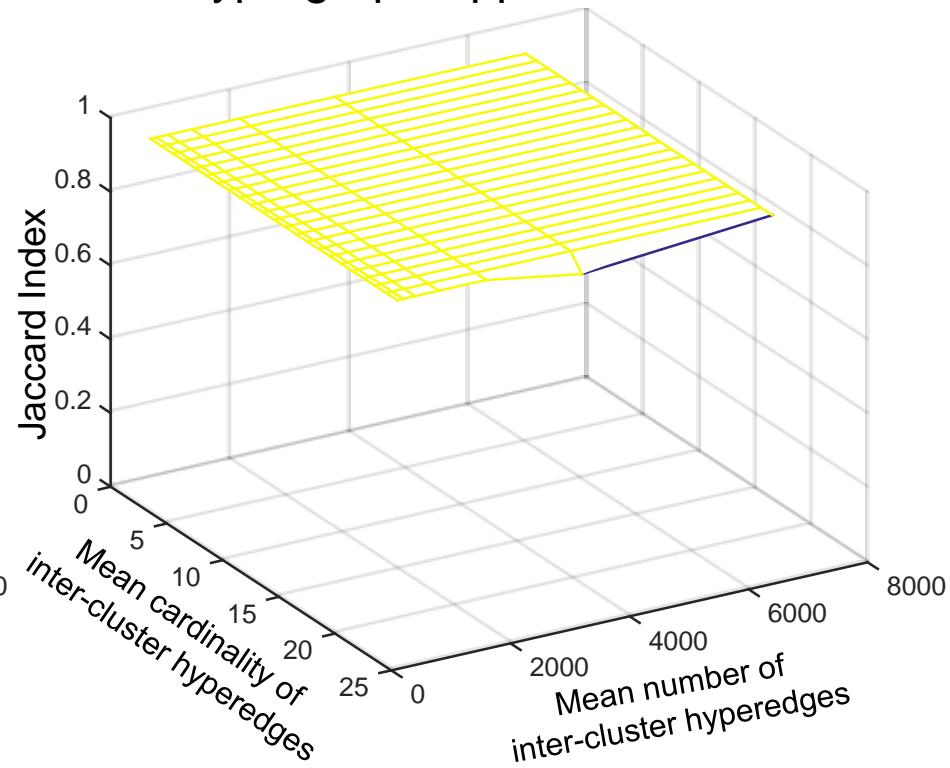
Mean intra-cluster cardinality = 3
Number of clusters 4, mean size 100
Mean number of inter-cluster edges: 800

Weighted graph vs hypergraph clustering

Graph Approach



Hypergraph Approach

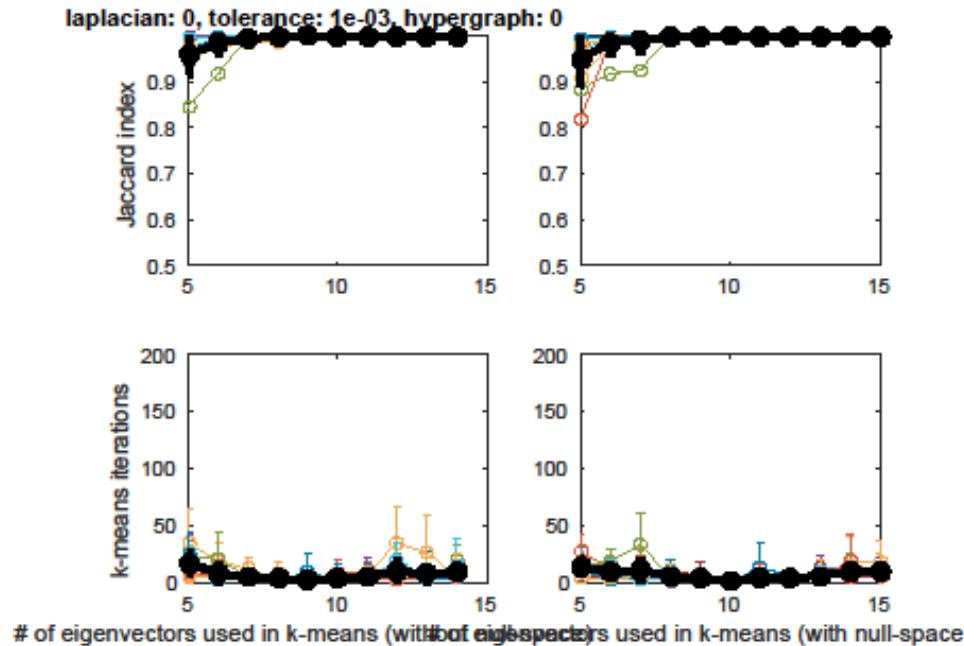


Number of clusters = 4

Mean number of vertices = 100

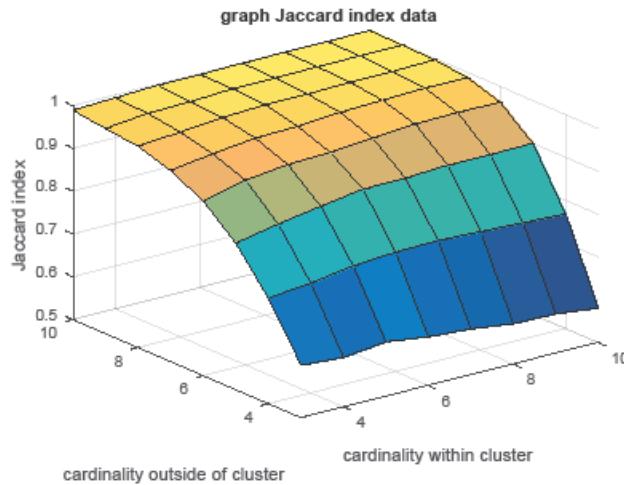
Number of eigenvectors = 5

Should the null space be provided to k-means?



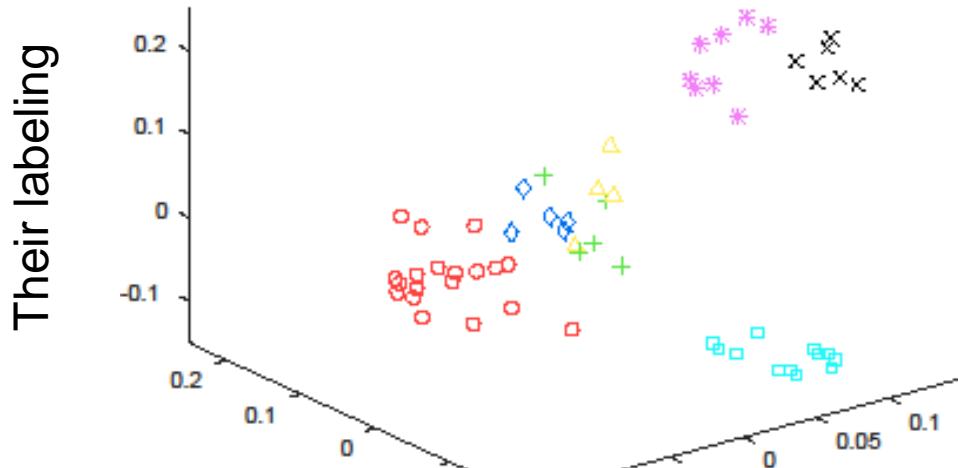
- nClusters: 10
- nVerts: 10,000
- nEdges in cluster: 40,000
- nEdges between clusters: 50,000

Graph vs hypergraph results

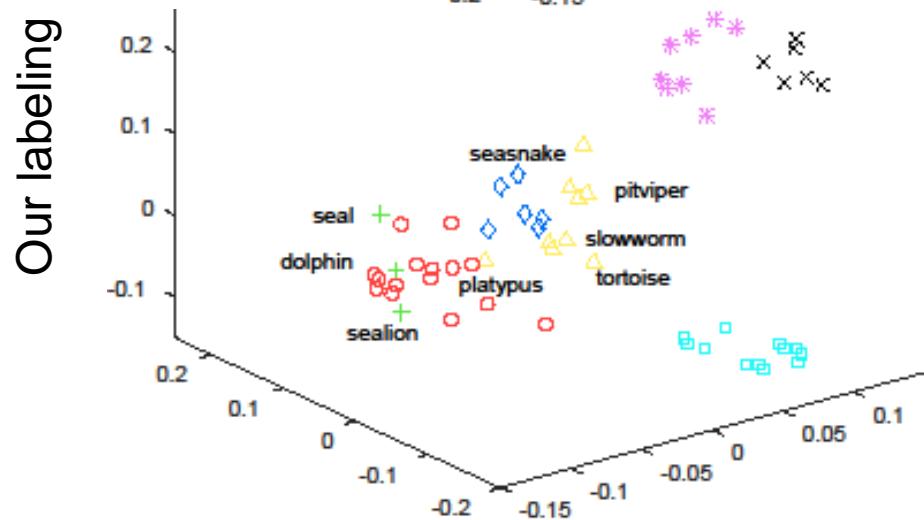


- nClusters: 5
- nVerts: 10,000
- nEdges in cluster: 20,000
- nEdges between clusters: 200,000

A real data set: zoo



○	mammals
□	birds
+	tortoise
◊	fish
▽	amphibians
×	insects
*	shellfish



Jaccard index: .815