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Abstract

Intrinsic thermal resistivity critically depés on features of phonon dispersions dictated by
harmonic interatomic forces and masses. Here weept the effects of functional group mass
variance on vibrational properties and thermal cetiglity () of functionalized graphene from
first principles calculations. We use graphandéuakled graphene backbone with covalently
bonded Hydrogen atoms on both sides, as the basgiahand vary the mass of the Hydrogen
atoms to simulate the effect of mass variance father functional groups. We find non-
monotonic behavior of with increasing mass of the functional group andiausual cross-over
from acoustic-dominated to optic-dominated thertreaisport behavior. We connect this cross-
over to changes in the phonon dispersion with warynass which suppress acoustic phonon
velocities, but also give unusually high velociptio modes. Further, we show that out-of-plane
acoustic vibrations contribute significantly mom thermal transport than in-plane acoustic
modes despite breaking of a reflection symmetretascattering selection rule responsible for
their large contributions in graphene. This woekbnstrates the potential for manipulation and
engineering of thermal transport properties in tdimensional materials toward targeted

applications.

*co-first author (equal contributions to work)



. INTRODUCTION

Two-dimensional (2D) materials continue taigue scientific and engineering communities
with the variety of interesting fundamental prom=tand possible applications (varying
electronic behaviors [1-5], observations of quantffects [6], transistors [4], etc.) that can be
obtained in a now wide range of systems, e.g., lgma@ [1-3], silicene [7], borophene [8],
phosphorenes [5], transition metal dichalcogenifdgs9], just to name a few. Significant
research interest has been devoted to functiongl2b systems, graphene in particular [10-12],
to engineer these properties (e.g., electronic lgapd[13], chemical reactivity [14]) for targeted
applications in a variety of electronics and chaehuelivery systems. Here we examine the
effects of varying mass on vibrational and therrtrainsport properties of functionalized
graphene systems.

Suspended graphene has been reported to hdvemely high values for thermal
conductivity x ranging from 2000-5300 W/m-K [15-19]. Howevertaraction of single-layer
graphene with a supporting substrate [20] and matymer residue [21] can provide significant
thermal resistance. The highof graphene and this reductionwofith substrate interaction can
be partly understood in terms of large contribugitmk from out-of-plane flexural acoustic (ZA)
phonons. In purely flat graphene a scatteringcsiein rule based on reflection symmetry gives
significantly reduced scattering of such phononisictv thus contribute significantly to thermal
transport [22]. The influence of a supporting dtdis [20], other layers [23, 24] and curvature
[25] all break this selection rule to some degmgging more scattering of ZA phonons and
lower k. Chemical functionalization also breaks reflectsymmetry of graphene, even in fully-
functionalized crystalline systems, with the preseaf covalently bonded atomic groups on the

surfaces and buckling of the Carbon backbone (ngdpstrictly sp hybridized). Recent first



principles calculations gave ~2 times reductioncdbr graphane compared to graphene, and
found a furthek reduction when comparing to a heavier mass flabeith graphene system [26].
It was argued that changes in the phonon dispepdaythe dominant role in the reduction
going from graphane to fluorographene.

Motivated by that work, here we present fipsinciples x calculations of graphane with
varying mass of the Hydrogen atoms to simulateeffects of other functional group masses on
graphenex. In Section Il we briefly outline details of thbeory and numerical methods
employed here. Section Il gives the results af calculations and discussion of these, while
Section IV summarizes this work.

II. THEORETICAL METHODS

The structure of fully-covered functionalizgdhphene systems is shown in the inset to Fig. 1.
We note that these systems are crystalline, nog@irdefect scattering included. These systems
have the same hexagonal structure as grapheneybégwiee functional groups that alternately
bond to the top and bottom buckle the Carbon bawkborlhe electronic structure of graphane
(C-'H) was determined within density functional the2@, 29] using the Quantum Espresso
package [30, 31] within the local density approxima (LDA) with Perdew-Zunger exchange
correlation [32] and Von Barth-Car pseudopotentia8] for core electrons. A 13x13Xtmesh,
>30 A vacuum space and 120 Rydberg plane wave pretgff were used to determine lattice
constant = 2.501 A, buckling height = 0.448 A aneHQlistance = 1.114 A by energy
minimization. These are slightly smaller than #hdeund in Ref. 34 which employed the
generalized gradient approximation. LDA calculasidypically bind atoms more strongly than
GGA [35]. Dispersion interactions are not inclugedall atoms are covalently bonded and only

single-layer systems are considered.



Harmonic and third-order anharmonic interaiarce constants (IFCs) of graphane were
determined by numerical differentiation from foraealculated in perturbed supercells of 324
atoms usingI-point-only, 100 Rydberg plane wave energy cutoféc&onic structure
calculations with a 28 A vacuum distance betweeiogi layers. Finite numerical differences
and truncated atomic interactions require thatowarisymmetries be enforced on ‘raw’ IFCs [36-
38]. Specifically, small changes are applied ®‘taw’ harmonic and anharmonic IFCs vig?a
minimization procedure [36, 39] to ensure that @int group symmetries and translational
invariance conditions are enforced [40, 41]. FemthBorn-Huang equilibrium invariance
constraints [42] are also imposed on the harmd¥@sl

For each system these graphane harmonic dradraonic IFCs were used, thus differences
in phonon scattering andarise only from changes in the H atom mass thiremhe scattering

matrix elements and the dynamical matrix:
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whereq is the phonon wave vectoﬁ is the lattice vector locating tHéh unit cell,m, is the

mass of thesth atom,a andp are Cartesian components an&;'}""f are harmonic IFCs. We

note that the masses of the Carbon atoms still gahaynportant role in governing the dispersion
and scattering, particularly for the acoustic modéshe lighter systems. For the graphane
systems considered here the unit cell comprisesGaron atoms in the buckled backbone and
two attached Hydrogen atoms for which their masarged for each system. This gives two in-
plane acoustic branches with linear dispersiomstrarse (TA) and longitudinal (LA), and nine
optic branches. There is also a flexural acouffi8) branch with quadratic dispersion

characteristically found in 2D systems [38, 43,.44)btaining a perfectly quadratic branch can



be difficult due to numerical inaccuracies of ‘ramdrmonic IFCs; however, application of Born-
Huang equilibrium invariance constraints [42] natlyrgives this feature in 2D systems.

Lattice thermal conductivity is expressed as:
— — 2
K =Kag = D, CqVaalga ()
5

whereC, is the volume normalized mode specific heat apg is theath component of the

phonon group velocity, both of which are obtainednf phonon dispersions based on the

harmonic IFCs. Herg,is the branch indexz, is the transport lifetime obtained from Fermi's

golden rule using anharmonic IFCs and by fully savthe linearized Peierls-Boltzmann
transport equation [45-47] with a small temperagnadient in thexth direction. Details of the
calculations have been described previously [22,33%. The summations in Eq. 2 and in the
scattering rate calculations [22, 46, 47] are camdeto integrals and solved numerically using
Gaussian quadrature with 3072 points sampled irfitbieBrillouin zone. The layer thickness
required to determine volume is taken as that sifyiclefined for graphene, 3.35 A. The first
principles x calculations presented here were also independemttified using a density
functional tight binding method described previgydi8].
[11. RESULTSAND DISCUSSION

Figure 1 gives calculated room temperatud functionalized graphene versus mass of the
functional group. Again, harmonic and anharmofi€d were calculated for graphane {4)-
and are the same for each system presented hexeiowsly calculated values effor graphane
and fluorographene [27] compare favorably with thpsesented here, 6% and 12% differences,
respectively. As found in Ref. 27, graphane hasired smallerc than that calculated for

graphene (~3600 W/m-K [49]) and decreases significantly with increasing mass & th



functional atom. Increasing mass has the genéfiedteof reducing the overall frequency scale
of phonon dispersions, as can be seen in Fig. Datny those of CH, CH and C3H. This
tends to give lower velocities to heat-carrying usta phonons and more scatterings of these
with lower frequency optic branches, both givingueedx. This is demonstrated by the red
dashed curve in Fig. 1 which gives acoustic moderitutions to the totat. A striking feature

of Fig. 1, however, is the non-monotonic behavibko With increasing mass beyoritH «
increases from a minimum ~235 W/m-K to peak agaiftthwith k=410 W/m-K before slowly
decreasing with further increasing mass. Morer@sting is the origin of this behavior: cross-
over from typical acoustic-dominated transport atak mass to unusual optic-dominated
transport at large mass. Very recentlgoverned by optic phonons has been reported in the
complex phase change materiab&l®@Tes and was attributed to highly dispersive optic lorees
[50]. Istheorigin of thisbehavior similar for the smpler 2D systems presented here? How does

this behavior evolve with increasing mass of the functional atoms?

To further elucidate the origin of optic phoneontributions tok, Fig. 3 gives the
accumulatedc with increasing frequency for a subset of systber®. Each curve is scaled by
the overallk of the corresponding system. Figure 3 demonstrite frequency ranges that
provide significant contributions tofor each phonon spectrum. For instance®%dr~25% ofi
comes from acoustic modes below 5 THz, while ~758caming from optic modes between 15
and 25 THz. To correlate the changesciand x accumulation with varying mass, and thus
varying phonon frequencies, Fig. 4 gives the disiperof these systems in tlie-. M direction
for the LA branch and the two most dispersive optanches in the spectrum; Table | gives the
magnitude of the phonon velocities for the UA (node and the most dispersive optical branch

at the M/2 point along thE€ -~ M direction for select systems. The lightest systeorssidered,



C-'H, CH and C3H, have very large zone-center LA phonon speedbsl€Ti, characteristic of
light systems with strong covalent bonding. The trspersive optic modes in these lightest
systems have much smaller speeds. For this reasas typically the case, the acoustic phonons
carry more heat than optic phonons. However, assmantinues to increase a curious Cross-
over occurs: these optic modes become more digpetisan the acoustic modes, thus have
higher velocities. With increasing mass the zometer LA velocities continuously decrease,
while optic phonon velocities continuously increags shown in Table | and by Fig.4. Some
optic modes are nearly twice as fast as LA modegsr this reason, large contributions to the
accumulatedc of Fig. 3 occur in frequency ranges of larger masderials where these optic
branches are most dispersive. We note that thel tggren by the LA branches, decreasing
velocity with increasing mass, holds for all themmustic branches.

The optic branches become more dispersivk imtreasing mass of the functional atoms
because zone center frequencies decrease, whigelmamdary modes have relatively constant
frequency. In striving for deeper understandingtileé mechanisms of this behavior it is

instructive to map the frequencies of the governmagpnon modes to a simple mass/spring

harmonic oscillator model. For such a model tlegdiency is given byw= Ak, / m, where

Ais a constantk,, is an effective spring constant (governed by haimté~Cs), andn is the

. . ~ 2 .
effective mass of the system. Here we def@ezzm,‘eqja‘ as the sum of unit cell masses
ag

weighted by the eigenmotion of the phonon mode wiggris the eigenvector. In comparing
particular phonon mode frequencies with varyingesysmass, harmonic IFCs and thys are
unaltered, and thus do not contribute to frequetffgrences. Table | gives the calculateg

for the LA (M) mode and thé¢ and M modes of the most dispersive optic branchséect



systems, as well as phonon frequencies atlttend M points for this optic branch. With
increasing system massy for the LA (M) increases significantly thus givirggaller zone

boundary frequencies and smaller velocities. Girtyilfor the optic mode at thié point, m,

increases substantially with increasing system nhss giving significantly decreasing

frequencies at this point. However, for the M paim increases very little and thus frequencies

decrease only slightly, giving an increasingly digive optic branch with increasing functional
mass.

Although the changing velocities of acoust®} and optic ¢) phonons with increasing
functional mass is the driving factor fodifferences in these systems it is instructivexamine
phonon scattering processes, which also play a rolevo features of the dispersions are
particularly relevant in this regard: aro frequency gap and optic phonon bandwidth, both of
which govern the interactions afando phonons. Considering energy conservation a large
gap limits the amount of scattering for t@ghonons with on® phonon éao scattering) [51-
53], while small optic bandwidth limits the amouwftaoco scattering [54, 55]. For ¢H there is
a relatively smalla-o gap despite having a large mass ratio of 12. H8@9 of the acoustic
modes participate iaao processes, despite previous work that demonsteai@dcattering does
not exist in compound semiconductors with masssatt4 [53]. This condition, however,
depends critically on crystal structure and doesapply to various rocksalt compounds [56],
nor to the systems here. As functional atom mas®ases tha-o gap relative to the acoustic
frequency scale remains relatively constant as hatindo modes shift to lower frequencies.
More importantly, the optic bandwidth relative teetacoustic frequency scale becomes larger
with increasing functional atom mass. For'tC-only ~50% of the acoustic phonons can

participate inaoo processes. For € this goes up to ~75% and for°&-and the other heavier



systems all acoustic phonons can participa@omscatterings. Thus, changing optic bandwidth
plays a role in the sharp decreas& igoing from C*H to C>H, however, is less important in
differences with further increasing mass.

The ZA phonons have smaller velocities than thdsa-plane modes (LA and TA), but still
contribute significantly especially for functiongtoup mass smaller than 35 amu, as shown in
Fig. 5 which gives a further breakdown of the modatributions to the total. In graphane the
Carbon backbone is buckled and the presence oHtltgogen groups breaks the reflection
symmetry present in purely flat graphene. This kseaphonon-phonon scattering selection rule
[22] and allows for more scattering of ZA phonohart in graphene, thuscontributions from
ZA modes drop from ~2700 W/m-K in graphene to ~1200n¥K in graphane, though drop in
the percent contribution to in Fig. 5 is not as dramatic. Regardless, in lgaae and heavier
functional mass systems ZA phonons still contribtite largest share of the acoustic mode
contributions tok, similar to that found in other buckled monolagystems [57]. To better
understand this we note that ZA mode velocitiey aidappear near the Brillouin zone center.
For C*H the average ZA phonon speed in the transporttitire ~3.81 km/s, is comparable to
that of the TA and LA branches, 4.06 km/s and 4«@fs, respectively. Further, the average
lifetime of the ZA phonons in &H, ~18.9 ps, is over an order of magnitude smalian that of
graphene due to relaxing of the selection rule,éas it is still significantly higher than that of
the TA and LA phonons, 8.5 ps and 7.1 ps, respagtiv

We also made calculationsiwofncluding phonon-isotope scattering from naturabundant
Carbon isotope concentrations (see Fig. 5) via muamechanical perturbation theory methods

described elsewhere [49, 58, 59]. We find thaallrsystems, even those wikhcontributions



dominated by optic phonons, the additional resctainom naturally-occurring isotopes plays
only a minor role in determining
V. SUMMARY AND CONCLUSIONS

We presented calculations of thermal conductivity for mass functionalized graphene
systems based on Peierls-Boltzmann transport equatethods with harmonic and anharmonic
forces from density functional theory. With fultpvered Hydrogen functionalized graphene
(also known as graphane) as the base system waredithe effects of mass variance of the H
atoms on vibrational and lattice thermal transpooperties. Calculations give a non-monotonic
behavior ofk with increasing mass that is governed by an urnuswss-over from acoustic-
dominated to optic-dominated heat transport. Wittreasing mass of the functional atoms
acoustic mode velocities expectedly decrease, henyveparticular optic phonon modes have
increasing velocity, and thus give larger contiidms tox. Further we show that out-of-plane
acoustic phonons give larger contributions to trertmansport than in-plane acoustic modes
despite broken reflection symmetry, important fa@tedmining the lifetimes of these modes.
This work shows the important role that phonon elisippn features play in determinimgand
demonstrates the potential for manipulating thertraaisport in two dimensional materials via

mass functionalization.
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Table I. Calculated magnitude of phonon velocityjn thel — M direction for the LA )
mode and the most dispersive optic branch at th2 pbint for select systems, as well as
frequencies for the most dispersive optic brancthal’ and M points. Also given are effective
masses (defined in text) for the LA (M) mode dhdnd M modes of the most dispersive optic
branch. Comparison of the calculated frequenanes\elocities shown here is accurate to the
given precision; however, numerical uncertaintythe calculation of the harmonic IFCs may

reduce the overall precision.

v(km/s) v(km/s) mg(amu) mg(@mu) o (THzZ)  mg (amu) o (THZ)
LA (I') optic (M/2) LA (M) optic ) optic )  optic (M) optic (M)

*H 16.84 8.60 5.24 3.10 20.59 11.60 33.87
*H 15.81 10.93 6.70 7.10 16.82 11.83 33.58
“H 1386 12.22 10.26 10.96 13.54 11.91 33.21
*H 9.98 12.75 29.76 17.19 10.81 13.04 33.00
5CH 7.60 12.85 59.87 20.04 10.01 13.40 32.52
200 4.42 12.92 200.9 22.67 9.41 13.64 32.20

Table |



Figure Captions

Figure 1: Calculated room temperaturdor functionalized graphene versus functional grou
mass (black-dotted curve). The dashed red cumesghex contribution from acoustic modes,
while the dashed blue curve gives that from optimdes. First principles calculated for
graphane (purple square) and fluorographene (ptriplegle) from Ref. 27 are also given. The

inset shows the structure of these systems.

Figure2: Phonon dispersion of graphané#(Csolid black curves), C-Deuterium (& dashed
red curves) and C-Tritium (éH; dotted blue curves) in the — M — K = I high symmetry

directions.

Figure 3: Accumulated(o) versus frequency for €4 (blue curve), CH (black curve), CH

(red curve), C°H (green curve), C%H (orange curve), €®H (purple curve). Each curve is
scaled by the corresponding calculated tetidr each system: 1718 W/m-K, 911 W/m-K, 637
W/m-K, 417 W/m-K, 284 W/m-K, 376 W/m-K, respectiyel The maximum acoustic frequency

for each system is marked by corresponding colamdws. Accumulateda(o) is given by

k() =Zcmv§jarmae(w—%) whered is the Heavyside step function, zero tor w; <0 and
a

one fora)—a)(le > 0. Other terms are defined in the text.



Figure 4: Phonon dispersion of two highly dispezsoptic branches and the LA branch in the
r ~ M direction for C3H (black curves), CH (red curves), C°H (green curves), C¢H

(orange curves) and ©H (purples curves).

Figure 5. Calculated contributions for in-plane acoustic modes (grearnve), out-of-plane
acoustic modes (red curve) and optic modes (bloeegwersus functional group mass. Values
are scaled by the total for each system. Also given is the calculatedith phonon-isotope
scattering from natural Carbon concentrations sichjac of the isotopically pure systems (black

curve).
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