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Abstract— We have characterized the total ionizing dose
response of strained Ge pMOS FinFETs built on bulk Si using a
fin replacement process. Devices irradiated to 1.0 Mrad(SiO;)
show minimal transconductance degradation (less than 5%),
very small V;, shifts (less than 40 mV in magnitude) and
very little ON/OFF current ratio degradation (<5%), and only
modest variation in radiation response with transistor geometry
(typically less than normal part-to-part variation). Both before
and after irradiation, the performance of these strained Ge
pMOS FinFETs is far superior to that of past generations of
planar Ge pMOS devices. These improved properties result from
significant improvements in processing technology, as well as
the enhanced gate control provided by the strained Ge FinFET
technology.

Index Terms—10 keV X-ray, geometry dependence, germa-
nium FinFETs, total ionizing dose.

I. INTRODUCTION

ERMANIUM-based pMOS FinFETs integrate material
G and structural advantages to optimize several key device
operating properties that support their use in sub-14 nm CMOS
technologies. Benefits over Si pMOS FinFETs include higher
hole mobility, reduced short-channel effects, and reduced
bias-temperature instabilities, while maintaining compatibility
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with conventional Si integration processes [1]-[3]. The radi-
ation responses of planar Ge pMOSFETs [4]-[7] and SiGe
FinFETs [8] have previously been evaluated. For Ge planar
pMOSFETs, relatively low ON/OFF ratios were observed
[4]-[7], and device response was sensitive to process condi-
tions, e.g., the thickness of the Si capping layer that separated
the Ge and dielectric layers, and/or halo implantation [5]. For
SiGe FinFETs, a combination of bias-stress and radiation-
induced charge trapping effects was observed [8]. As a result,
these earlier-generation planar Ge pMOS transistors and SiGe
pMOS FinFETs were not suitable for use in high-volume
commercial or space environments.

As processing technologies have improved, knowledge from
previous studies has been employed to continually improve
the performance and reliability of Ge-based technologies. In
this work, we provide a detailed evaluation of the radiation
response of strained Ge pMOS FinFETs with different geome-
tries under different bias conditions. We find that ON/OFF
ratios are improved significantly before and after irradiation,
compared to planar Ge pMOSFETSs, and that charge trapping
effects due to both bias-stress and irradiation are reduced in
these Ge FinFETs, compared with SiGe FinFETs evaluated
in 2014 [8]. These results indicate that strained Ge pMOS
FinFETs are excellent candidates for integration into next-
generation radiation-tolerant CMOS IC technologies.

II. EXPERIMENTAL DETAILS

The Ge pMOS FinFETs evaluated in this work were fab-
ricated at imec on 300 mm bulk Si (100) wafers. Transistor
fabrication included a fin replacement process in which the
original Si fin is replaced by a partially relaxed Sip25Geq. 75
layer and Ge channel in a single step [1], [9]. For these devices,
a thin Si cap was partially oxidized, yielding an unconsumed
thin Si buffer layer to passivate the Ge surface and improve the
interface quality. On top of the SiO; interfacial layer (IL), a
~1.5 nm HfO, layer and TiN metal gate were deposited. The
effective oxide thickness (EOT) of the gate dielectric stack is
~1.9 nm. Because these are test structures intended to charac-
terize the initial response of a developing process technology,
the starting threshold voltage value was not optimized.

Fig. 1(a) shows a schematic diagram of the targeted-
undoped, strained Ge Fin on Sig3Gep 7 strain-relaxed buffer
built on 45 nm pitch spacer-defined Si fins on a (100)
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Fig. 1. (a) Schematic diagram of the targeted-undoped, strained Ge fin on
Sig.3Geq 7 strain-relaxed buffer, built on 45 nm pitch spacer-defined Si fins on
a (100) Si substrate, (b) HAADF XTEM after replacement channel deposition,
and (c) zoom into Ge channel at the end of processing. The final Ge fin is
13 nm wide and 18 nm tall.

TiN
HfO,
Sio,
Si Buffer
Ge Channel

20 nm
—

Fig. 2. (a) STEM image of bulk Ge FinFET. (b) Chemical composition
map of different structure layers from EELS. (c)-(h) Individual maps of
elements/compounds found in device.

Si substrate; Fig. 1(b) shows a high-angle annular dark field
(HAADF) cross-sectional transmission-electron-microscopy
XTEM image after replacement channel deposition; and
Fig. 1(c) shows a zoomed image of the Ge channel at the
end of processing. These images show that the final Ge fin
is 13 nm wide and 18 nm tall [9]. A scanning transmission
electron microscope (STEM) image of the FinFET is shown
in Fig. 2(a). To ascertain the chemical composition of the
different layers in the STEM image, electron energy loss
spectroscopy (EELS) is used to form spectral images of
the elements in the device. A composite drawing showing
the chemical composition of different layers is shown in
Fig. 2(b), along with maps of the Si, Ge, O, Hf, TiN, and
W (Figs. 2c-2h). The underlying strained Ge layer, Si cap (to
enhance interface quality), thin SiO/HfO, gate dielectric, and
TiN/W gate metallization are all clearly delineated.

Total ionizing dose (TID) irradiations were performed using
a 10-keV ARACOR X-ray source at room temperature at
a rate of 31.5 krad(SiO;)/min. Three gate bias conditions
(Ve = —1 V, +1 V, and all pins grounded) were applied
during irradiation and/or bias stress. A semiconductor para-
meter analyzer, HP4156A, was used to supply DC bias during
the experiment, as well as to perform the /-V characterization
before and after each exposure. The dimensions of the tested
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Fig. 3. (a) Threshold voltage shifts as functions of time and gate bias for Ge

pMOS FinFETs. A schematic illustration of the test structures is shown in (b).
The devices include 4 fins in parallel. All dimensions are as-designed. The
printed value after trimming the “66 nm” gate is around 36 nm, for example.

devices vary in fin width from 16 nm to 100 nm, fin length
from 500 nm to 12.5 um, and gate length from 66 nm to
230 nm. The fin length (see Fig. 3) was varied as part of
the process evaluation matrix, but the channels of individual
transistors are defined by the gate length, fin width, and fin
height, as shown in Fig. 1. At least three devices with the
same dimensions were tested for each set of test results shown.
Results of average devices are shown below, with error bars
indicating the range of responses.

III. RESULTS AND ANALYSIS

Fig. 3 shows (a) the threshold voltage V;;, shift as a function
of applied gate bias and stress time for devices with a gate
length of 66 nm and fin width of 20 nm, and (b) a schematic
illustration of the 4-fin test devices evaluated in this study.
There are significant Vy;, shifts for negative gate biases of
—2 V and —1.5 V, which are comparable to those observed
previously for SiGe FinFETs [8]. However, these voltages are
well beyond the expected operating limits of this technology.
At room temperature and 1 V bias (approximately double
the expected operating voltage of this technology), there is no
detectable shift in V;j or significant increase in leakage current
for any of the strained Ge pMOS FinFETs tested under voltage
stress, for the times and biases of this study. These results
demonstrate the relative stability of devices during irradiation
under the bias conditions of this study. Moreover, these results
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Fig. 4. Ip-Vg curves as functions of dose for a device with gate length of
66 nm, fin width of 20 nm, and fin length of 500 nm: (a) semi-log plot and
(b) linear plot. Vp = —0.1 V during all Ip-Vg sweeps.

contrast with the responses of SiGe pMOS FinFETs in [8], for
which shifts due to bias-induced charging during irradiation
complicated the extraction of the “pure” TID response [8].
Figs. 4 and 5 show the Ip-V characteristics for TID tests
on devices with gate length of 66 nm, fin width of 20 nm, and
fin lengths of 500 nm and 12500 nm, respectively. In each case,
the active transistor gate is much shorter than the lithographi-
cally defined fin, as shown in Fig. 3(b). Each device shows a
small, negative V;j, shift with increasing TID, consistent with a
small amount of net hole trapping in the gate dielectric layers.
Less than ~5% ON state current degradation is observed for
either device. From these curves, the extrapolated V;; and
Gn, = Alp/AVg were extracted using standard techniques
in the linear mode of device operation, with Vp = —0.1 V.
No adjustment to the gate-metal work function was performed
to optimize the starting value of threshold voltage for these
devices, so the OFF state current for these test structures is
taken to be the current measured at Vg = 1 V. With this
definition, the ON/OFF current ratio for the 500 nm fin length
device in Fig. 4(a) is more than 10°, which is comparable
to that of the strained SiGe FinFETs in [8], and significantly
higher than the ratios observed for (relaxed) planar Ge pMOS
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Fig. 5. Ip-Vg curves as functions of dose for a device with gate length of

66 nm, fin width of 20 nm, and fin length of 500 nm: (a) semi-log plot and
(b) linear plot. Vp = —0.1 V during all /p-Vg sweeps.

devices in [4]-[7]. The increased ON/OFF current ratios for
these FinFETs are due to improvements in starting material
quality as well as the improved gate control achievable in
FinFETs, as compared to planar Ge devices, as we discuss
below.

Fig. 6 shows threshold voltage shifts, changes in normal-
ized transconductance, and measured ON/OFF current ratios
as functions of irradiation and annealing time for devices
irradiated at gate biases of =1 V and 0 V, and annealed
under negative bias. The largest V;; shifts occur for nega-
tive gate bias during irradiation, and correspond to net hole
trapping in the gate dielectric layers during irradiation. Under
positive irradiation bias, V, shifts are small and positive,
consistent with net radiation-induced electron trapping in the
HfO, dielectric layer, as commonly observed [8], [10], [11].
TID-induced shifts are smaller in these strained Ge pMOS
FinFETs than the SiGe FinFETs in [8], most likely because
of the reduced gate bias used in this study, which is
closer to anticipated device operating conditions, and/or lower
defect densities in the dielectric layers of these devices.
Vin shifts decrease or remain approximately constant during
room-temperature, negative-bias annealing. The stability of
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Fig. 6. (a) Threshold voltage shift, (b) normalized transconductance,

and (c) ON/OFF current ratio as functions of total dose for gate biases
Vg = —1 V, 0V, and +1 V, and/or room temperature annealing time at
Vg = —1 V, for devices with gate length of 66 nm, fin width of 20 nm,
and fin length of 500 nm. Data points here are averages from at least three
devices, and error bars show the full range of variation observed.

the devices during annealing further demonstrates that bias-
induced charging is negligible during these irradiation and
annealing tests. The transconductance G,, degradation (<5%),
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Fig. 7.  (a) Threshold voltage shifts and (b) ON/OFF current ratios as

functions of total dose and gate length for devices with fin width of 20 nm
and fin length of 500 nm at a gate bias during irradiation of Vg = —1 V,
and Vp = Vg = Vp = 0 V. Data points here are averages from at least three
devices, and error bars show the full range of variation observed.

Vin shifts (<30 mV) and ON/OFF current ratio degradation
(<5%) in these strained Ge pMOS FinFETs are far superior to
the responses of relaxed, planar Ge pMOS devices in [4]-[7],
again as a result of significant improvements in processing
technology [1]-[3] and improved gate control.

Fig. 7 summarizes (a) V;, shifts and (b) ON/OFF current
ratios as a function of TID for negative gate-bias irradiation
of devices with fin width of 20 nm and gate lengths of 66 nm
to 230 nm. All devices show V;;, shifts smaller than 50 mV in
magnitude. Devices with shorter gate lengths show smaller
V5, shifts (-20 mV to -35 mV), increased ON/OFF ratios,
and smaller variations in response compared to devices with
230 nm gate length. This likely occurs because shorter gate-
length devices are less likely to be impacted by defects in the
starting material, which can degrade junction and oxide quality
before and after irradiation [5], [6]. That the ON/OFF current
ratio before and after irradiation is greatest for shorter gate-
length devices is encouraging, since the properties of smaller-
dimension devices have more practical significance for future
IC applications than properties of larger-dimension devices.
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current ratios as functions of total dose for gate biases during irradiation of
Vg =—1Vand Vp = Vg =Vp =0V for Ge pMOS FinFETs with gate
length of 66 nm and fin widths of 20-100 nm. Data points here are averages
from at least three devices, and error bars show the full range of variation
observed.

We note that the results of Fig. 7 are the only case in our
testing of these devices, to date, in which it appears that one
geometrical split exhibits a statistically different response from
other process splits, which should simplify IC design in this
technology.

Fig. 8 shows (a) V;, shifts, (b) normalized transconductance,
and (c) ON/OFF current ratios as functions of total dose for
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Fig. 9. (a) Leakage current, and (b) ON/OFF current ratios as functions

of total dose with gate biases during irradiation of Vg = —1 V and Vp =
Vg = Vp =0V for Ge pMOS transistors from three technology generations:
1) early development stage Ge planar pMOSFETs; 2) Ge planar pMOSFETs
with raised source and drain; and 3) Ge pMOS FinFETs from this work.

devices irradiated with Vg = —1 Vand Vp = Vs =V =0V
for Ge pMOS FinFETs with gate length of 66 nm and fin
widths of 20- 100 nm. All devices show negative V;; shifts
(-3 mV to -35 mV), decreases in transconductance (1 to 5%),
and minimal changes in ON/OFF current ratio with increasing
TID. No clear trends in radiation response are observed with
varying fin width.

IV. DISCUSSION

The excellent radiation response of the strained Ge pMOS
FinFETs and absence of fin-width dependence in this work
contrasts strongly with previous results on earlier generation
Si nMOS FinFETs on SOI wafers [12], [13], in which much
larger V;j, shifts and a strong fin width dependence were
observed. These improvements in response for strained Ge
pMOS FinFETs, relative to SOI FinFETs, result primarily
from the absence of a buried oxide layer. In SOI devices,
the buried oxide layer can strongly affect device response as a
result of buried-oxide to top-gate electrostatic charge coupling
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effects [12], [13], [20]-[22]. Instead, the relatively small V;j
shifts in these bulk Ge pMOS FinFETs are due primarily to
charge trapping in the gate dielectric (SiO,/HfO;) layers.

These strained Ge pMOS FinFETs also show far supe-
rior radiation response to recent-generation, bulk nMOS Si
FinFETs, for which significant STI leakage is observed below
~ 300 krad(SiO,) [14]. This improvement in response is
due primarily to three factors: (1) The thickness of the STI
at the lower fin corner of the strained Ge pMOS FinFET
(see Fig. 1(c)) is reduced in thickness, as compared with
the STI of the bulk nMOS Si FinFETs in [14], leading to
reduced STI charge trapping in the region closest to the
active device channel [23]. (2) The QW structure effectively
isolates conduction in the active device channel and associated
parasitic structures from potential coupling effects that can be
associated with charge trapping in the STI in some types of
devices [24], [25]. (3) The nominally undoped Ge channel
layer in these pMOS FinFETs has an effective n-type doping
after processing, as a result of dopant diffusion out of the
highly n-doped underlayer [9], [26]. Net positive trapped
charge in the STI more strongly accumulates n-type surfaces
[10], [23]. Consequently, no significant STI-related leakage is
observed for these strained Ge pMOS FinFETs, up to at least
1 Mrad(SiO»), under the conditions of this study.

The strained Ge pMOS FinFET structure illustrated in
Figs. 1 and 2 also enables high performance transistors to
be fabricated without the requirement for process steps that
are necessary to include in planar Ge pMOS technologies.
For example, the halo implant that is necessary in planar
technology to control short channel effects [15] also leads to a
radiation-induced reduction of ON/OFF ratio [5] and increase
in low-frequency noise [6] for planar Ge pMOS technologies.
With the enhanced gate control of FinFET technology, halo
implantation is no longer required.

To illustrate the technology scaling trends in Ge pMOS
technology, Fig. 9 compares (a) off-state drain leakage and
(b) ON/OFF current ratios as functions of total dose for
devices from three generations of imec Ge-based pMOSFETSs
built on silicon substrates: 1) early development stage Ge
planar pMOSFETs with a Ge layer thickness of 2 um
and W/L = 9.8 um/0.8 um [6], [16]-{18]; 2) Ge planar
pMOSFETs with Ge layer thickness of 200 nm, raised source
and drain, and dimensions of W/L = 1 um/0.47 um
[7], [19]; and 3) Ge pMOS FinFETs with strained Ge-fin
height of 15 nm on a 100 nm-SiGe buffer layer [9] and
gate length of 66 nm, fin length of 500 nm, and fin width
of 20 nm from this work. As a result of the transition to
FinFET technology, reductions in STI thickness in areas of
relevance to transistor operation, and elimination of process
steps leading to degradation in radiation response (e.g., halo
implant), Fig. 9 shows clearly that the strained Ge pMOS
FinFETs in this work show vastly superior leakage current
and significantly improved ON/OFF current ratios than devices
built in previous generations of Ge pMOS technology. The
existing structures require only an adjustment to the starting
Vin (e.g., by changing the gate metal to adjust the work
function) to become viable candidates for insertion into next-
generation, radiation-tolerant CMOS technology. We also note
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that initial single-event-effects results on test structures appear
quite promising [27], but of course, the TID and single-
event response of fully processed ICs would also need to be
evaluated to assess the technology for potential space use.

V. CONCLUSIONS

We have evaluated the total-ionizing-dose response of
strained Ge pMOS FinFETs varying in fin length, fin
width, and gate length. Modest threshold-voltage shifts,
small transconductance degradation, and minimal changes in
ON/OFF current ratios are observed. These devices show
superior performance to planar Ge pMOS devices because
of improvements in material quality, device processing, and
gate control, relative to previous technology generations.
These improvements are due primarily to the transition to
FinFET technology, reductions in STI thickness in areas of
relevance to transistor operation, and elimination of process
steps leading to degradation in radiation response (e.g., halo
implant). These results demonstrate that strained Ge pMOS
FinFETs are strong candidates for incorporation into near-
future generations of CMOS ICs for space and other high-
radiation, high-reliability applications.
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Abstract— We have characterized the total ionizing dose
response of strained Ge pMOS FinFETs built on bulk Si using a
fin replacement process. Devices irradiated to 1.0 Mrad(SiO,)
show minimal transconductance degradation (less than 5%),
very small V,; shifts (less than 40 mV in magnitude) and
very little ON/OFF current ratio degradation (<5%), and only
modest variation in radiation response with transistor geometry
(typically less than normal part-to-part variation). Both before
and after irradiation, the performance of these strained Ge
pMOS FinFETs is far superior to that of past generations of
planar Ge pMOS devices. These improved properties result from
significant improvements in processing technology, as well as
the enhanced gate control provided by the strained Ge FinFET
technology.

Index Terms—10 keV X-ray, geometry dependence, germa-
nium FinFETs, total ionizing dose.

I. INTRODUCTION

ERMANIUM-based pMOS FinFETs integrate material
and structural advantages to optimize several key device
operating properties that support their use in sub-14 nm CMOS
technologies. Benefits over Si pMOS FinFETs include higher
hole mobility, reduced short-channel effects, and reduced
bias-temperature instabilities, while maintaining compatibility
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with conventional Si integration processes [1]-[3]. The radi-
ation responses of planar Ge pMOSFETs [4]-[7] and SiGe
FinFETs [8] have previously been evaluated. For Ge planar
pMOSFETs, relatively low ON/OFF ratios were observed
[4]-{7], and device response was sensitive to process condi-
tions, e.g., the thickness of the Si capping layer that separated
the Ge and dielectric layers, and/or halo implantation [5]. For
SiGe FinFETSs, a combination of bias-stress and radiation-
induced charge trapping effects was observed [8]. As a result,
these earlier-generation planar Ge pMOS transistors and SiGe
pMOS FinFETs were not suitable for use in high-volume
commercial or space environments.

As processing technologies have improved, knowledge from
previous studies has been employed to continually improve
the performance and reliability of Ge-based technologies. In
this work, we provide a detailed evaluation of the radiation
response of strained Ge pMOS FinFETs with different geome-
tries under different bias conditions. We find that ON/OFF
ratios are improved significantly before and after irradiation,
compared to planar Ge pMOSFETSs, and that charge trapping
effects due to both bias-stress and irradiation are reduced in
these Ge FinFETs, compared with SiGe FinFETs evaluated
in 2014 [8]. These results indicate that strained Ge pMOS
FinFETs are excellent candidates for integration into next-
generation radiation-tolerant CMOS IC technologies.

II. EXPERIMENTAL DETAILS

The Ge pMOS FinFETs evaluated in this work were fab-
ricated at imec on 300 mm bulk Si (100) wafers. Transistor
fabrication included a fin replacement process in which the
original Si fin is replaced by a partially relaxed Sig25Geg.75
layer and Ge channel in a single step [1], [9]. For these devices,
a thin Si cap was partially oxidized, yielding an unconsumed
thin Si buffer layer to passivate the Ge surface and improve the
interface quality. On top of the SiO; interfacial layer (IL), a
~1.5 nm HfO; layer and TiN metal gate were deposited. The
effective oxide thickness (EOT) of the gate dielectric stack is
~1.9 nm. Because these are test structures intended to charac-
terize the initial response of a developing process technology,
the starting threshold voltage value was not optimized.

Fig. 1(a) shows a schematic diagram of the targeted-
undoped, strained Ge Fin on Sip3Gep7 strain-relaxed buffer
built on 45 nm pitch spacer-defined Si fins on a (100)

0018-9499 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. (a) Schematic diagram of the targeted-undoped, strained Ge fin on
Sip 3Geq 7 strain-relaxed buffer, built on 45 nm pitch spacer-defined Si fins on
a (100) Si substrate, (b) HAADF XTEM after replacement channel deposition,
and (c) zoom into Ge channel at the end of processing. The final Ge fin is
13 nm wide and 18 nm tall.

w
TiN
HfO,
Sio,
Si Buffer
Ge Channel

20 nm
—

Fig. 2. (a) STEM image of bulk Ge FinFET. (b) Chemical composition
map of different structure layers from EELS. (c)-(h) Individual maps of
elements/compounds found in device.

Si substrate; Fig. 1(b) shows a high-angle annular dark field
(HAADF) cross-sectional transmission-electron-microscopy
XTEM image after replacement channel deposition; and
Fig. 1(c) shows a zoomed image of the Ge channel at the
end of processing. These images show that the final Ge fin
is 13 nm wide and 18 nm tall [9]. A scanning transmission
electron microscope (STEM) image of the FinFET is shown
in Fig. 2(a). To ascertain the chemical composition of the
different layers in the STEM image, electron energy loss
spectroscopy (EELS) is used to form spectral images of
the elements in the device. A composite drawing showing
the chemical composition of different layers is shown in
Fig. 2(b), along with maps of the Si, Ge, O, Hf, TiN, and
W (Figs. 2c-2h). The underlying strained Ge layer, Si cap (to
enhance interface quality), thin SiO»/HfO, gate dielectric, and
TiN/W gate metallization are all clearly delineated.

Total ionizing dose (TID) irradiations were performed using
a 10-keV ARACOR X-ray source at room temperature at
a rate of 31.5 krad(SiOz)/min. Three gate bias conditions
(V¢ = =1 V, +1 V, and all pins grounded) were applied
during irradiation and/or bias stress. A semiconductor para-
meter analyzer, HP4156A, was used to supply DC bias during
the experiment, as well as to perform the I-V characterization
before and after each exposure. The dimensions of the tested
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Fig. 3. (a) Threshold voltage shifts as functions of time and gate bias for Ge

pMOS FinFETs. A schematic illustration of the test structures is shown in (b).
The devices include 4 fins in parallel. All dimensions are as-designed. The
printed value after trimming the “66 nm” gate is around 36 nm, for example.

devices vary in fin width from 16 nm to 100 nm, fin length
from 500 nm to 12.5 um, and gate length from 66 nm to
230 nm. The fin length (see Fig. 3) was varied as part of
the process evaluation matrix, but the channels of individual
transistors are defined by the gate length, fin width, and fin
height, as shown in Fig. 1. At least three devices with the
same dimensions were tested for each set of test results shown.
Results of average devices are shown below, with error bars
indicating the range of responses.

III. RESULTS AND ANALYSIS

Fig. 3 shows (a) the threshold voltage V;, shift as a function
of applied gate bias and stress time for devices with a gate
length of 66 nm and fin width of 20 nm, and (b) a schematic
illustration of the 4-fin test devices evaluated in this study.
There are significant V;j shifts for negative gate biases of
—2 V and —1.5 V, which are comparable to those observed
previously for SiGe FinFETs [8]. However, these voltages are
well beyond the expected operating limits of this technology.
At room temperature and 1 V bias (approximately double
the expected operating voltage of this technology), there is no
detectable shift in V;; or significant increase in leakage current
for any of the strained Ge pMOS FinFETs tested under voltage
stress, for the times and biases of this study. These results
demonstrate the relative stability of devices during irradiation
under the bias conditions of this study. Moreover, these results
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Fig. 4. Ip-Vg curves as functions of dose for a device with gate length of
66 nm, fin width of 20 nm, and fin length of 500 nm: (a) semi-log plot and
(b) linear plot. Vp = —0.1 V during all Ip-V sweeps.

contrast with the responses of SiGe pMOS FinFETs in [8], for
which shifts due to bias-induced charging during irradiation
complicated the extraction of the “pure” TID response [8].
Figs. 4 and 5 show the Ip-V characteristics for TID tests
on devices with gate length of 66 nm, fin width of 20 nm, and
fin lengths of 500 nm and 12500 nm, respectively. In each case,
the active transistor gate is much shorter than the lithographi-
cally defined fin, as shown in Fig. 3(b). Each device shows a
small, negative Vy, shift with increasing TID, consistent with a
small amount of net hole trapping in the gate dielectric layers.
Less than ~5% ON state current degradation is observed for
either device. From these curves, the extrapolated V;, and
G, = Alp/AVg were extracted using standard techniques
in the linear mode of device operation, with Vp = —0.1 V.
No adjustment to the gate-metal work function was performed
to optimize the starting value of threshold voltage for these
devices, so the OFF state current for these test structures is
taken to be the current measured at Vg = 1 V. With this
definition, the ON/OFF current ratio for the 500 nm fin length
device in Fig. 4(a) is more than 103, which is comparable
to that of the strained SiGe FinFETs in [8], and significantly
higher than the ratios observed for (relaxed) planar Ge pMOS
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Fig. 5. Ip-V curves as functions of dose for a device with gate length of

66 nm, fin width of 20 nm, and fin length of 500 nm: (a) semi-log plot and
(b) linear plot. Vp = —0.1 V during all /p-Vg sweeps.

devices in [4]-[7]. The increased ON/OFF current ratios for
these FinFETs are due to improvements in starting material
quality as well as the improved gate control achievable in
FinFETs, as compared to planar Ge devices, as we discuss
below.

Fig. 6 shows threshold voltage shifts, changes in normal-
ized transconductance, and measured ON/OFF current ratios
as functions of irradiation and annealing time for devices
irradiated at gate biases of 1 V and O V, and annealed
under negative bias. The largest V;;, shifts occur for nega-
tive gate bias during irradiation, and correspond to net hole
trapping in the gate dielectric layers during irradiation. Under
positive irradiation bias, Vy;, shifts are small and positive,
consistent with net radiation-induced electron trapping in the
HfO, dielectric layer, as commonly observed [8], [10], [11].
TID-induced shifts are smaller in these strained Ge pMOS
FinFETs than the SiGe FinFETs in [8], most likely because
of the reduced gate bias used in this study, which is
closer to anticipated device operating conditions, and/or lower
defect densities in the dielectric layers of these devices.
Vin shifts decrease or remain approximately constant during
room-temperature, negative-bias annealing. The stability of
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Vg = —1 V, 0V, and +1 V, and/or room temperature annealing time at
Vg = —1V, for devices with gate length of 66 nm, fin width of 20 nm,
and fin length of 500 nm. Data points here are averages from at least three
devices, and error bars show the full range of variation observed.

the devices during annealing further demonstrates that bias-
induced charging is negligible during these irradiation and
annealing tests. The transconductance G,, degradation (<5%),
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functions of total dose and gate length for devices with fin width of 20 nm
and fin length of 500 nm at a gate bias during irradiation of Vg = —1 V,
and Vp = Vg = Vp = 0 V. Data points here are averages from at least three
devices, and error bars show the full range of variation observed.

Vi shifts (<30 mV) and ON/OFF current ratio degradation
(<5%) in these strained Ge pMOS FinFETs are far superior to
the responses of relaxed, planar Ge pMOS devices in [4]-[7],
again as a result of significant improvements in processing
technology [1]-[3] and improved gate control.

Fig. 7 summarizes (a) Vyj, shifts and (b) ON/OFF current
ratios as a function of TID for negative gate-bias irradiation
of devices with fin width of 20 nm and gate lengths of 66 nm
to 230 nm. All devices show V;j, shifts smaller than 50 mV in
magnitude. Devices with shorter gate lengths show smaller
Vi shifts (20 mV to -35 mV), increased ON/OFF ratios,
and smaller variations in response compared to devices with
230 nm gate length. This likely occurs because shorter gate-
length devices are less likely to be impacted by defects in the
starting material, which can degrade junction and oxide quality
before and after irradiation [5], [6]. That the ON/OFF current
ratio before and after irradiation is greatest for shorter gate-
length devices is encouraging, since the properties of smaller-
dimension devices have more practical significance for future
IC applications than properties of larger-dimension devices.
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Fig. 8. (a) Vy, shifts, (b) normalized transconductance, and (c) ON/OFF
current ratios as functions of total dose for gate biases during irradiation of
Vg =—1Vand Vp = Vg = Vp =0V for Ge pMOS FinFETs with gate
length of 66 nm and fin widths of 20-100 nm. Data points here are averages
from at least three devices, and error bars show the full range of variation
observed.

We note that the results of Fig. 7 are the only case in our
testing of these devices, to date, in which it appears that one
geometrical split exhibits a statistically different response from
other process splits, which should simplify IC design in this
technology.

Fig. 8 shows (a) Vy shifts, (b) normalized transconductance,
and (c) ON/OFF current ratios as functions of total dose for
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Fig. 9. (a) Leakage current, and (b) ON/OFF current ratios as functions

of total dose with gate biases during irradiation of Vg = —1 V and Vp =
Vs = Vp =0V for Ge pMOS transistors from three technology generations:
1) early development stage Ge planar pMOSFETS; 2) Ge planar pMOSFETSs
with raised source and drain; and 3) Ge pMOS FinFETs from this work.

devices irradiated with Vg = —1 Vand Vp = Vs = Vp =0V
for Ge pMOS FinFETs with gate length of 66 nm and fin
widths of 20- 100 nm. All devices show negative V;;, shifts
(-3 mV to -35 mV), decreases in transconductance (1 to 5%),
and minimal changes in ON/OFF current ratio with increasing
TID. No clear trends in radiation response are observed with
varying fin width.

IV. DISCUSSION

The excellent radiation response of the strained Ge pMOS
FinFETs and absence of fin-width dependence in this work
contrasts strongly with previous results on earlier generation
Si nMOS FinFETs on SOI wafers [12], [13], in which much
larger Vi, shifts and a strong fin width dependence were
observed. These improvements in response for strained Ge
pMOS FinFETs, relative to SOI FinFETs, result primarily
from the absence of a buried oxide layer. In SOI devices,
the buried oxide layer can strongly affect device response as a
result of buried-oxide to top-gate electrostatic charge coupling
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effects [12], [13], [20]-[22]. Instead, the relatively small V
shifts in these bulk Ge pMOS FinFETs are due primarily to
charge trapping in the gate dielectric (SiO/HfO;) layers.

These strained Ge pMOS FinFETs also show far supe-
rior radiation response to recent-generation, bulk nMOS Si
FinFETs, for which significant STI leakage is observed below
~ 300 krad(SiO,) [14]. This improvement in response is
due primarily to three factors: (1) The thickness of the STI
at the lower fin corner of the strained Ge pMOS FinFET
(see Fig. 1(c)) is reduced in thickness, as compared with
the STI of the bulk nMOS Si FinFETs in [14], leading to
reduced STI charge trapping in the region closest to the
active device channel [23]. (2) The QW structure effectively
isolates conduction in the active device channel and associated
parasitic structures from potential coupling effects that can be
associated with charge trapping in the STI in some types of
devices [24], [25]. (3) The nominally undoped Ge channel
layer in these pMOS FinFETs has an effective n-type doping
after processing, as a result of dopant diffusion out of the
highly n-doped underlayer [9], [26]. Net positive trapped
charge in the STI more strongly accumulates n-type surfaces
[10], [23]. Consequently, no significant STI-related leakage is
observed for these strained Ge pMOS FinFETs, up to at least
1 Mrad(SiO;), under the conditions of this study.

The strained Ge pMOS FinFET structure illustrated in
Figs. 1 and 2 also enables high performance transistors to
be fabricated without the requirement for process steps that
are necessary to include in planar Ge pMOS technologies.
For example, the halo implant that is necessary in planar
technology to control short channel effects [15] also leads to a
radiation-induced reduction of ON/OFF ratio [5] and increase
in low-frequency noise [6] for planar Ge pMOS technologies.
With the enhanced gate control of FinFET technology, halo
implantation is no longer required.

To illustrate the technology scaling trends in Ge pMOS
technology, Fig. 9 compares (a) off-state drain leakage and
(b) ON/OFF current ratios as functions of total dose for
devices from three generations of imec Ge-based pMOSFETs
built on silicon substrates: 1) early development stage Ge
planar pMOSFETs with a Ge layer thickness of 2 um
and W/L = 9.8 um/0.8 um [6], [16]-[18]; 2) Ge planar
pMOSFETs with Ge layer thickness of 200 nm, raised source
and drain, and dimensions of W/L = 1 um/0.47 um
[7], [19]; and 3) Ge pMOS FinFETs with strained Ge-fin
height of 15 nm on a 100 nm-SiGe buffer layer [9] and
gate length of 66 nm, fin length of 500 nm, and fin width
of 20 nm from this work. As a result of the transition to
FinFET technology, reductions in STI thickness in areas of
relevance to transistor operation, and elimination of process
steps leading to degradation in radiation response (e.g., halo
implant), Fig. 9 shows clearly that the strained Ge pMOS
FinFETs in this work show vastly superior leakage current
and significantly improved ON/OFF current ratios than devices
built in previous generations of Ge pMOS technology. The
existing structures require only an adjustment to the starting
Vin (e.g., by changing the gate metal to adjust the work
function) to become viable candidates for insertion into next-
generation, radiation-tolerant CMOS technology. We also note
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that initial single-event-effects results on test structures appear
quite promising [27], but of course, the TID and single-
event response of fully processed ICs would also need to be
evaluated to assess the technology for potential space use.

V. CONCLUSIONS

We have evaluated the total-ionizing-dose response of
strained Ge pMOS FinFETs varying in fin length, fin
width, and gate length. Modest threshold-voltage shifts,
small transconductance degradation, and minimal changes in
ON/OFF current ratios are observed. These devices show
superior performance to planar Ge pMOS devices because
of improvements in material quality, device processing, and
gate control, relative to previous technology generations.
These improvements are due primarily to the transition to
FinFET technology, reductions in STI thickness in areas of
relevance to transistor operation, and elimination of process
steps leading to degradation in radiation response (e.g., halo
implant). These results demonstrate that strained Ge pMOS
FinFETs are strong candidates for incorporation into near-
future generations of CMOS ICs for space and other high-
radiation, high-reliability applications.
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