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Residential distributed photovoltaic (PV) deployment in the United States has experienced robust growth, and
policy changes impacting the value of solar are likely to occur at the federal and state levels. To establish a credible
baseline and evaluate impacts of potential new policies, this analysis employs multiple methods to forecast res-
idential PV deployment in California, including a time-series forecasting model, a threshold heterogeneity diffu-
sion model, a Bass diffusion model, and National Renewable Energy Laboratory's dSolar model. As a baseline, the
residential PV market in California is modeled to peak in the early 2020s, with a peak annual installation of 1.5–
2 GW across models. We then use the baseline results from the dSolar model and the threshold model to gauge
the impact of the recent federal investment tax credit (ITC) extension, the newly approved California net energy
metering (NEM) policy, and a hypothetical value-of-solar (VOS) compensation scheme. We find that the recent
ITC extension may increase annual PV installations by 12%–18% (roughly 500 MW, MW) for the California resi-
dential sector in 2019–2020. The new NEM policy only has a negligible effect in California due to the relatively
small new charges (b100 MW in 2019–2020). Furthermore, impacts of the VOS compensation scheme ($0.12
per kilowatt-hour) are larger, reducing annual PV adoption by 32% (or 900–1300 MW) in 2019–2020.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Renewable energy for electricity generation, led bywind and solar, is
key to the global climate-changemitigation strategy (IPCC, 2014). In the
United States, renewable energy now accounts for the biggest source of
increase in generation capacity. In 2015, the country saw over 2.3 GWdc

of distributed-generation photovoltaics (DGPV)1 connected to the grid,
which corresponds to almost 200,000 installations (GTM/SEIA, 2014). In
California, even after the California Solar Initiative (CSI) ended in 2014,
the DGPV market remains viable (BNEF, 2015a; GTM/SEIA, 2015). The
DGPV installations are determined by individual customers and
installed by solar companies, which are often beyond the control of util-
ity companies. However, such high DGPV growth has important impli-
cations on utility planning processes, especially in terms of future
infrastructure needed, system cost minimization, and reliable operation
of the electric system.

The rapid DGPV deployment has spurred policy debates and policy
changes in many ways. Various studies have been conducted to
, Beijing, China.

esearch, we define DGPV as PV
e distribution network (rather
meter or in front of it and con-
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understand the benefits and costs of DGPV to the grid (Blackburn et al.,
2014; Denholm et al., 2014; RMI, 2013), how to adjust policy-support
schemes (CPUC, 2015b; Rábago et al., 2012; Randazzo, 2015), and the
implication on utility business models (Lehr, 2013; Richter, 2013;
Satchwell et al., 2014). Recently at the federal level, the U.S. Congress
(U.S. Congress, 2015) approved a five-year phase-down extension of
the investment tax credit (ITC) for solar energy. In California, a February
2016 decision by the California Public Utilities Commission (CPUC) on
the successor to net energymetering (NEM)maintained retail electricity
rates for DGPV owners at previous levels, while introducing new tariff
features—a system interconnection fee, a non-bypassable charge, and a
minimalmonthly bill—that anticipate higher levels of DGPVdeployment.

To analyze the impact of enacted or future policy actions, it is neces-
sary to have a valid forecast for the future technology diffusion; howev-
er, forecasting DGPV deployment is fundamentally challenging for
several reasons. First, the DGPV market has historically relied on policy
support (DSIRE, 2016), so future policy changes create forecasting un-
certainty. Second, DGPV is a new and durable technology; so, many
non-economic factors may influence adoption, such as customers' envi-
ronmental attitudes, peer effects, and risk preferences (Rai et al., 2016).
Finally, even forecasting future DGPV prices alone is challenging be-
cause of the global nature of the technological change and supply
chain (Choi and Anadón, 2014).

The objectives of this research are tomodel future residential PV de-
ployment in California leveraging a suite of techniques and then use our
otovoltaic deployment in California, Technol. Forecast. Soc. Change

http://dx.doi.org/10.1016/j.techfore.2016.11.021
mailto:rosenbloog@gmail.com
Journal logo
http://dx.doi.org/10.1016/j.techfore.2016.11.021
http://www.sciencedirect.com/science/journal/00401625
http://dx.doi.org/10.1016/j.techfore.2016.11.021


2 Technology diffusion refers to the process of how new technologies spread through-
out society over time. This paper uses the terms “diffusion,” “adoption,” and “deployment”
interchangeably.

3 We consider these two types of models complementary to each other (Section 3), and
together they establish amore reliable baseline for future PV deployment in the sense that
they represent two extremes ofmodeling efforts: the top-downmodels are generally easy
to implement and require much fewer assumptions, whereas the bottom-up models are
more modular and have more assumptions embedded, but are more flexible in modeling
PV economics.

4 Only future values of those external factors are relevant here, because their historical
values should already be incorporated into the historical values of the variable of interest.

Nomenclature

ACS American Community Survey
ARIMA autoregressive integrated moving average
BNEF Bloomberg New Energy Finance
CEC California Energy Commission
CPUC California Public Utilities Commission
CSI California Solar Initiative
CSS California Solar Statistics
DGPV distributed-generation photovoltaics
DSIRE Database of State Incentives for Renewables & Efficiency
dSolar Distributed Solar Market Demand model
E3 Energy and Environmental Economics
EIA Energy Information Administration
GTM Greentech Media
GWDC gigawatts in direct current
IOUs investor-owned utilities
ITC investment tax credit
kWh kilowatt-hour
LHS Latin hypercube sampling
MW megawatts
NEM net energy metering
NEMS National Energy Modeling System
NPV net present value
NREL National Renewable Energy Laboratory
OOH owner-occupied houses
SEIA Solar Energy Industries Association
STD standard deviation
TPO third-party owned
TTS Tracking the Sun
VOS value-of-solar
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baseline results to study the impact of potential policy changes on PV
deployment. Without a solid baseline forecast of PV adoption, the as-
sessment of policy impacts could be biased from the very beginning.
As California and other states in the U.S. are progressing in making pol-
icy changes related to DGPV, establishing common ground for forecast-
ing future PV adoption should be critical during the policy-making
process. That is why in this research we include multiple forecasting
methods, covering both top-down and bottom-up models.

Existing forecasting of future PV adoption usually comes from three
sources: research institutes, industry experts, and utility companies.
However, themethods they have used vary dramatically. Research insti-
tutes and industry experts often rely on bottom-up customer adoption
models, whereas utility companies sometimes simply assume an end-
point DGPV deployment level or extrapolate from historical data
(Mills et al., 2016). Even for the bottom-upmodels, they differ in specific
model configuration, parameter setting, and geographic resolution. For
instance, the geographic resolution could range from nationwide, to
state-level, to utility area; however, few studies go to county levels. An-
other issue with these forecasts is that they tend to have a limited time
frame, usually not exceeding 2030.

Ourwork extends the PV forecasting literature in several ways. First,
we use and compare multiple forecasting techniques. We leverage not
only bottom-up models, but also top-down models. Although all bot-
tom-up models are based on the classical Bass diffusion model, we
also introduce a different type of diffusionmodel, i.e., the threshold-het-
erogeneitymodel. These two types of models represent two fundamen-
tally different views on how to generate an S-type diffusion curve.
Second, in our bottom-up model, we cover the two major business
models of DGPV, i.e., the customer-owned and the third-party-owned
(TPO) systems, whereas most other literature does not include the
Please cite this article as: Dong, C., et al., Forecasting residential solar ph
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most recent DGPV business model—TPO. Third, we make our forecasts
for California at the county level and cover periods from now until
2050. Lastly, before making forecasts for 2050, we carefully calibrate
our methods based on the extensive DGPV historical data in California.

The top-down models and bottom-up model used in this research
are as follows. First, following the forecasting literature (Forte, 2015;
Hyndman andAthanasopoulos, 2013) and diffusion2 of innovation liter-
ature (Bass, 1969; Bass et al., 1994; Bemmaor, 1994), we build three
top-down models that are based on theory and calibrated with real
market data: a time-series forecastingmodel, a threshold-heterogeneity
diffusion model, and a Bass diffusion model. Then, we compare these
models to a more complex bottom-up techno-economic model, the
dSolarmodel maintained by the National Renewable Energy Laboratory
(NREL).3 Furthermore, as a demonstration of uncertainties in forecast-
ing DGPV technology diffusion, we conduct sensitivity analysis based
on the dSolar model around certain key economic parameters. For sim-
plicity, we only focus on the largest residential market segment in this
research, i.e., the owner-occupied housing (OOH) market, rather than
the non-OOHmarket or PV adoption in the commercial sector.

After first reviewing the relevant literature (Section 2), we discuss
our data inputs and four methods (Section 3). We then present our
baseline results for California's residential PV sector in Section 4. We
use the dSolar model and the threshold-heterogeneity diffusion model
to conduct three policy scenario analyses of the recent federal ITC exten-
sion, the newly approved California NEM policy, and a hypothetical
value-of-solar compensation scheme (more detail in Section 4.4).
Section 5 provides a conclusion.

ccepted manuscript. The published version of the article is available from the relevant publisher.
2. Literature review

This research builds on several strands of literature: general fore-
casting, diffusion of innovation, PV financial attractiveness, and existing
DGPV forecasting models. General forecasting is essential for planning
purposes, and the methods can be very simple, such as using most re-
cent observation as a forecast or developing a complex model such as
neural networks (Forte, 2015; Hyndman and Athanasopoulos, 2013).
When time-series data are available, two of themost popular univariate
time-series models are the autoregressive integrated moving average
(ARIMA) model and the exponential smoothing model. ARIMA focuses
on the autocorrelations in the data, whereas the exponential smoothing
model detects trends and seasonality in the time series (Hyndman and
Athanasopoulos, 2013; Hyndman et al., 2008). Time-series forecasting
uses only historical information for the variable being forecasted and as-
sumes that the observed trend and seasonality will continue. As such,
time-seriesmodels are easy to implement and rely on only one assump-
tion (i.e., continuing trend) to work. Nevertheless, time series method
can miss other external factors that affect the variable of interest, such
as policy changes or changes in the sub-populations considering
adoption.4

The literature on diffusion of innovation is vast and good review
work can be seen in Sultan et al. (1990), Meade and Islam (2006), and
Rogers (2003). Diffusion of innovation models started in late 1960s,
with the Bass diffusion model (Bass, 1969) probably being the most
commonly used model to predict technology adoption. Generalized
Bass models have been proposed to incorporate other variables such
otovoltaic deployment in California, Technol. Forecast. Soc. Change
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6 Major data-cleaning steps included the following in order for us to produce the most
complete PV installation history at the county level. For the CSS data, we deleted project-
level data entries with both missing utility names and county names, duplicate intercon-
nection application records, and misspelled county names that we cannot reasonably
fix; we then combined the customer sectors into either residential or non-residential cat-
egories, imputed the missing county names with known utility names, and imputed the
system size in DC based on the AC number if missing. For the TTS data, we deleted dupli-

3C. Dong et al. / Technological Forecasting & Social Change xxx (2016) xxx–xxx
acce
as technology price and advertising expenditure (Horsky and Simon,
1983; Robinson and Lakhani, 1975); however, Bass et al. (1994) showed
that the classic Bassmodel still fits the datawell without these variables,
and Bottomley and Fildes (1998) found that including price information
barely improves the forecasting accuracy. Therefore, most current anal-
ysis continues to use the classic Bass diffusion model, which has been
used by several PV forecasting models (CEC, 2015; EIA, 2013; Sigrin et
al., 2016).5 The Bass diffusion model is a mixed-influence model based
on Meade and Islam's (2006) classification: a mix of both internal and
external influence. The model posits that technology diffusion is funda-
mentally driven by two groups in themarket: innovators and imitators,
which represent the internal and external forces, respectively. The driv-
ing force behind imitators is the so-called peer effect or word-of-mouth
effect,which has been consistently found in theDGPVmarket (Bollinger
and Gillingham, 2012; Noll et al., 2014; Rai and Robinson, 2013).

The S-shaped diffusion curve can be derived even without requiring
the existence of the word-of-mouth effect, as long as heterogeneity ex-
ists in people's propensity to adopt (Bemmaor, 1994). The threshold-
heterogeneity diffusion model is premised on a similar idea that differ-
ent people in a market have heterogeneous thresholds (i.e., reservation
price) to overcome before adopting a new technology. If the thresholds
for all consumers in a market follow a normal distribution, a falling
technology price or linearly moving threshold (from high to low levels)
will result in increasingly more people adopting the technology until
the market saturates. The final result is an S-type diffusion curve
(Dernburg, 1957; Duesenberry, 1949; van den Bulte and Stremersch,
2004). In this paper, we include both types of diffusion models because
peer effects and varying thresholds have both been found in the DGPV
markets (Bollinger and Gillingham, 2012; Rai and Robinson, 2015;
Robinson and Rai, 2015). Furthermore, the threshold-heterogeneity dif-
fusion model has not been used previously in the DGPV forecasting
literature.

The literature on PV financial attractiveness consists of at least three
sources: PV cost projection, PV payback or net present value (NPV), and
value of solar (VOS). First, PV cost projection can be done either through
an experience curve (or learning-by-doing curve) or via expert elicita-
tion. While the PV experience curve predicts PV cost based on past cu-
mulative installed capacity (de La Tour et al., 2013; Nemet, 2006),
expert elicitation derives future PV cost based on experts' judgment
(Bosetti et al., 2012). Second, PV payback or NPV have been studied
extensively in the past based on various assumptions on key financial
parameters (Blair et al., 2014; Gillingham et al., 2014; Rai and Sigrin,
2013). This research adopts the standard approach of calculating PV
economics developed by national laboratories in the United States.
Third, the VOS has become a new metric to measure the contribution
of DGPV to the grid system and provide an appropriate subsidy level
to PV customers (Farrell, 2014; Rábago et al., 2012; Taylor et al.,
2015); therefore, this research builds on this relevant literature and
evaluates the potential impact of this new compensation scheme on
PV adoption.

Lastly, several DGPV forecasting models exist in the literature,
including NREL's dSolar model (a successor to the SolarDS model; see
Section 3.5 for more detail) and the U.S. Energy Information
Administration's National Energy Modeling System (NEMS) residential
model, which relies on the payback period and the number of years
that the technology has been available to forecast deployment (EIA,
2013). On the industry side, Bloomberg New Energy Finance (BNEF)
and Greentech Media (GTM) have developed short-term DGPV fore-
casting models, although their methods are not publicly available
(BNEF, 2015a; GTM/SEIA, 2015). For several years, the California Energy
Commission (CEC) has produced the California Energy Demand report,

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, 
5 Although the more complex Bemmaor-type model (Bemmaor, 1994; Bemmaor and
Lee, 2002) can nest the Bass model, Bemmaor and Lee (2002) also found that the latter
performed better in the long-term forecasting and there were penalties for the model
complexity.
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which includes a 10-year DGPV state forecast based on methods used
in the SolarDS and NEMS models (CEC, 2015). The CPUC has recently
contracted Energy and Environmental Economics (E3) to develop a
NEM Successor Tariff Public Tool to forecast PV deployment until 2025
and evaluate the impact of policy changes on deployment (E3, 2015).
Almost all of these forecasting models are bottom-up techno-economic
models that map the economics to PV adoption (see, for example,
Section 3.5); however, they tend to differ in model configuration, pa-
rameter setting, and geographic resolution. In this paper, we leverage
the dSolar model as it provides both a highly geographically-resolved
picture (on the county level) and a long-term view (till 2050) on future
PV diffusion trends. We future compare the dSolar results with other
bottom-up models when their results are available.

3. Data and method

This section first presents the various data sources used in this re-
search and summary statistics for variables used in this research, such
as socio-demographic factors. We then describe the four main models
used in our analysis: a time-series forecastingmodel, threshold-hetero-
geneity diffusion model, Bass diffusion model, and the dSolar model.
These methods were selected because they are commonly used in the
forecasting literature of new technology adoption (Armstrong, 2001).
We discuss the essence of each method, the intuition behind them,
and their applicability in the case of PV adoption.

3.1. Data

We collected data, including CSI incentive application and PV system
characteristic data, from California Solar Statistics (CSS) and collected
interconnection data from the state's three major investor-owned utili-
ties (IOUs). We then combined these data with PV installation records
from California publicly owned utilities—which are part of the Tracking
The Sun (TTS) data set collected by Lawrence Berkeley National Labora-
tory (Barbose and Darghouth, 2015)—and we cleaned all the data6 to
produce a complete installation time series for each California county.

For the threshold-heterogeneity diffusion model, we also needed
data to calculate the NPV of historic DGPV investments so that we
could characterize the profitability of PV investments over time. We
combined the consumer benefit values (mostly from incentives and
bill savings) calculated in Gillingham et al. (2016) with the price data
in Barbose and Darghouth (2015) to determine NPV, which uses a 7%
discount rate and assumes no financing is involved.7

Assumptions of future capital cost changes are exogenous to de-
mand and do not consider learning effects. Specifically, in our base
case, we use U.S. Department of Energy (DOE) SunShot program goals
(DOE 2012) of reaching a project turn-key cost of $1.5/WDC in $2010
for residential systems in 2020, and are constant in real terms thereaf-
ter. Three additional transformations are applied: 1) an 8.2% project
adder to account for regional costs of doing business in California (EIA,
2013); 2) Costs are expressed in $2014, using the Consumer Price
Index; and 3) A scaling factor is applied to account for economies of
scale, assuming a reference system size of 4 kW, where installed costs
increase (decrease) by 1.67% per kW smaller (larger). We further test

pted manuscript. The published version of the article is available from the relevant publisher.
cate data entries, cleaned the county and utility names, and combined the customer sec-
tors into either residential or non-residential categories. After the data-cleaning process,
our state-level installation results matched well with the industrial source by GTM.

7 Although this assumption introduces downward bias, this bias is common for all
counties; thus, it might not be substantial if only this NPV is used to explain county-level
differences in PV diffusion.

otovoltaic deployment in California, Technol. Forecast. Soc. Change
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the sensitivity of our forecasting results to the technology cost
assumption.

Our analysis also examines the impact of socio-demographic factors.
We collected socio-demographic data such as household income and
education at the census tract level from the U.S. Census American Com-
munity Survey (ACS), andwemapped all CSI PV installations to the cor-
responding census tracts.8 Table 1 summarizes the socio-demographic
and CSI data for variables that we end up using in our regression analy-
sis. The CSI data include the total number of installations and average
NPV, both at the tract level. We use the socio-demographic variables
to understand the PV diffusion patterns across California counties to-
gether with the PV penetration and NPV variables to conduct the sce-
nario analysis using the threshold-heterogeneity diffusion model.

3.2. Time-series forecasting model

The ARIMA model and the exponential smoothing model produce
very similar results, so we only use ARIMA in this paper. ARIMA is an
extension of the autoregressive moving-average (ARMA) model in
time-series analysis. Without seasonality, the model ARIMA(p,d,q) is
specified as follows:

1−ϕ Lð Þð Þ 1−Ld
� �

yt ¼ 1þ θ Lð Þð Þεt ; ð1Þ

where ϕ(⋅) and θ(⋅) are polynomials of the lag operator L with order p
and q respectively; d is the number of unit roots in the polynomials of
the observed time series yt; and εt is thewhite-noise error term. Because
of the existence of d, ARIMAmodels can fit non-stationary time series in
a similar manner to how exponential smoothing models can.9 Once the
ARIMA model is estimated, the time-series forecasting becomes
straightforward.10 One way to understand ARIMA models is that, for
the univariate time series, the current value is a function of the last p
values of itself, the last q random shocks (through the error term), and
the trend captured by d.

Linking back to our county-level PV installation time-series data, if
the selected ARIMA model finds some non-stationary trend in the
data, then the model assumes that the trend will continue, usually in a
linear fashion. However, PV installation cannot increase forever. Thus,
we used time-series forecasting to demonstrate a range of model
types and to show the incremental value of othermore complexmodels
in this context. Similarly, machine-learning methods such as a neural
network can be insufficient for modeling changes in external forces
that impact DGPV diffusion.

3.3. Threshold-heterogeneity diffusion model

The threshold-heterogeneity diffusion model states that different
people in a market have heterogeneous thresholds (i.e., reservation
prices) to overcome before adopting a new technology. If the market
price is lower than a consumer's threshold, it becomes beneficial for
this consumer to adopt. Though the installed price of PV has declined
over time, California's PV subsidies have also decreased, which means
that it is plausible that Californianswith higher payoffs or NPV (not nec-
essarily those with higher thresholds or higher reservation price) are
the first adopters.11When technology cost drops, peoplewho previous-
ly could receive lower payoffs start to see benefits from installing PV.

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewe
8 Only the CSI data set contains street address information that can be geocoded at the
tract level. So, we only use the CSI data to conduct the regression analysis described in
Section 4.4.

9 The ARIMA model in Eq. (1) can be extended to incorporate seasonality, with addi-
tional polynomials and unit roots parameterized by another set of (P,D,Q)m, where m is
the seasonal frequency. See Hyndman et al. (2008) for details.
10 We use the R package “forecast” for this.
11 At the beginning of the technology diffusion process, some people may adopt the new
technology owing to other motivations (e.g., environmental benefits in the context of
DGPV), and this subjective aspect of utility can be factored into the payoff calculation.
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Assuming the payoff from adopting DGPV at a certain time point fol-
lows a bell-shaped distribution, the diffusion process can be seen as ei-
ther a combination of a fixed payoff distribution and amoving threshold
or a fixed threshold and a moving (but identical) distribution. In Fig. 1,
Panel A shows the fixed payoff distribution with moving threshold; at
year t, the threshold is at position p1, and at year t + n, the threshold
moves to position p2. With a lower threshold, more people decide to
adopt the new technology, even with a fixed payoff. Panel B shows
the fixed threshold with moving payoff distribution; from year t to
year t + n, the payoff distribution shifts gradually to the right while
the threshold position remains the same. The shaded areas in both
cases represent the equivalent cumulative percentages of people who
have adopted the new technology. The final S-shaped diffusion curve
comes from the cumulative density function of the normal distribution,
assuming themovement of either the threshold (in Panel A) or the pay-
off distribution (in Panel B) is linear in time.12

We estimate the payoff distribution in a market by fitting a truncat-
ed normal or Gamma distribution to the penetration-level data and de-
riving the distribution parameters. Because PV penetration levels are
low, generally below 10%, only a small tail of the payoff distribution
can be observed with empirical data; thus, we need to estimate the pa-
rameters from this “truncated” distribution. The tail of the payoff distri-
bution is obtained by dividing PV installation values by the market
potential, another parameterwe are going to estimate in thedata-fitting
process.

Researchers have devised many ways to fit a truncated
distribution,13 though most of the fitting methods do not work well in
this case. As an alternative, we use Latin hypercube sampling (LHS) to
search for the optimal parameter values based on a cost function that
evaluates howwell themodelfits the data. Three parameters are includ-
ed: the mean and standard deviation of the normal payoff distribution,
and themaximal market potential (i.e., the final number of PV adopters
to convert the historical number of adopters to penetration levels). LHS
requires the lower and upper bounds for each parameter, as well as the
number of samples to be drawn from the parameter space; with those,
LHS will divide the parameter range by the number of samples and en-
sure there is only one sample from each row and column. This type of
sampling method has been shown to be more efficient than simple
Monte Carlo sampling (Carnell, 2012).

ccepted manuscript. The published version of the article is available from the relevant publisher.
3.4. Bass diffusion model

The Bass diffusion model can be specified in either the continuous
time domain or the discrete time domain. For the continuous time do-
main,

f tð Þ
1−F tð Þ ¼ pþ q � F tð Þ; ð2Þ

where f(t) is the fraction of the population that adopts PV at time t, F(t)
is the cumulative installed fraction, p is the innovation coefficient, and q
is the imitation coefficient. If p=0, the Bass diffusion model reduces to
the logistic growthmodel, and if q=0, it reduces to an exponential dis-
tribution curve.
12 In reality, there is no way to prevent both the threshold and the payoff distribution
frommoving. If bothmovements are linear in time, for simplicity purposes, only one needs
bemodeled. Furthermore, other distributions, such as the Gamma distribution, can simu-
late the S-curve, but the Gamma distribution requires the threshold (or payoff distribu-
tion) movement be exponential in time. Results from using the Gamma distribution are
slightlyworse than those based on the normal distribution in terms of fitting the historical
data.
13 In R, there are user-written functions to fit truncated distributions, including “fitdist,”
“fitTail,” and “gamlssML.”

otovoltaic deployment in California, Technol. Forecast. Soc. Change
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Table 1
Summary statistics of tract-level diffusion and socio-demographic variables.

Variable name Variable description Min Max Mean STD

count_lg logarithm of installation counts 0 5.714 2.335 1.219
pene_level penetration level: installation counts divided by number of OOH 0.001 0.244 0.030 0.026
npv_pw net present value of PV in $/W −6.570 6.300 0.665 1.020
inc_100to150k % of OOH with income between $100,000 and $150,000 0 1.000 0.189 0.154
edu_bachorhigh % of OOH (highest educated) with bachelor degree or higher 0 1.000 0.381 0.225
value_over1mil % of OOH with housing values over $1 million 0 0.976 0.068 0.158
value_500kto1mil % of OOH with housing values between $500,000 and $1 million 0 0.975 0.239 0.252
race_white % of OOH (family heads) that are white 0 1.000 0.702 0.214
median_rooms median number of rooms 1.4 9.000 5.907 0.826
built90s % of OOH built from 1990 to1999 0 1.000 0.097 0.132
mortgage2orHE % of OOH with either a second mortgage or home-equity loan 0 0.560 0.169 0.080
hh_size mean household size 1.146 5.489 2.845 0.614
Electricity % of OOH with electricity as a heating source 0 1.000 0.186 0.123
wood % of OOH with wood as a heating source 0 0.837 0.021 0.061
mortgage_over40 % of OOH with mortgage over 40% of household income 0 1.000 0.470 0.186

N = 7305 tracts; OOH = owner-occupied houses.

5C. Dong et al. / Technological Forecasting & Social Change xxx (2016) xxx–xxx
Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. The published version of the article is available from the relevant publisher.
Eq. (2) is essentially a first-order ordinary difference equation, and
we can solve f(t) as:

f tð Þ ¼ pþ qð Þ2
p

exp − pþ qð Þtð Þ
1þ q

p exp − pþ qð Þtð Þ
� �2 ð3Þ

and F(t) as:

F tð Þ ¼ 1− exp − pþ qð Þtð Þ
1þ q

p
exp − pþ qð Þtð Þ

� ð4Þ
B. Fixed threshold with moving payoff distribution

A. Fixed payoff distribution with moving threshold

Fig. 1. Twoways to understand the threshold-heterogeneity diffusionmodel Shaded areas
represent cumulative adoption fractions at year t and t+ n; p1 and p2 correspond to two
threshold positions.
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Another interesting result is the peak time as a function of the p and
q values:

tpeak ¼
lnq− lnp
pþ q

� ð5Þ

For the discrete time domain,

f tð Þ ¼ pþ q �
Xt−1

1
f tð Þ

� �
1−

Xt−1

1
f tð Þ

� �
; ð6Þ

where f(t) has the same connotation as the continuous case, and the
main predicting variable on the right-hand side is the cumulative adop-
tion fraction until the last period. Multiplying Eq. (6) by the potential
maximum market sizem on both sides and collecting terms gives:

S tð Þ ¼ p �mþ q−pð Þ � Yt−1−
q
m

� �
� Yt−1

2 ð7Þ

where S(t)=m∗ f(t) is the current-year adoption number, andYt−1 ¼ m

�∑t−1
1 f ðtÞ is the previous-year cumulative adoption number.
We use both the discrete and continuous versions of the Bass diffusion

model to fit the historical data and recover the three parameters: p, q, and
m.We use ordinary least squares tofit Eq. (7) and obtain initial parameter
values as inputs to fit Eq. (3) using non-linear least squares (Srinivasan
and Mason, 1986).14 When the estimation methods (ordinary least
squares and non-linear least squares) do not produce statistically signifi-
cant results,15 we rely on LHS to search efficiently for the optimal param-
eter values again. In addition to the two coefficients p and q above,we also
search for the optimalmarket size parameterm to obtain f(t) based on the
installation numbers that we have for each market.16
14 As pointed out by Schmittlein andMahajan (Schmittlein andMahajan, 1982), a small
bias is present in using ordinary least squares on discrete time series.
15 One major reason for such insignificance is that because we have not yet seen the
peaking year in PV installations, there could bemulticollinearity issues between the cumu-
lative sales and its square term (Heeler and Hustad, 1980).
16 To increase the robustness of the LHSapproach,we take several additional steps. First,we
carefully choose the lower and upper bounds for each parameter. Based on Sultan et al.
(1990), the average value of the coefficient is 0.03, and the average value is 0.38. Jeuland
(1994) found that is usually 0.01 or less, and rarely N0.5. To cover broad enough parameter
space, we set the lower bound for both coefficients at zero, the upper bound at 0.2, and the
upper bound at 0.8 (we further reduce the upper bound below). With respect to the maxi-
mummarket size parameter, we set the lower bound to be the cumulative DGPV installation
value until Q1 2015 and the upper bound to be the number of owner-occupied housing units
in the market. Second, based on the lower and upper bounds for selected parameters, we
drawmultiple sets of large random samples using LHS. For each draw,we set the sample size
at 10,000, which improves themodel fitting significantly compared to a sample size of 1000.
We repeat this process 10 times using different random seeds to cover the parameter space
more completely. Third, onceweobtain certain parameter values from thefirst two steps,we
keep shrinking the parameter space iteratively and search for the optimal parameters once
again. After these three steps, we arrive at our best estimate of the model parameters.
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Notewe use different time resolutions and cost functions to estimate
the threshold-heterogeneity and Bass diffusion models. Because both
approaches are trying to fit the same historical data using different dis-
tributions, differentiating them enables exploration of different aspects
of the data. Thus, the threshold-heterogeneity diffusion model uses an-
nual installation data with a cost function focusing on model fit on the
annual adoption, whereas the Bass diffusion model uses quarterly data
with a cost function focusing on model fit on the cumulative adoption.
Although annual data are appropriate for the threshold-heterogeneity
diffusion model, because the annual penetration level is essentially the
density function in Fig. 1, quarterly data could provide more degrees
of freedom in estimating the Bass diffusion model.

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewe
3.5. dSolar model

The Distributed Solar Market Demand model (dSolar) is a
geospatially rich bottom-up market-penetration model that uses a
Bass-likemodel to simulate DGPV deployment for residential, commer-
cial, and industrial customers in the continental United States in two-
year intervals from 2014 through 2050. As an upgrade of the SolarDS
model (Denholm et al., 2009), dSolar includes better representation of
customer decision making through an agent-based framework and in-
creased use of spatially resolved data sets.

Market diffusion of DGPV is modeled through an agent-based ap-
proach that includes five overarching steps (Fig. 2). To represent accu-
rately the population variation in the attributes influencing adoption
propensity, themodelfirst uses a statistical framework to sample agents
(potential customers) for every U.S. county. Attributes assigned include
agent location, solar resource (George et al., 2007), and annual electric-
ity consumption (EIA, 2009; EIA, 2015) aswell as aweighting factor cor-
responding to the number of similar customers that each agent
represents in a county.17 After generating agent types, dSolar estab-
lishes upper bounds on the technical potential of adoption by restricting
residential owner-occupied houses to be single families only, excluding
sites that are technically infeasible and requiring that agents offset a cer-
tain average percentage of their load by installing DGPV.18

Next, the potential economics for each adopter is determined using
detailed discounted cash-flow analysis to determine the profitability
(e.g., the payback period for customer-owned systems and monthly
electricity bill savings for third-party-owned systems) over the system's
lifetime. This approach assumes that the PV value is created by reducing
the electricity bills the agent would have paid had they not adopted.
Costs include initial capital costs, such as the down payment, monthly
loan/lease payments, and annual operation and maintenance require-
ments (DOE, 2012). Revenue includes energy bill savings, applicable fi-
nancial incentives, and tax-based credits, such as depreciation and
interest rate deductions for nonresidential customers.

Considerable focus is given to representing regional differences in
economic drivers accurately. Incentives are based on the Database
of State Incentives for Renewables & Efficiency (DSIRE) database
(DSIRE, 2016) and net-metering policies based on the IREC (Interstate
Renewable Energy Council) Freeing the Grid data set (Barnes et al.,
2013). Retail rates are based on the Utility Rate Database (OpenEI,
2015), and bill savings are calculated using the NREL System Advisor
Model (Blair et al., 2014) based on anhourly time series of expected sys-
tem generation and energy consumption. Using an hourly generation/
17 The agent-level representation creates the potential to incorporate social demo-
graphics or other customer attributes in the adoption likelihood, which could highlight
the within-county household heterogeneity, for example, between early and later
adopters.
18 Examples of technical filters include zoning restrictions and roof characteristics. We
use a load-offset percentage of 95% for people with NEM based on Davidson andMargolis
(2015), who use a database of system quotes received by customers that lists expected
system generation and the customer's prior-year consumption. On the other hand, for
people without NEM, we assume a lower load-offset percentage of 66%, which is a middle
load-offset value used in E3 (2015).
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consumption profile is important for capturing nuances in bill savings
that arise from complex rate structures, such as tiered rates, demand
charges, or time-of-use rates.

The final DGPV adoption arrives in two steps. First, we derive the
maximum fractions of eligible agents who would eventually adopt
DGPV for different levels of PV economics, differentiating between the
customer-owned and the TPOmarket segments based on NREL's previ-
ous survey results (Fig. 3, Sigrin andDrury, 2014). These fractions can be
considered as a cumulative density function of the underlying data
while not as parameter estimates. They are then applied to the technical
potential that we derived previously. Next, we use a carefully parame-
terized Bass diffusion curve to obtain the annual installation numbers
(same and fixed for all counties in California); for each year, we observe
the market penetration level from the previous year and calculate the
corresponding equivalent years of market diffusion based on the pa-
rameterized Bass diffusion curve, and then we move the time scale by
two more years. The result is the biannual market adoption of DGPV
for a county. To ensure the validity of our results, we calibrate the dSolar
results to those from GTM at the state-level in 2014 and 2016.19

Although dSolar uses the Bass diffusion curve to calculate PV adop-
tion, it differs from the Bass diffusion model in how it obtains informa-
tion on the maximummarket size. Models like dSolar usually resort to
the willingness-to-pay literature (Kastovich et al., 1982; Paidipati et
al., 2008; R.W. Beck and Inc, 2009) and generate the maximum mar-
ket-share curve corresponding to certain payback times, assuming an
inverse exponential or inverse logistical relationship between them.
Multiplying themaximummarket share by technical potential numbers
then gives themaximummarket size. On the other hand, in our Bass dif-
fusion model, we estimate a maximum market size (the parameter m)
directly (together with the p and q values), which is not necessarily a
function of payback. Even in the generalized Bass model literature, var-
iables such as product price or payback are in addition to the parameters
p, q, and m.

4. Results

This section first presents our baseline residential DGPV deployment
forecasting results at the state and county levels using the four tools de-
scribed above: time series, threshold, Bass and dSolar models, in terms
of both the number of installations and installed capacity. We compare
results from other sources where possible. Our baseline forecasts as-
sume no future major policy changes in California as of January 22,
2016: we only included the ITC extension in our baseline results, but
not the new NEM policy in California. Similarly, we did not include the
impact of California's Zero Net Energy (ZNE) building goals that would
require all new residential homes have solar starting in 2020, which
represents roughly 410 MW installed capacity per year (E3, 2015).

The baseline results are followed first by a sensitivity analysis
around three key economic parameters and then by a scenario analysis
on the impact around the recent ITC extension, the new California NEM
policy, and a hypothetical value-of-solar (VOS) compensation scheme.
The VOS compensation scheme has been implemented in several utili-
ties (Austin Energy as a prominent example), and also been discussed
in the proposal stage of the California's new NEM policy. We model
the potential impact of such policy and compare it with the new NEM
policy.

4.1. State-level residential PV deployment

Almost all technology adoption forecasting models presume an S-
shaped diffusion curve; adoption starts slowly, speeds up, and finally
slows down again until it saturates the whole market. Fig. 4 shows cu-
mulative-installation forecasting results based on the four methods

ccepted manuscript. The published version of the article is available from the relevant publisher.
19 The sensitivity of the dSolar results to key economic variables can be found in Gagnon
and Sigrin (2016).
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Fig. 3.Customerwillingness to adopt for a given level of economic benefit or better: paybackperiod (left for customer-ownedmarket) and percentage ofmonthly bill savings (right for TPO
market) In the legends, Non-adopters and Adopters refer to whether the correspondents in the survey have adopted PV.

Fig. 2. dSolar model structure.
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outlined in Section 3, along with another forecast by E3 and the histor-
ical installation trend, at a time interval of two years, which is the time
resolution of the dSolar model. The figure also shows the results as per-
centages of 2013 owner-occupied houses in California.20

Our four models fit the historical installation trendwell but begin to
diverge after 2016. The obvious outlier is the time-series forecasting
method, which rises linearly at the historical rate. The time-series
model is the simplest to constrain at longer time scales because it
does not consider time-varying economic conditions or long-termmar-
ket saturation; this suggests the incremental value of using other more
complex modeling techniques.21

The threshold-heterogeneity and Bass diffusion models produce S-
shaped curves, as an improvement on the time-seriesmethod. Themax-
imum market size is about 6.8 million installations (98% of 2013 OOH)
for the threshold-heterogeneity model and 5.3 million (76% of 2013
OOH) for the Bass diffusionmodel. Although thesemarket sizesmay ap-
pear large,we note that the estimate is based on assumingno changes in
current NEM (i.e., PV being compensated indefinitely at the retail rate)
or retail rate policies,which are already favorable toDGPV.22 One reason
for the difference in the Bass and threshold models is that the Bass dif-
fusion density curve (f(t) instead of F(t)) has a higher kurtosis than
the normal curve; thus, after the peaking year, it forecasts much less
adoption compared to the threshold-heterogeneity diffusion model.
20 In 2013, there were 6,939,104 OOH in California (ACS, 2013).
21 Neural-network methods generally could not recognize the data-generation process
as an S-shaped curve evenwithmultiple hidden neurons and layers. However, withmod-
ifications (e.g., introducing the past cumulative installations and their square terms into
the training model), a neural network could learn the S-curve.
22 Other assumptions are similarly favorably for increased PV adoption, including as-
sumptions of declining PV prices and increasing electricity rates. See Sigrin et al. (2016)
for details.
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Because the dSolar model relies in part on the Bass diffusion model,
its cumulative installation curve looks similar to the Bass diffusion
model's curve, though at a smaller scale. In 2050, dSolar predicts 4.8mil-
lion cumulative installations in California (70% of 2013 OOH). The re-
duced deployment in dSolar results, as compared to the other three
models, is largely driven by two economic factors not reflected in the
other models—namely, the ITC extension ending in 2022, and PV costs
ceasing to decline in 2020. As a result of these two factors, PV adoption
in dSolar is front-loaded to periods before 2022 and then experiences a
quicker decline than others.

The E3 forecast on cumulative installation in Fig. 4 is slightly higher
than the threshold-heterogeneity and Bass forecasts through 2016; it
then becomes lower (at least through 2024), mostly due to differences
in assumptions of the federal ITC policy in that study.23 E3's post-2016
forecasting has not yet shown any obvious inflection point, though
E3's bottom-up engineering model was also based on the classic Bass
model.

An implicit assumption in the results discussed so far is that a system
will automatically be rebuilt at the end of its productive life (25 years).
We consider this assumption reasonable because the household has al-
ready adopted and PV prices are projected to continue decreasing. To
make this assumptionmore explicit, we further differentiate the annual
number of PV installations into first-time adoption and re-adoption
below.

In Fig. 4, most diffusion curves have an inflection point around 2020
or 2022. Fig. 5 Panel A compares biannual installation results for the
first-time PV adoption from three of our methods (excluding the time-
series method, which would appear as a simple horizontal line) and
the E3 study. All forecasts show residential PV installation peaking in
23 E3's work was done prior to the ITC extension approved by the U.S. Congress in De-
cember 2015.
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B. Number of biannual installations from different types of adoptions
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Fig. 5. Observed and forecast biannual installations in California, 2000–2050 The time
series result is not shown here because it is simply a horizontal line.
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2020 or 2022 at roughly half a million installations per year, suggesting
that the very rapid growth among first-time adopters from 2012
through the first half of 2015 (GTM/SEIA, 2015) will likely subside in
the next 5–7 years, barring a major change in the California market.24

The dSolar forecast has a higher and earlier peak in 2020, which is con-
sistentwith the new ITC extension policy because the ITC level will drop
from 28% to 11% in 2022.25 Furthermore, as in Fig. 4, the threshold
model shows more PV adoption after the peak year, whereas the Bass
model lies in between. Lastly, E3 predicts a flatter biannual adoption
curve until 2024 and a fatter tail afterwards (by extrapolation), whereas
the other threemodels all predict the fastest growth from now until be-
fore 2020 or 2022 and then a decrease in the number of first-time PV
adoption, with the threshold model decreasing slower than the other
two Bass-type models.26

The above decrease in first-time PV adoption does not necessarily
mean the residential PV market is going to collapse in California after
the mid-2020s, because these models do not consider alternative
sources of market growth. Panel B of Fig. 5 estimates the additional de-
ployment when considering re-adoption and the Zero Net Energy new
home mandate. However, even when considering these segments,
there could be a market contraction following the peak of first-time
adoption and when these systems are re-adopted, which is common
in the multi-generation Bass diffusion models for repeated purchased
technologies (Jiang and Jain, 2012; Norton and Bass, 1987). Neverthe-
less, three factors not explored here could fill in the gap as seen in
Panel B: 1) The decrease in first-time adoption, post-peak, may be less
pronounced (as shown in the threshold model); 2) Other residential
market segments (not considered here), such as non-OOH, community
solar, and even landlords selling solar power could grow in popularity;
and 3) We assume a system lifetime of exactly 25 years, though there
is likely to be a range of expected lifetimes, which would smooth the
adoption curve. Finally, TPO contracts typically last for only 20 years,
which means new business could come in 20-year cycles instead of
25 years for TPO companies.27
24 Again, we did not include any re-adoption that could occur at the end of system life-
time. Furthermore, major market innovations or policy changes could shift the curve
peaks in Fig. 5 to the right, even without considering re-adoption.
25 The28% and 11%figures come fromaveraging the ITC level over a two-year increment,
as is consistent with the dSolar model.
26 The difference between our three methods and E3 is due in part to E3's assumption
that the number of residential customers served by the three biggest California IOUs will
grow1.138% annually, resulting in 1.5 timesmore people in 2050 than in2015. In contrast,
dSolar assumes a 0.2% annual average population growth rate based on EIA data (EIA,
2009; EIA, 2015), and the threshold-heterogeneity and Bass diffusion models assume a
fixed market size following Bass et al. (1994).
27 This newbusiness does not necessarilymean re-adoption, because TPO customers can
still use the old PV system.

Please cite this article as: Dong, C., et al., Forecasting residential solar ph
(2016), http://dx.doi.org/10.1016/j.techfore.2016.11.021
Fig. 6 shows biannual installation forecasts on a capacity basis from
first-time PV adoption only and includes several additional forecast
sources.28 The amount of capacity simulated for the Bass and thresh-
old-heterogeneity diffusion models derive from multiplying the instal-
lation numbers by an assumed average system size. We use the
average system size from E3 for 2016–2024 and the average system
size from dSolar for 2026 and beyond. Both E3 and dSolar calculate sys-
tem size based on offsetting a percentage of electricity use for each cus-
tomer segment29; average system size then accounts for all customer
segments in a year at the state level. In 2014, the average system size
from E3 is 5.2 kW versus 3.8 kW from dSolar, which should give dSolar
a lower installed capacity forecast for that year. But since dSolar predicts
a greater number of installations as seen in Panel A of Fig. 5, the impact
of a small average system size is not reflected in Fig. 6.30

The time-series result is not shown here because it is simply a hori-
zontal line.

After 2016, the relationship among the dSolar, Bass, and threshold
modeling results for installed capacity resembles that for installations
in Fig. 5 Panel A. The peaking year is still 2020 and 2022 for most
models, and the peaking installed capacity is around 3–4GWbiannually
based on the Bass, threshold, and dSolar results. This peaking capacity is
based on several key assumptions: an average system size around
3.8 kW, a maximummarket size equivalent to 70%–98% of owner-occu-
pied houses in 2013, and no major future policy changes (e.g., on retail
28 Re-adoptionwill only start to happen in late-2020s andmost other sources forecast PV
installed capacity before that, so we only show first-time PV adoption numbers here.
29 The percentage offset in dSolar is 95% for peoplewith NEM and 66% for otherswithout
NEM, whereas E3 chooses the best system size from three options: offsetting 33%, 66%, or
100% of annual customer load.
30 The relative small average system size and large number of installations reflect the un-
derlying modeling philosophy of dSolar. Designed as an agent-based model, dSolar tends
tomodel all agents in themarket, whether they are small electricity users or big ones. As a
result, we tend to see more adopters in the result with a smaller system size.
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Fig. 6. Observed and forecast biannual installed capacity from first-time PV adoption in
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where we assume California accounts for 88.6% (based on GTM/SEIA's capacity number
in 2014) of the residential PV installed capacity in the Pacific Census Region.
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in California (e.g., full retail credit for excess generation) will continue
until 2050.

After incorporating the effect of ITC extension, GTM (2015) forecasts
the highest biannual installed capacity that reaches 4.7 GW in 2017–
2018 and 6.6 GW in 2019–2020, the latter of which is more than six
times higher than recent biannual capacity additions (2013–2014)
and much higher than other modeling results. Although this may be
consistent with extrapolating the recent historical trend, it is much
higher than estimates from other models. In contrast, BNEF (2015b)
forecast resembles dSolar's result, though with a smaller peak and
much shorter forecasting horizon.

CEC, E3, and EIA predict a dip in terms of installed capacity in 2018,
due to the (now deprecated) assumption of ITC expiration in 2017,
whichwas recently extended by theU.S. Congress until 2022. Specifical-
ly, CEC predicts roughly 2 GW of biannual installed capacity in 2026
with no decreasing trend, though in most of the periods before 2026,
CEC's forecast is lower than other predictions (CEC, 2015). Pacific Gas
and Electric (2015) pointed out previously the possibility of the CEC
forecast for under-predicting DGPV adoption, because CEC has relied
on payback to predict consumer response rather than using metrics
such as levelized cost of energy (LCOE) ormonthly bill savings to reflect
increasingly popular TPO arrangements. Both E3 and dSolar have
accounted for this issue.31

Lastly, EIA's forecast is lower than all other results. After 2020, the
forecast is basically a horizontal line and the biannual installed capacity
remains at roughly 270MWwithin two years, which is even lower than
recent installation rates in California.

4.2. County-level residential PV deployment

Of California's 58 counties, 57 have DGPV installations. This section
uses the threshold-heterogeneity and Bass diffusion models to explore
detailed county-level results.

Fig. 7 provides snapshots of PV penetration levels (i.e., market share)
in 2014 (observed) and 2030 (from the threshold-heterogeneity diffu-
sion model), showing a dramatic increase over time.32 In 2014, only
31 E3 converts the project-level lifetime benefit-to-cost ratio to an implied payback peri-
od, which works well for TPO PV systems. Then, E3 uses a method similar to CEC's to map
the payback period tomarket diffusion for variousmarket segments within each investor-
owned utility (IOU) (E3, 2015). In contrast, dSolar uses monthly bill savings to model TPO
adoptions.
32 Penetration level is calculated by dividing the number of cumulative installations by
the estimated and constant maximum market size based, in 2030, on the threshold-het-
erogeneity diffusion model, which is constrained to be no greater than the number of
owner-occupied houses in a county in 2013.
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three counties have a penetration level higher than 8%, but in 2030, 28
counties have a penetration level higher than 80% (~20GW installed ca-
pacity in total before any curtailment). In 2050 (not shown), only two
counties have a penetration level below 80% (~25GW installed capacity
in total before any curtailment). High-penetration counties are not nec-
essarily those with high numbers of installations. For example, in 2014,
the top three counties in terms of penetration levels are Yolo County
(penetration level 9.7%), Glenn County (9.2%), and Fresno County
(8.8%), while the top three in terms of installations are Los Angeles
County (penetration level 5%), San Diego County (7.3%), and Riverside
County (6.1%). The correlation between these two variables is only
0.2, reflecting the potential complementarity of these two metrics for
evaluating market development.

Fig. 8 shows the distribution of estimated p (innovation coefficient)
and q (imitation coefficient) values at the county level based on the Bass
diffusion model. These values determine PV diffusion speed in each
county. Although most diffusion models assume certain p and q values,
they are often not empirically calibrated based on observed county-spe-
cific data. For instance, E3 uses a p value of 0.02, which is the upper limit
ofwhat Jeuland (1994) found. Based on the q value assumed by E3 (0.3),
a peak time (time to maximum annual adoption) of about 8.5 years can
be derived using Eq. (5), which only makes sense if using 2014 as the
year PV was introduced to the market.

The p and q values in Fig. 8, based on quarterly PV installation data,
are roughly one quarter of those based on annual installation data
(i.e., the reason they look small). Panel A suggests that most p values
are b0.001 and the county-to-county difference is minor (except for
two counties with relatively high p values); in other words, the propor-
tion of innovators in the population is generally small, considering it
took Los Angeles from 1998 until 2014 to reach a penetration level of
3%. In contrast, California counties differmuchmorewith respect to pro-
portions of imitators (the q value, Panel B). Using p and q values from
Fig. 8, the median peak time across 57 counties is about 86 quarters or
21.5 years. Because many California counties saw PV installations
starting in the late 1990s, it is not surprising that the peaking year in
Fig. 5 is between 2020 and 2022.

Table 2 explores the relationship between q values (imitation coeffi-
cient) and socio-demographic variables. Overall, these variables seem to
explain the q values well, with an adjusted R2 as high as roughly 60%. Of
the 15 socio-demographic variables that have a significant piecewise
correlationwith the q values, only three remain significant after control-
ling for other factors. Big families with larger household sizes are posi-
tively associated with high q values, which is consistent with our
intuition. Households relying on a utility gas company (rather than
wood) for heating tend to have high imitation behavior. Lastly, counties
with a high percentage of other races tend to have low q values. Among
those insignificant variables, it seems that higher education level is neg-
atively correlated with imitation behavior, whereas lower education
level is positively correlated with it, though neither are statistically sig-
nificant with a 57 sample size.

4.3. Sensitivity analysis

As a demonstration of key uncertainties in forecasting DGPV tech-
nology diffusion, we conduct a sensitivity analysis around three eco-
nomic parameters using the dSolar model because the other three
methods do not explicitly rely on information of these economic vari-
ables tomake forecasts. The three economic parameters are: technology
cost, technology performance, and cost of grid integration.33

• Technology Cost: The installed cost of rooftop solar, in addition to the
value of solar generation, is a key determinant of the economic value
of the PV system. The reference cost trajectory is the “mid” cost trajec-
tory fromNREL's 2015 Annual Technology Baseline (Blair et al., 2014).

pted manuscript. The published version of the article is available from the relevant publisher.
33 We thank the anonymous reviewer for pointing out this direction to us.
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Fig. 7. California county-level DGPV diffusion results in 2014 (observed) and 2030 from the threshold-heterogeneity diffusion model.
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In addition, a “high” cost sensitivity is modeled which assumes cost
decreases to $1.5/W in 2040 (High Cost). The “low” cost assumption
assumes continued cost declines to $1/W in 2030 (Low Cost), and
the “optimistic” assumption considers additional decline to $0.5/W
by 2040 (Optimistic Cost). Though these values represent significant
technology innovation, they are in line with recent expert forecasts
(Cole et al., 2016).
Fig. 8. Estimated county-specific p (Panel A) and q (Panel B) values from the Bass diffusion
model using quarterly installation data Ticks above x-axis indicate exact values.
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• Technology Performance: Several decades of PV panel reliability tests
give a high degree of certainty for the expected lifetime of a PV mod-
ule (Jordan and Kurtz, 2013). In addition, many panel manufacturers
offer lifetime warranties certifying their performance. In this analysis,
we assume that PV panels have a lifetime of 25 years and have amean
annual degradation rate of 0.5%. Nevertheless, customer uncertainty
aboutmodule quality, real or perceived, could deter technology adop-
tion. Thus, we analyze technology uncertainty assuming a 20-year
lifetime and 1.5% annual degradation (Low Performance) and 30-year
lifetime and no degradation (High Performance).

• Renewable Integration: Understanding the impacts of deep levels of
renewable generation on operation of the electrical grid is an impor-
tant issue in renewable energy modeling. The challenges are both en-
gineering-based and policy-based. Though the true impacts are not
entirely known and would vary dramatically by electrical system,
the marginal value of renewable generation is likely to decrease as
penetration increases (Cole et al., 2016). Impacts are likely at both
the transmission level, through curtailment of surplus generation,
and at the distribution level, as increasing levels of distributed
Table 2
Regression of q values (proportions of imitators) on socio-demographic variables.

Social demographic variables Coef. Std. Err.

Mean household sizes 0.062⁎⁎ 0.024
Median number of rooms 0.019 0.017
% of OOH with less than high school education 0.038 0.164
% of OOH with college education 0.145 0.186
% of OOH with bachelor education −0.215 0.189
% of OOH with utility gas as a heating source 0.075⁎⁎ 0.031
% of OOH with wood as a heating source 0.015 0.068
% of OOH that is white −0.098 0.072
% of OOH that is black 0.128 0.173
% of OOH that is other race (not Indian or Asian) −0.277⁎ 0.138
% of OOH with only one mortgage −0.233 0.142
% of OOH with mortgage over 40% of household income 0.076 0.104
% of OOH built in 2000s 0.057 0.071
% of OOH built in 1970s −0.020 0.097
% of OOH with income between $100,000 and $150,000 0.053 0.096

N = 57, Adjusted R2 = 0.59.
⁎ p b 0.1.
⁎⁎ p b 0.05.
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Table 3
Sensitivity analysis of dSolar to three economic parameters.

Scenario Cumulative number of
adopters in 2050

% Change from
reference

Reference case 4,840,695 0.0%
High cost 2,271,746 −10.6%
Low cost 5,394,457 +11.4%
Optimistic cost 5,593,079 +15.5%
Low performance 4,744,922 −2.0%
High performance 4,869,013 +0.6%
Low integration cost 4,428,349 −8.5%
High integration cost 3,928,548 −18.8%
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generation could trigger feeder voltage issues (Palmintier et al., 2016).
We simulate integration sensitivities only at the distribution level, as
transmission-level impacts would be better reflected in retail energy
prices, which are an immutable part of this analysis. A recent engi-
neering study (Navigant, 2016) estimates that distribution-system in-
tegration costs, without any mitigation strategies, could range from
$0.1/W–$0.5/W as PV penetration reaches 50%–100% of a feeder's
thermal limits. Therefore, we test the sensitivity of our baseline results
to the integration cost by imposing a low integration cost of $250/kW
(Low Integration Cost) and a high integration cost of $500/kW (High
Integration Cost), both at 2014-dollar value.

Adoption projections using the dSolar model were developed for
each of the sensitivity categories described above. Sensitivity to inputs
was analyzed relative to theReference scenario for the cumulative num-
ber of first-time adopters in 2050 (Table 3). Results weremost sensitive
to costs, followed by distribution integration costs, and performance.
The increase in penetration for theHigh Cost and Optimistic Cost scenar-
ios is relativelymodest (11.4%–15.5%), becausewe already observe high
levels of penetration using the Reference values. On the other hand, the
decrease in penetration for the High Cost case is at the samemagnitude
(minus 10.6%).

The modeled results are insensitive to performance assumptions,
mostly because the mean payback period for most potential adopters
(b7 years) is substantially less than the range of modeled lifetimes
(20–30 years). Finally, there was a modest response to the distribution
integration costsmodeled.Wenote that there are still significant uncer-
tainties about transmission-level integration challenges, such as gener-
ation curtailment, which are not modeled here.

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, 
36 The other two models, the Bass diffusion model and the time-series model, are not
4.4. Policy scenario analysis

This section estimates the effects of three major DGPV-related poli-
cies: the recent federal ITC extension passed by the U.S. Congress
(2015), a newly approved decision from the CPUC on theNEM tariff suc-
cessor (CPUC, 2015a), and a hypothetical VOS compensation scheme.
The ITC extension retains the 30% tax credit until 2019 and then gradu-
ally phases it out to 0% for customer-owned PV and 10% for TPO PV in
2022. Because dSolar only resolves in even years, we assume the aver-
age ITC level for the 2020 solve year to be 28% (30% for TPO) and 11%
in the 2022 solve year (24% for TPO). After 2022, the ITC level stabilizes
at 0% for customer-owned PV and 10% for TPO PV.

To simulate the newly approved California NEM policy (CPUC,
2015a), we assume that PV customers will pay a one-time $100 inter-
connection fee and a non-bypassable charge of 2.5 cents per kilowatt-
hour (kWh) of net energy consumed from the grid starting from the
2018 dSolarmodel solve year.We expect this policywould have amod-
est impact on PV economics because the non-bypassable charge is
dwarfed by high retail costs of electricity (e.g., Pacific Gas and Electric's
Tier 3 rate of $0.27/kWh and Tier 4 rate of $0.30/kWh). Though the
CPUChas indicated that itwill require all newPV customers to subscribe
to a time-of-use rate starting from 2018, for simplicity, we assume the
time-of-use (TOU) rate is cost-neutral to PV customers.34

To further demonstrate the impact of NEM policy, we create another
scenario where the exported PV generation is compensated at $0.12/
kWh starting in 2018. Such a policy has been discussed by E3 (2015)
and is similar to Austin Energy's VOS tariff in 2015 ($0.113/kWh).35
34 The TOU rate could increase PV economics for customers during peaking hours. But
with high PV penetration that shifts the peaking hours increasingly to the evening hours
(Darghouth et al., 2015), the increased PV economics could be gradually reduced. As for
the $10 minimal monthly bills, because dSolar only sizes the PV system to offset at most
95% of the annual electricity load, this requirement is non-binding.
35 “Residential Solar Energy Rate: Value of Solar (VoS).” Austin Energy. http://
austinenergy.com/wps/portal/ae/rates/residential-rates/residential-solar-energy-rate.
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Below, we use the dSolar model and the threshold-heterogeneity diffu-
sion model to simulate the potential impact of these three policies.36

Fig. 9 summarizes the biannual DGPV installation results for four
scenarios and the baseline result (S0) using the dSolar model. These
four scenarios are as follows: ITC expires in 2017 (S1); California imple-
ments its newNEM policy starting in 2017 (S2); the combination of the
first two scenarios (ITC Expiration + New NEM) (S3); and finally, the
VOS compensation scheme at $0.12/kWh replaces the existing NEM
(S4).

Comparing the dSolar baseline scenario S0 to S1, the extension of the
ITC is estimated to have increased the peak-installed capacity in 2018 by
around 27% or roughly 800 MW and in 2020 by around 12% or roughly
500MW. Long-term effects of the extension are mixed—after 2022, an-
nual deployment is greater in the non-extension scenarios due to pent-
up demand and generally favorable economic conditions.37 Impacts of
the ITC extension in dSolar is more modest as compared to those of
two other industrial sources: GTM (2015) predicted an increase of
33% (or 1.6 GW) in 2017–2018 and a further increase of 25% (or
1.7 GW) in 2019–2020, whereas BNEF (2015b) predicted an increase
of 35% (or 900 MW) in 2017–2018 and an increase of 43% (or
1.5 GW) in 2019–2020. One explanation involves the underlyingmeth-
od difference:whereas dSolar leverages the classic Bass diffusionmodel,
which necessitates an inflection point in the diffusion curve, GTM did
not include an inflection point in their predictions. Because BNEF also
uses the Bass model, it is possible that the p and q parameters within
the Bass model are different between dSolar and BNEF. Furthermore,
our PV installation cost assumption could also differ from BNEF's be-
cause they have estimated a greater impact in 2019–2020.

Regarding the newCalifornia NEMpolicy, the impact on PV diffusion
is minimal, as shown by comparing scenarios S0 and S2, or S1 and S3. In
2020, the difference between S0 and S2 is 1.1% (or 44MW),whereas the
difference between S1 and S3 is 2.8% (or 95MW). Suchmodest impact is
consistent with what we first expected, because the new NEM policy
only imposes small new charges to future PV customers (and our as-
sumption that customers on TOU rates continue to see the same bill
savings).

However, in the scenario of the VOS compensation scheme where
the hourly38 exported PV generation is compensated at $0.12/kWh,
the decrease in PV diffusion is more substantial, mostly because the
VOS credit is substantially less than the current value of net metered
generation at current rate levels. In 2020, the bi-annual installed capac-
ity in S4 is 32% lower than it is in S0, or 1.3 GW less. Such a big decrease
is understandable considering the low compensation level that PV
suitable for this task because their results do not necessarily rely on PV economics.
37 The relatively higher installed capacity after the peak in S1 and S3 compared to S0 and
S2 is simply because ultimately in 2050, these four scenarios would converge in terms of
total number of PV adoption; with PV costs continuing to decline, PV diffusion in S1 and
S3would catch upwith the other two scenarios (through faster later adoption) evenwith-
out the five-year ITC extension.
38 dSolar sizes the PV system to offset 95% of the customer's load, so accounting for the
net consumption or the exported generation on an annual basis wouldmake no difference
in the VOS scenario.
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Table 4
Regression results of PV economics impact on diffusion, census tract level.

DV: penetration level This report DV: log of installs Davidson et al. (2014)

npv_per_watt 0.00098a npv_per watt 0.01703
(0.00017) (0.01321)

edu_bachorhigh 0.00422a edu_bachorhigh 0.77748a

(0.00159) (0.09357)
inc_100to150k 0.01013a

(0.00272)
median_rooms 0.00709a median_rooms 0.73542a

(0.00035) (0.01887)
hh_size −0.15075a

(0.02950)
race_white 0.01172a race_white 0.69177a

(0.00077) (0.06652)
mortgage_over40% −0.00207 mortgage_over40% −0.23472b

(0.00137) (0.08030)
built90s 0.00960a mortgage2orHE 0.81524a

(0.00165) (0.18310)
electricity 0.00510a Wood 1.40606a

(0.00175) (0.23773)
value_500kto1mil 0.00095 value_over1mil −0.59006a

(0.00114) (0.10110)
Sample size 7305 7305
Adjusted R square 0.259 0.378

Davidson et al. (2014) use stepwise regression to select the most important variables in
the regression. This table is based on variables selected in Fig. 1 of Davidson et al.
(2014), from ACS (2013).
The coefficient of ourmortgage_over40% is significant at the 10% level. Robust standard er-
rors are in parentheses.

a p b 0.001.
b p b 0.01.
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Fig. 9. Residential DGPV policy scenario analysis using dSolar: dSolar baseline (no policy
change) vs. ITC expiring, new NEM and VOS policy taking effect in 2017.
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customerswould receive; nevertheless, the decrease could be alleviated
by either a higher compensation level (i.e., closer to the retail rate) or
accounting for the exported PV generation over a longer interval (i.e.,
monthly or quarterly).

Because the ITC expiration, newNEM policy, and VOS compensation
scheme solely affect PV economics, we can also use the threshold-het-
erogeneity diffusion model for scenario analysis, though in an indirect
way. First, we must quantify the impact of changes in PV economics
(e.g., NPV) on PV diffusion in general. We extend Davidson et al.
(2014) and use PV economics data from Tracking the Sun (Barbose
and Darghouth, 2015) and Gillingham et al. (2016) to model PV pene-
tration at the census tract level in California. Finally, wemap the impact
of the policy changes on PV NPV to changes of PV deployment in the
threshold-heterogeneity diffusion model.

Table 4 compares results from the original model of Davidson et al.
(2014) and from our version. We use average penetration level at the
tract level from 2007 to 2014 as the dependent variable, whereas
Davidson et al. (2014) use the logarithm of the total number of
installations.39 We use penetration level because it is the variable we
use in the threshold-heterogeneity diffusion model, and furthermore,
we believe this model of the penetration level produces more intuitive
results. Specifically, we believe it is better to replace mortgage2orHE
with built90s, replacewood40with electricity, and replace value_over1mil
with value_500kto1mil, which has a positive coefficient. In addition, we
include a straightforward household income variable (inc_100to150k)
and drop the hh_size variable, which is correlated with median_rooms
and edu_bachorhigh. All our variable coefficients are easy to interpret;
census tracts with higher PV penetrations are likely to be those with
better PV economics, higher education levels, higher income, greater
electricity demand, higher white populations, more recently built hous-
es,more people relying on grid electricity, and—potentially—more high-
ly valued houses and fewer secondmortgages or home equity loans. For
example, reducing the NPV of PV by $1/W reduces the penetration level
in a census tract by roughly 0.1%.41

Next, we use dSolar to determine the impact of the ITC expiration,
the newly approved NEM policy, and VOS policy on NPV at the county
level. Finally, we input the regression and NPV results into the thresh-
old-heterogeneity diffusion model and compute the impact on the
installed capacity in California.

Fig. 10 presents the results of the scenario analysis using the thresh-
old heterogeneity diffusion model. The relative closeness between S0
39 We obtain very similar results as Davidson et al. (2014) if we switch to their depen-
dent variable.
40 The wood variable in Davidson et al. (2014) has a negative coefficient, which may be
correct in the sense that PV and wood are less likely to substitute each other as heating
source.
41 Note that 0.1% is at the tract level. The difference in PV economics (e.g., NPV) across
census tracts in California should not be big, whichmeans that other factors could explain
the penetration-level difference in the data.
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and S2 and between S1 and S3 is still obvious, indicating the minor
impact of the new NEM policy. The short-term impact of ITC until
2024 resembles what is found in Fig. 9. In 2018, the increase in installed
capacity due to ITC extension is 30% (or roughly 600MW),whereas this
number is 18% (or 500MW) in 2020. After 2022, with PV cost being low
enough, the impact of ITC expiration disappears.

Regarding the scenario of VOS compensation (S4), its impact on PV
installation is more substantial—a 32% decrease (or 900 MW less) in
2020. Furthermore, the impacts persist longer than they do in the dSolar
scenario analysis due to the methodological difference in these two
scenario analyses. Scenario results based on the thresholdmodel are de-
rived from comparing the PV economics in those scenarios and that in
the baseline case, and then evaluating the impact of PV economics
changes on PV penetration. But each scenario based on dSolar repre-
sents an individual model run, and the common Bass diffusion parame-
ters and same PV economics in the last few years would suggest a very
similar final adoption level. In other words, scenarios based on the
threshold model do not need to catch up with the baseline result,
whereas this is not the case in dSolar. Such a methodological difference
indicates that top-downmodels such as the thresholdmodelmaynot be
well suited for long-term impact analysis, though the near-term results
seem reasonable.

5. Conclusions

We use three top-down models (time-series forecasting, threshold-
heterogeneity diffusion, and Bass diffusion) and a bottom-up engineer-
ing model (dSolar) to forecast residential DGPV deployment in
California. Top-down models require many fewer data inputs and as-
sumptions, and they are easier to implement than bottom-up models.
However, they generally lack the ability to conduct scenario analysis
of major policy changes (with the thresholdmodel as an exception), es-
pecially long-term policy impact analysis. In this report, the time-series
forecasting model mainly illustrates the need to build more complex
models, whereas the threshold-heterogeneity and Bass diffusion
models provide relatively simple tools for checking the reliability of re-
sults from a bottom-up engineeringmodel (dSolar). We also show how
otovoltaic deployment in California, Technol. Forecast. Soc. Change
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Fig. 10. Residential DGPV policy scenario analysis with the threshold-heterogeneity
diffusion model: threshold model baseline (no policy change) vs. ITC expiring, new NEM
and VOS policy taking effect in 2017.
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the threshold-heterogeneity diffusion model can be used for policy sce-
nario analysis. On the other hand, bottom-up models are much more
detailed and powerful for conducting scenario analysis, but they require
assumptions for eachmodule of the engineeringmodel. In this analysis,
we find that the twomodel types complement each other and we com-
pare our methods with industry sources.42

Our results from the two diffusion models and dSolar suggest,
barring any major policy changes—although with federal ITC extending
until 2022, four-tiered rate, and NEM policy continuing
indefinitely—that the residential PV market in California could peak
between 2020 and 2022 at about 3–4 GW of biannual capacity (or
1.5–2 GW annual capacity); this corresponds to about 0.9–1.1 million
biannual installations (or half a million annual installations), both
from the first-time adoption. Compared with other forecasting sources,
our results are not as high as some industry forecasts but are greater
than predictions by the EIA and CEC (at least in the short term). Impor-
tantly, our baseline forecasts assume no major policy changes in
California's residential PV sector from now until 2050, though we have
later used two of ourmethods to estimate the impact of potential policy
changes in California on PV adoption.

We find significant county-level heterogeneity with respect to resi-
dential DGPV deployment in California. Currently, very few counties
have a penetration level above 10% based on our estimates ofmaximum
market size. However, barring any major changes in policy, our thresh-
old-heterogeneity diffusion model projects that about half of
California's counties will have a penetration level N80% in 2030, which
could pose substantial grid-integration challenges. After imposing a
$500/kW integration cost as we did in our sensitivity analysis, the
2050 penetration level could be roughly 20% lower.

Based on our Bass diffusionmodel results, there are small and similar
proportions of innovators in each county; but the proportions of imita-
tors aremuch larger and differ significantly, which is a finding similar to
Guidolin and Mortarino (2010). Certain socio-demographic variables
correlate highly with the degree of imitation in a county, such as
mean household sizes and using the utility gas company for heating.
In addition, a regression model (Table 4) that we developed using
both PV economics and socio-demographic variables explains different
penetration levels at the census tract level, and all regression coeffi-
cients are intuitive.

Because changes to California and national policy are likely to be
implemented in 2016, we use dSolar and our threshold-heterogeneity
diffusion model to analyze the impact for California of proposed
changes—including the recent ITC extension, a newly approved NEM
policy with additional charges to PV customers, and a hypothetical
42 In addition, these two types ofmodels also differ in terms of accounting PV economics.
Although it is not required for top-downmodels to model PV economics, PV economics is
the key and driving factor in bottom-up models.
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VOS compensation scheme. Our dSolar results suggest that the impact
from the recent ITC extension mostly affects short-term deployment,
because declining PV costs offset policy support in the long-term; this
finding is also confirmed in the threshold model analysis. In terms of
the magnitude of the impact, our two models have estimated a 27%–
30% increase (600–800 MW reduction) in the 2017–2018 PV installa-
tion and a 12%–18% increase (roughly 500 MW reduction) in the
2019–2020 PV installation for the California residential sector. Although
this impact may appear low compared to other industry forecasts by
GTM and BNEF, it can be explained by differences in our underlying
methods and parameterizations.

Based on our scenario analyses, we have also found that the newly
approved NEM policy in California could potentially have a minor im-
pact on future PV adoption (b100 MW) assuming TOU rate impacts
are cost-neutral. This minor impact is because the imposed low non-
bypassable charge would be dwarfed by the high retail rates in Califor-
nia as of now. Instead, additional rate restructuring is likely to have a
much larger impact on long-term deployment. For example, ourmodels
show that were California to implement a VOS compensation scheme
with compensation lower than the current net-metered generation
value (say, $0.12/kWh starting in 2016), annual PV deployment could
be reduced by 32% (900–1300 MW) compared to our baseline results.

Our assumptions have important effects on the results. First, our av-
erage PV system size is small relative to some industry estimates, and
using a larger size would increase our capacity results proportionally.
Second, ourmaximummarket size is based on the number of owner-oc-
cupied houses for the two diffusionmodels in 2013, and it is further re-
stricted to single-family owner-occupied houses in dSolar. If future
innovation expands the residential market beyond owner-occupied
houses or enables a higher percentage of owner-occupied houses to
adopt DGPV, our assumptionmight be conservative. Third, the assump-
tion of allowing the residential PVmarket to growwithout any grid con-
straint or curtailment seems to be optimistic, even if we have imposed
certain integration costs in our sensitivity analysis. Fourth, our assump-
tion of the future TOU rate being cost-neutral to PV customers warrants
futurework. Finally, we assume the fitted density curves—either normal
or Bass diffusion—would notmove over time, whichmight not be true if
future innovations (e.g., dramatic performance improvements or intro-
duction of new businessmodels) are realized. If the curves domove, the
installed capacity curves (Fig. 6) will have heavier (or thinner) right
tails.

Our work can be extended easily to other PV sectors and markets if
high-quality data are available. Additional future work could include
further combination of the various modeling methods to provide more
robust forecasts, or further relaxation of some of our assumptions. In
this work, we have not modeled the impact of the potential TOU rate
in California but simply assumed it is cost-neutral to PV customers; ad-
ditional work could address this important issue. Finally, uncertainties
remain a topic to be explored as which modeling approach can predict
future PVdeploymentmost credibly. So amore detailed sensitivity anal-
ysis is needed.
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