

Crude Oil Characterization Research Study Update

Presentation to
US DOT Office of Hazardous Materials Safety

Research & Development Forum
March 23-24, 2016
Washington, DC

Exceptional
service
in the
national
interest

Presented by

David L. Lord, Ph.D.

Geotechnology & Engineering Department
Sandia National Laboratories
Albuquerque, NM 87185

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Technical Team

- David Lord (Ph.D., Env E.), Project technical lead
 - Geotechnology & Engineering Department, Sandia National Laboratories
- Anay Luketa (Ph.D., Mech E.), Combustion/fluids modeling lead
 - Fire Science & Technology Department, Sandia National Laboratories
- Tom Blanchat (Ph.D., Nuclear Engr), Combustion testing lead
 - Fire Science & Technology Department, Sandia National Laboratories
- Chad Wocken (B.S., Chem E.), Hydrocarbon supply chain specialist
 - University of North Dakota Energy & Environmental Research Center
- Ted Aulich (B.S., Chemistry), Hydrocarbon supply chain specialist
 - University of North Dakota Energy & Environmental Research Center
- Ray Allen (B.S. Chem E.), PE (TX), HC sampling and testing specialist
 - President of Allen Energy Services engineering consulting firm
- David Rudeen (B.S., Mathematics), Data analyst and EOS modeler
 - GRAM, Inc. technical consulting

Outline

- Problem Statement and Objectives
- Project Governance and Workflow
- Overview of Task 2 – Task 3 Testing
- Project Management Contacts
- Project Publications

Technical Objectives

PROBLEM STATEMENT

Problem Statement

- Crude transport by rail poses risks recognized by US and Canadian regulators
- Hazards have been realized in a number of high-profile train derailments leading to oil spills, environmental contamination, fire, property damage, and fatalities
- Open debate on whether the types of crude (tight oil vs. conventional production) have significant bearing on severity of transportation accidents

TSBC (2014). "Runaway and Main-Track Derailment Montreal, Maine & Atlantic Railway Freight Train Lac-Mégantic, Quebec 06 July 2013."

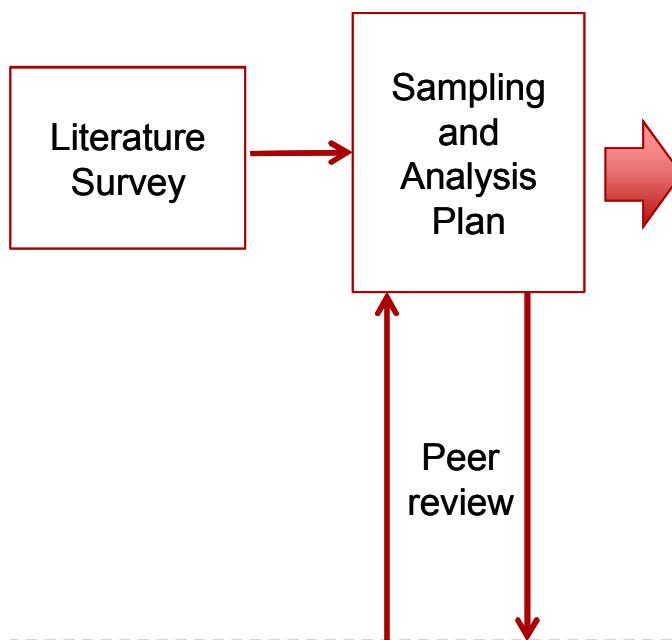

R13D0054. Transportation Safety Board of Canada, Gatineau QC K1A 1K8.
Railway Investigation Report.

DOE/DOT Project Objectives

- Determine what combinations of sample capture and analysis methods are suitable for characterizing selected physical properties of volatile crudes
- Evaluate selected physical properties of crude oils (tight vs. conventional production) that are moved within rail transport environment that may have some bearing on flammability risks
- Measure combustion properties (flame dimensions, surface emissive power) of selected crude oils (tight vs. conventional) in controlled burn scenarios that have bearing on hazard determination
- Compare combustion properties to existing published data on other flammable liquids, including methanol, ethanol, jet fuel, hexane
- Evaluate if selected tight oils exhibit measurably different combustion properties from conventional crudes and the reference fluids tested previously

PROJECT GOVERNANCE

Project Governance

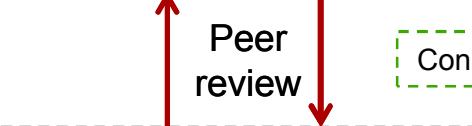


Overall Project Workflow

Phase I

Problem Definition Phase

Completed



Phase II

Experimental Phase

Current/future SNL work scope

- Task 1: Analyze existing data
- Task 2: Sampling method evaluation
- Task 3: Combustion experiments and modeling
- Task 4: Crude characterization, tight vs. conventional
- Task 5: Railcar combustion testing and modeling
- Task 6: Comprehensive oil characterization

Phase III

Implementation Phase

All stakeholders

- Utilize knowledge gained during prior phases to inform decisions on:
 - Industry best practices
 - Standards
 - Regulations

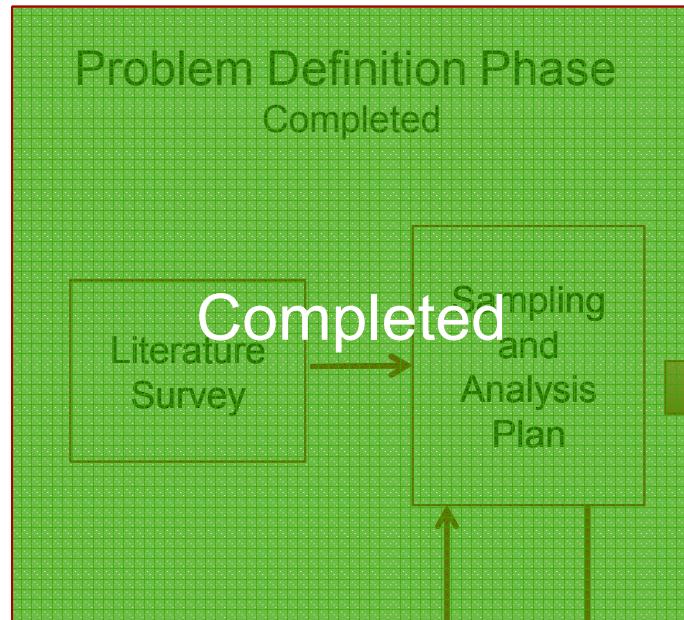
Public outreach

API: American Petroleum Institute

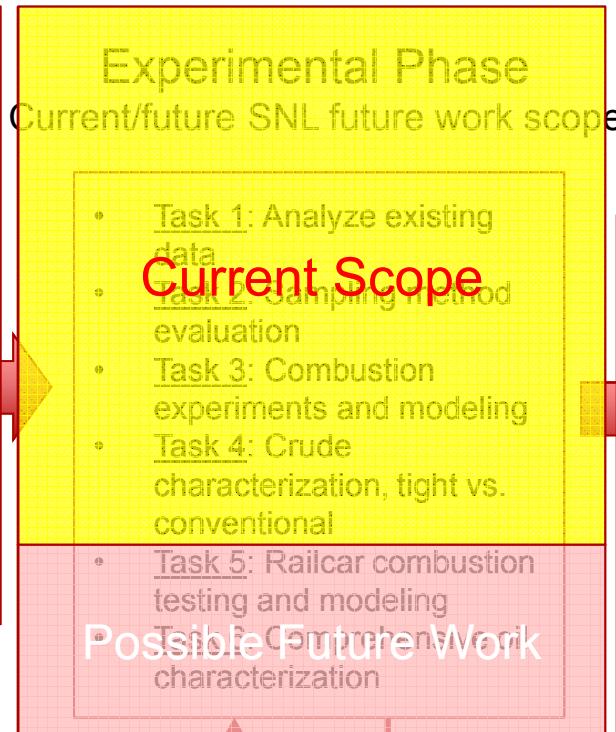
COQA: Crude Oil Quality Association

CCQTA: Canadian Crude Quality Technical Association

ASTM: ASTM International Standards


GPA: Gas Processors Association

SPR: Strategic Petroleum Reserve


} Phase III

Overall Project Workflow

Phase I

Phase II

Phase III

Implementation Phase
All stakeholders

Public outreach

API: American Petroleum Institute

COQA: Crude Oil Quality Association

CCQTA: Canadian Crude Quality Technical Association

ASTM: ASTM International Standards

GPA: Gas Processors Association

SPR: Strategic Petroleum Reserve

Phase III

High-Level Project Schedule, Phase I

Task	Description	Year 1				Year 2			
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	Review new & emerging data								
2	Evaluate sampling and analysis methods								
3	Large sample acquisition, combustion tests, modeling								
4	Tight vs. conventional crude characterization								

Crude Oil Property and Combustion Tests

TESTING OVERVIEW

Task 2 Overview

- Compare sample capture and analysis methods for two selected North American crude oils
 - Prefer upstream production or tank terminals handling tight oils
- Sandia National Laboratories and Transport Canada will administer parallel tests using a variety of sample capture and analysis methods
- Critical review of open vs. closed capture and applicability for use on minimally stabilized oils for measuring:
 - Crude vapor pressure $VPCR_x(T)$ at selected V/L and temperature
 - Pressurized GC light ends concentration
 - Unpressurized GC DHA and simulated distillation
 - Unpressurized physical property measurements MW, SG, viscosity
 - IBP based on 0.5 wt% determination

Task 2 Test Matrix

		Property Measurement								
Sample Technique	Standard	TVP	Composition 1	Composition 2	Composition 3	Avg MW	Relative Density	Viscosity	Flashpoint	IBP (0.5 wt%)
SPR Tight Line		ASTM D6377 & Separator shut-in	BPP flash gas GC analysis	GOR flash gas GC analysis	Separator liquid C30+	frz pt dep	ASTM D5002	N/A	N/A	EOS with flash gas
Floating Piston Cylinder	ASTM D3700-14	ASTM D6377-M	GPA2103 M	GPA2177 + ASTM D7900 + ASTM D7169	ASTM D8003 + ASTM D7169 + GOR flash gas	frz pt dep	ASTM D5002	ASTM D7042	ASTM D93 or D56	GPA 2103/2177
H ₂ O displacement	GPA 2174-14	ASTM D6377-M	GPA2103 M	GPA2177 + ASTM D7900 + ASTM D7169	ASTM D8003 + ASTM D7169 + GOR flash gas	frz pt dep	ASTM D5002	ASTM D7042	ASTM D93 or D56	GPA 2103/2177
Manual Syringe	ASTM D8009-15	ASTM D6377-M	GPA2103 M	GPA2177 + ASTM D7900 + ASTM D7169	ASTM D8003 + ASTM D7169 + GOR flash gas	frz pt dep	ASTM D5002	ASTM D7042	ASTM D93 or D56	GPA 2103/2177
Boston Round	ASTM D4057-12	ASTM D6377-M	GPA2103 M	GPA2177 + ASTM D7900 + ASTM D7169	ASTM D8003 + ASTM D7169 + GOR flash gas	frz pt dep	ASTM D5002	ASTM D7042	ASTM D93 or D56	GPA 2103/2177
Manual Syringe	ASTM D7975-14	ASTM D7975-14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Color coding	Test Administrator
White	SNL
Red	TC
Blue	Both

- Test matrix will be run on two minimally stabilized North American crudes
- Objective is to compare multiple methods on a homogeneous sample
- Note: Oil variability across production regions or supply chain is addressed in Task 4, not Task 2

Task 3 Overview

- Subject four selected North American crudes to basic property and controlled burn testing
- Span a range from tight oils (Bakken, Eagle Ford) with high visibility, to baseline light sweet (WTI, LLS), to specially-stabilized crude from the Strategic Petroleum Reserve
- Compare results against existing hydrocarbon liquid combustion test data

Burn Test Configurations

Pool fire

- Surface emissive power (SEP)
- Heat flux to engulfed objects
- Flame height
- Fuel consumption rate

Fireball

- Surface emissive power (SEP)
- Heat flux to nearby objects
- Fireball diameter
- Fireball duration

Project Sponsor Contacts

- U.S. Department of Energy
 - Evan Frye
 - U.S. Department of Energy, Office of Fossil Energy, Office of Oil & Natural Gas
 - evan.frye@hq.doe.gov
 - 202-586-3827
- U.S. Department of Transportation
 - Joseph Nicklous
 - U.S. Department of Transportation, Office of Hazardous Materials Safety
 - Pipeline and Hazardous Materials Safety Administration
 - joseph.nicklous@dot.gov
 - 202-366-4545
- Transport Canada
 - Barbara Di Bacco
 - Transport Canada, Transport Dangerous Goods Directorate
 - barbara.dibacco@tc.gc.ca
 - 613-990-5883

Sandia Project Contacts

- Sandia technical lead
 - David Lord
 - Sandia National Laboratories, Geotechnology & Engineering Department
 - dllord@sandia.gov
 - 505-284-2712
- Sandia geosciences program manager
 - Erik Webb, Senior Manager
 - Sandia National Laboratories, Geoscience Research & Applications
 - ekwebb@sandia.gov
 - 505-844-9179

Project Publications

- Lord, D., A. Luketa, C. Wocken, S. Schlasner, R. Allen and D. Rudeen (2015). "Literature Survey of Crude Properties Relevant to Handling and Fire Safety in Transport." *Unlimited Release SAND2015-1823*. Sandia National Laboratories, Albuquerque, NM 87185.
- SNL (2015). "Crude Oil Characteristics Sampling, Analysis and Experiment (SAE) Plan." Office of Fossil Energy. U.S. Department of Energy, <http://energy.gov/fe/articles/crude-oil-characteristics-research>. 9-Jul-2015.

END OF PREPARED SLIDES