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The Steps of Sensing ) i,

Sense It

Control, Pre-process and
Transmit the Data

1., Understand
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Limits in current technology
 Cut-off wavelength determined at manufacture
* Noise is nearing its floor for this architecture

] 15;;;-050 :g: < B . s b)::: {ﬁ/"'
% J%A’ta 2 Other MCTm . 3 108 / \
To achieve a radically i
improved sensor we must
look at both new materials |
N and architectures. y

Changes in material composition or
architecture tweaks are not going to
lead to radical improvement.

Event
Occurs



The Enabling Technology: Nanoantennas ) i,

What is a nanoantenna? =A subwavelength patterning of
metal or high-index dielectric

* The nanoantenna converts
incoming radiation to a surface
wave with energy confined to a
small volume

* The pattern may be changed
from pixel-to-pixel allowing
adjacent pixels to have different
spectral or polarization
response

* Built-in A/R “coating”

= Angular insensitivity




Outline rh) s,

= Background
" Perfect absorbers
" Field confinement
" nBn Material
= Material choices
" Changes that thin absorber layer allows
= Nanoantenna Development
" Finite size of pixels
= Where absorption occurs
" |[ntegration Challenges




Background: Perfect Absorbers - T

= \We designed and made a dual-band | S— | i
perfect absorber. | |

= Excellent agreement between simulation
and measurement. 2 Great confidence in
our models.

= Measured absorption of 99% in two bands.
= A resonant structure.

= |f we can absr..* why not use that thin
energy? 525
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Early Perfect Absorber Work: SiO, rih) i

These type nanoantennas consisting of a
patterned metal layer
semiconductor/dielectric
metal backplane
are inherently angle insensitive.
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Using Confinement for Improving Detectors ri) o
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Standard Reticulated Detector Nanoantenna-Enabled Detector
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Dark Current Dark Current J ;. = €My Ly Less v_olume of active
= Leads to noise. Nyp-t, material leads to less
= Is reduced by cooling the detector. dark current.
= |s proportional to the volume of active material.
Crosstalk
= Causes image blur and loss of resolution. Finite-Element Model of Crosstalk fln the IR, the
= Reticulated detectors suffer reduced fill factors. limitation to
= Etched sidewalls lead to increased surface - further
recombination/generation. : reducing

-
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= Exponential reduction in crosstalk with reduced
absorber thickness. D

L crosstalk.
= No loss of fill factor or creation of surface states « L K /
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with nanoantenna detector design. Aot TRCKRAa i)

pixel size is




Maximizing Active Area Improves MTF and Signal ) i
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[ MCT FPA architecture \
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K from E.P.G. Smith, et al, J. of Electr. Matl., 2004.
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Ideally for the MTF function, we want A,, A, as small as
possible to maximize the MTF (small pixels = better MTF).

This is clearly impossible, but we can make A, and A, as
small as possible for a given p, and p, (100% fill factor).

Made by carrou Imaging Our architecture gives us near 100% fill factor

= Maximizes input signal
= Maximizes the resolution




Our Current Efforts ) e,
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Demonstrate Plasmonic Field Concentration

= Develop methods to accurately tune resonance

= Achieve high responsivity (QE > 70%): a joint modeling
and fabrication effort.

Achieve Dark Current Reduction

= Minimize absorber volume

= Suppress interface parasitics

Develop Integration Methods
= Maintain surface flatness

= Ensure uniform lithography
"= Manage material stress
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Demonstrate Plasmonic Field Concentration




Enabling Technology: Nanoantenna (NA) rin) deior

What is a nanoantenna?

Laboratories

= A subwavelength patterning of metal or
high-index dielectric

= The nanoantenna converts incoming
radiation to a surface wave with energy
confined to a small volume

» The pattern may be changed from
pixel-to-pixel allowing adjacent pixels
to have different spectral or
polarization response

= Built-in A/R “coating”
= Angular insensitivity

= A foundation for tunability




Nanoantenna Optical Properties )

Total Absorption

Laboratories

The nanoantenna couples the incoming light to a
surface wave with no reflection at the design
wavelength.

= Achieved with a single patterned metal layer.

= No AR dielectric stack required

The AR effect does not change with angle as it would
with a dielectric AR coat.

Polarization independence over angular range of

interest.
No reflecti e
— o reflection Angular Insensitivity
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Develop Numerical Model for Tuning NA W=

= Early work has confirmed good agreement
= Refine nanoantenna model for QE optimization
= Determine relevant material properties

Simulated Total Absorption 1 Measured Spectral Photocurrent
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= Calibrated QE is being measured




Challenges in the Replication of Design h

= Gap feature size difficult to replicate (pitch is accurate)
= Surface flatness difficult to ensure
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Challenges in Ensuring Surface Flatness ) i,

= Detector epi layers much thinner than indium Light
bumps, epoxy = small stresses deform the epi ul

Nanoantenna Pattern

Absorber (~1.5 um)

Contact Contact Contact Contact Contact

Si fanout chip
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Achieve Dark Current Reduction
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Achieve Dark Current Reduction i) ors
= Based on nBn device architecture

= Minimize absorber volume Jpiff = qni Waps/Np T

= Suppress parasitic currents _
perimeter current
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Limitations of Conventional (V)LWIR nBn ) e

Spectral QE for GN0868
0.20

0.18 Front-side
= MWIR nBn FPAs very successful i no AR coating

0.12 -
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" |, & QE approaching HgCdTe 45K

External Spectral QE

= Compatible w/ tuning methods 0.08 |
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= High m*,, limits diffusion length
= QE suffers, especially for VLWIR
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Dark Current Density (A/cm?)

o Ja <107 Afem? = Absorber doping exacerbates
1E-10 @ 60K the prOblem
S o s . ., " Very difficult problem to solve
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Features of NA-nBn FPA

Angular insensitivity

Built-in “AR coating”

Control perimeter
current by leaving

Barrier intact
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Field concentration
ensures high QE

Quantum Efficiency:

competition between
metal and semiconductor

absorption =
Absorbers with stronger

absorption desired




Absorber Material Choices ) i
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= W-SL: high absorption strength, low mobility
= |nAs/InAsSb: longest lifetime, low mobility

" |nAs/GaSb: somewhere in between Joifr = q N2 Waps/Np T
l

1E-5 ¢
: current state of art ——InAs/InAsSb
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= Down-selectin 12 months



W-SL Properties Sim@)a:az‘:a]

thnraturies

AlAsSb bisects electron wavefunction
Higher e-h overlap than InAs/InAsSb SL
Induces “resonant” absorption

Modified from NRL design
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Electromagnetic and Electrostatic Modeling




Comsol Device Modeling rh) i

Absorber index
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Electric field distribution ) i
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Absorption Location ) i,
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—Total absorption
-*Absorber absorption
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Absorption Location

Absorption
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Absorption Location
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. . . Sandia
Shifting absorption resonance Lufre
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Modifying w allows for shifting of the resonance of the nanoantenna array




Optimizing absorber index ) i,

Scaling the absorber index: k,;s =

Absorber index
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Higher absorber k yields greater “useful” absorption
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Finite Pixels e ) i

r emitter

— dge emitter
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L0005

B x dipole only
08— ——— 8 dipole seam
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Dipole Seams: effect of non-periodicity ¢l
on absorption. S
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2-D Numerical Device Simulation Capability h) S

Current Paths Hole Density Contour

lllumination lllumination
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Useful for analyzing 2-D effects: crosstalk,
optical concentrator.




Develop Integration Methods




Challenges in Ensuring Surface Flatness ) i,

= Detector epi layers much thinner than indium Light
bumps, epoxy = small stresses deform the epi ul

Nanoantenna Pattern

Absorber (~1.5 um)

Contact Contact Contact Contact Contact

Si fanout chip




Surface Flatness Issues
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Large topography issues with
isolated bumps

= This creates issues with
writing the nanoantennas

=  May hinder detector
performance due to material
stresses

Dense arrays show reduced
topography
= Similar to an array for mating
to a ROIC




Alternate Integration Method ) i,

= Transferring detector materials to a carrier should Light
help maintain surface planarity

Handle wafer

Absorber (~1.5 um)

Contact Contact Contact Contact

Si fanout chip




Summary ) i,

= QOverall Goal: Demonstrate significantly better performance
(dark current, responsivity, MTF) over conventional IR FPAs

m Goal: Characterize sources and mechanisms of dark current
in thin absorbers

= Modeling optical fields and carriers
= Formulated approach, Assembled technology components
= Demonstrated ability to tune nanoantenna to LWIR

= Demonstrated progress toward suppressing parasitic /.,

= |dentified areas of greatest technical challenge: integration




