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‘Nationally Critical Materials’ are necessary to maintain
the nation’s economy and defense
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RE elements have found widespread utility:
» energy technology e transportation < electronic displays < guidance systems
* national security -« lasers * radar * Sonar systems




Finite Supply

Other: 22 million metric tons in reserve of rare earth elements
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i . Les Terres Rares Uniques, Incontournables, strategiuges m National .
Toyota Prius_and the lanthanides s s g e oo
UV Cut Glass
e Lo .
Diesel Fuel Additive Glass and Mirrors
C Polishing Powders
* Ce . Ce Video Display
e La « Eu
oY
- * Ce
Hybrid NiIMH
Battery
e La(>20Ibs) Component
e Ce Sensor
oY
Catalytic Converter
e CefZr
e La (>50g/Lcat)
25+ Electric Motors Hybrid Electric Motor
Throughout vehicle And Generator
* Nd Magnets High Performance ":e:::ight Glass e Nd(>2lbs)
Rubber Tires e Pr
* Nd * Dy
« Tb
“Analysts have called the Prius™ one the most rare-earth-intensive consumer product ever made.”
Power Hungry = The myths of ‘green” energy and the real fuels of the future
Robert Bryce (2011) PublicAffaris
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Also used in vibration units = Sandia
National

e Nd Tb - Dy Laboratories

Phone polish

* Ce Alloys in speaker and

microphone magnets
* Pr Nd Gd

Rare Earth Element compounds are used to produce colors in the screen.
Some even reduce UV light penetration into the phone
e YeLa *Pr Eu °Gd °Tb Dy

* IPhone: 8 different rare-earth metals (~74.5 million iPhones sold per quarter)
* Series of phones: 16/17 rare-earth metals used (no promethium)
* Few grams rare-earth per phone

Compound Interest 6
Smartphone smart chemistry. Brian Rohrig. ACS chem matters.

ACS reactions video

PBS where to find rare earth elements. Ainissa Ramirez

The New York Times



RE-cycle a possible route to reduced dependency () i

Laboratories

How does one recover elemental Er? with high purity?

We are also interested in the chemistry of Sc — often included with the RE’s

(Applied voltage)

Standard reduction potentials ] ,>

indicates selective oxidation is — (Cﬁggz) Cathode
thermodynamically possible

MOY/Er® —> [Er®*],, [A*], [X],,— Er°

\l (lonic Liquid/Additives) l/

Er3* + 3e- = Erf Ec=-232V

Precedence for reduction for Rare

Earths: La, Sm, Eu, Dy MP Er0
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Advantages of lonic Liquids ) e,

= Low volatility and flammability

= Highly tunable properties
= Wide electrochemical windows

= Er has a very negative reduction potential! Can’t use water.

O /N+\/N\/ \/\/ \
/\/N N
piperidinium imidazolium alkylammonium
_ o - ] o
\\ AN g // F——>C———\S\——O
e ~c T
/T \\ // | F F ﬂ
F F - -
bis(trlfluoromethylsulfonyl)_imide trifluoromethanesulfonate

(NTf,), aka TFSI, aka bistriflimide (OTf), aka triflate




Erbium Coordination Chemistry ) i,

= For our studies we have focused on using impure Er metal as our
starting material

= We have explored a range of options for dissolving Er metal
including: 3M HCI, triflic acid, and bis(trifluoromethylsulfonyl)imide

E® + HCl(ag) —— [Er(Cl),(H,0)s][Cl]*H,0

ErO4Cl,
Distorted square antiprisms

Initially published by Rogers’ group: Rogers R.D., Kurihara L.K. Lanthanide and
Actinide Research,1986, 296-306 J




Fundamental coordination chemistry of Er being further ) e,
developed

%’%’» 3
Erc + (aq) HCl —— % bmso ’:

My &%@

HNO3 [Er(Cl);),(DMSO),]
H,S0, [Er(CI),(H,0)5][CI]*H,0
F,CSO;H : _
HOAc '/
¢
: ; : [Er(O,NO),(H,0),] H,O
9. ;
[Er (H,0),][F;CSO,];

[Er(S0O,),(H,0),]

[Er(OAc);(H,0),][CI]




Electrorefining Erbium ) e,

potentiostat I

Er source deposition
substrate

Er > Erd* + 3e-

—_—

Ers*

Electrochemically move erbium from source to target substrate.
11




Electrorefining in Molten Salts ) i,

Erbium is easily oxidized into solution... ...and reduced onto platinum.
=0 | 436 Pt foil
Er? foil Er— EBr' +3e 200l oM Er B 4 36
100
g £
S < of
5 O 5
= LiIC-KCI-CsCl 5
O 2 wt% ErCl, O 200
-100 ¢ 1 420°C
100 mV/s
5t scan Er** +3e” — Er
200 Er3* +3e” — Er 2 cm? electrodes _400 . . . , , . .
25 ) 15 -1 25 -2 -15 -1 -05 0 05 1
Potential vs. Ag/AgCl / V Potential vs. Ag/AgCI/ V

>90% Coulombic efficiency on 250 mg scale at 420 °C
Inert environment with heat-tolerant materials required!

12
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Er3* Electroreduction Experiments

Solvent CVs

Deposition | Film contents via
sugges | Potential EDS

t dep?

DMF

butyltrimethylammonium NTf,

1-methyl-1-butylpyrrolidinium
dicyanamide (tailored IL fromTim
Lambert’s)

1-methyl-1-propylpiperidinium NTf,

1:1 DMF:dicyanamide IL

[1-ethyl-3-methylimidazolium
ClI,Er(OTf),

[1-butyl-3-methylimidazolium
CII,Er(OTf),

[1-butyl-3-methylimidazolium
Brl;Er(OTf),

100 mM
Er(OTf),

10 mM Er(OTf),

100 mM
Er(OTf),

10 mM Er(OTf),

100 mM
Er(OTf),

(25 mol%
Er(OTf),)

(25 mol%
Er(OTf),)

(25 mol%
Er(OTf),)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

-2.0V vs.
Ag/Ag*

-2.5V vs. Pt wire
-2.5V vs. Pt wire

-2.5V vs. Pt wire

-2.5V vs. Ag/Ag*

-2.5V vs. Pt wire

-2.5V vs. Pt wire

-3.0 V vs. Pt wire

Er, O

Er,C,N,F, O

Er, Ag, C, N, O
gel-like film in areas
Ag(111) in XRD

Er,C,N,O, S, F

Er + some C,N
(no F)

No deposition. Lots of
bubbles during dep (Cl,?)

No deposition. Lots of
bubbles during dep (Cl,?)

No deposition.

 All ILs and Er salts dried at 75 °C, <0.5 mTorr for 72 hrs
 Anhydrous DMF kept with 3A sieves
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Effect of Electrode Material

0.1 ———— — ol 0.1
Glassy carbon
of or Or
9
£
(&) R - L
g -01 0.1 0.1
S
E.) -0.2 0.2} : 0.2t
5 increasing
o X —1st scan scan #
0.3 1 03} 1 03} increasing scan number il
Neat BMP-NTT, Neat BMP-NTT, Neat BMP-NTT,
__ BTmMMEMNTLY | 67 mMErNTh) 67 mM Er(NTf,),
25 -2 -156 -1 =05 0 05 1 15 -25 -2 -15 -1 -05 0 05 1 15 55 5 _15 1 05 0 05 41 15
Potential vs. SHE / V Potential vs. SHE / V Potential vs. SHE / V

Theoretical Er3* +3e- = Erlis at -2.33 V for 1 M Er3*.

Electrolyte: 1-butyl-1-methylpyrrolidinium NTf, — dried >48 h at 100 °C, <0.5 mTorr

67 mM Er(NTf,); from Ryan + Isabella — dried >48 h at 100 °C, <0.5 mTorr
Reference electrode: Ag wire in 10 mM AgNTTf, in electrolyte (no Er). Potentials referenced to ferrocene.
Counter electrode: Pt wire

100 mV/s scan rate




Effect of Electrode Material Il

01— T T
Nickel 0.1
0.
o v 9
T T -0.1
‘g o2 g glassy carbon
s S 0.2
3 increasing scan # 3 gold
platinum
_ T i nickel
0.3 Neat ionic liquid -0.31 i
5" scan of each CV
67 mM Er(NTf,); 100 mV/s
25 -2 <15 -1 =05 0 0.5 1 1.5 25 -2 -15 -1 =05 0 0.5 1 1.5
Potential vs. SHE / V Potential vs. SHE / V

Au, Pt, and Ni show increased reduction currents at potentials < -2
V when Er(NTf,); is in solution, consistent with Er3* +3e- > Er°.

Electrolyte: 1-butyl-1-methylpyrrolidinium NTf, — dried >48 h at 100 °C, <0.5 mTorr

67 mM Er(NTf,); from Ryan + Isabella — dried >48 h at 100 °C, <0.5 mTorr
Reference electrode: Ag wire in 10 mM AgNTTf, in electrolyte (no Er). Potentials referenced to ferrocene.
Counter electrode: Pt wire, 100 mV/s scan rate

Sandia
National
Laboratories




Bulk Electrolysis onto Platinum () i

Laboratories

Constant Potential: -2.495 V Constant Current: -1 mA/cm?2

0 0
1l . Electrolyte: 1-butyl-1-
e z methylpyrrolidinium NTT,
< g Working electrode: 100 nm Pt on
z E -2 Ti/SiO,/Si (100)
£ g Reference electrode: 10 mM
° . | AgNTf, in BMP-NTT,
0.2 \-K Counter electrode: Er rod, lightly
sanded
Yo 12 2a | '
Tlme/h Tlme/h
Condition Mass Change: | Mass Change: | Charge Passed | % Efficiency
Pt Film Er rod (Coulombs)

-2.495V (-50 pA), 24h 0 mg* 0 mg* -1.5C
-1 mA/cm?(-3.77 V), +14 mg -12 mg -238 C 9.5%
66h

*only 0.4 mg theoretical change.

Moved ~13 mgqg in 66 hours! Need to analyze deposited film.




Variation of lonic Liquid Anion
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0.1 M Er(OTf); in 1-butyl-1-methylpyrrolidinium ionic

liquids at a platinum surface /NK/\/
o\\ o
F N N-
F>( o) N/// \%N
F

0.2

< 0.0

E

S .02

© neat IL
041 0.1 M Er(OTf), |

-3 -2 -1 0
Potential vs. Fc/Fc* / V

1

0.2}
o o
5 5
< | € 00;
1502
3 3
04! platinum WE |
. 100 mV/s
3 2 1 0 1 3 =2 4 0 1

Potential vs. Fc/Fc™ / V Potential vs. Fc/Fc* / V

Redox active intermediates formed during Er3* reduction

17




Variation of lonic Liquid Anion ) i,

0.1 M Er(OTf); in 1-butyl-1-methylpyrrolidinium ionic {j

liquids at a platinum surface /N+\/\/
o)
O\\ N7 F \\S/O
N 7z
T Yoo W<F i N SN

Amorphous, anion-contaminated ErO, deposited onto Pt.

18




EXAFS Studies of RE'sin IL’s h

Sandia
National
Laboratories

Er coordination environmentin IL’s and solvents done at the X23A2

beamline at NSLS-I using the Er L; edge (8358 eV)

Sc coordination environment were conducted at the 20-BM-B
beamline at APS using the Sc K edge (4492 eV)

Data processing and fitting: Artemis and Athena by Bruce Ravel

= B. Ravel and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-
ray absorption spectroscopy using IFEFFIT, Journal of Synchrotron Radiation 12,

537-541 (2005) doi:10.1107/50909049505012719

Solid samples - transmission mode

Liquid samples - fluorescence mode
custom-built cell based on a design
Marcos and co-workers

Marcos, E.S.; et.al.; Rev. Sci. Inst.; 65, (1994), 2153. image: www.bnl.gov



http://dx.doi.org/10.1107/S0909049505012719
http://dx.doi.org/10.1107/S0909049505012719

Quick EXAFS Overview ) e,

Sample Incident x-rays
from beamline
— 1 Q Il —
Transmitted
X-rays _ . SE— )

marked groups

Edge

malized xp(E)

fine structure

S

600 8700
Energy (eV) Demeter 0.2.19 ® Bruce Ravl 20082014

In EXAFS we measure the energy-dependent x-ray absorption spectrum

The oscillation that occurs above the absorption edge is the “EXAFS”

EXAFS provides unique information on local

coordination environment in liquid samples -




lonic Liquids used for Er experiments ) i,

O 1-Methyl-1-propylpiperidinium
N (CF380,),N° bis(trifluoromethylsulfonyl)imide
Chy “MPP-TFMS”
/~\ CFsSO 3@ 1-Ethyl-3-methylimidazolium triflate
LR “EMI-trif”

N CE.SO.),.N©  Butyltrimethylammonium
e (CF3S02)2 bis(trifluoromethylsulfonyl)imide

“BTMA-TFMS”

21




lonic Liquids used for Sc Experiments [ &=,

1-butyl-1-methylpyrrolidinium
bis(trifluoromethylsulfonyl)imide
“BMP-NTf,”

1-butyl-1-methylpyrrolidinium
Trifluoromethanesulfonate
“BMP-OTf”

1-butyl-1-methylpyrrolidinium
Dicyanamide
“BMP-N(CN),”

propylmethylpiperidinium
bis(trifluoromethylsulfonyl)imide
“PMP-NTf,”

22




Er Coordination in lonic Liquids )

1.) Do the Er 18t and 2" coordination shells more closely resemble:
direct Er-IL bonding, Er triflate, or Er hydrate?

2.) Does the Er environment change with different IL's or solvents?

3.) Can we observe Er reduction in real time?7??

14 T T I I
10 | T I I I
Er-BTMA-TEMS — Er-trif-commercial
12 F Er i Commetcial - 5 L E-BTMATFMS ——
Er-trif in EMI-trif Er-MEP-TFMS ——
1 oL ErArif in EMI-trif 7"Q \
< <
< 45 P W
— 5
@ 06 =10 F
= T
04 -15 & :
02 =20 + i
0 95 | I | I I | I I
0 1 2 3 4 5 B 3 4 5 5 T 8 9 10
Radial distance (A) Demeter 0.9.15 @ Bruce Ravel 2008-20 Wavenumber (A_1)
Demeter 0.9.18 @ Bruce Ravel 2008-2013

Three IL’s tested appear to have same 15t shell and possibly the 2nd
Qualitatively agrees well with work by Persson et.al. in 2008 53




Sc3* Coordination in lonic Liquids

3 | | | I I
Sc(OTH3 in BMP-N(CN)2 ——
Sc(OTH3 in BMP-NTf2 ——
25 Sc(OTH3 in BMP-OTf —— ||

(A%)

IXR)|

Radial distance (A) Demeter 0.9.18 @ Bruce Ravel 2008-2013

Sandia
National _
Laboratories
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Summary ) e,
= The reaction of Er® with HCl(aqg) generates a chloride-hydrate
complex which can be used as a spring board for the synthesis of a

range Er coordination compounds with varying degrees of solubility
inIL’s.

= The family of triflate and bistriflimide IL’s have wide electrochemical
windows and appear to allow for the reduction of Er3*to Er® though
the deposited Er material to date is poorly formed though the
cleanest film so was deposited in DMF not an IL.

= EXAFS experiments conducted at NSLS-I in three different IL’s using
Er(OTf); as the starting material do not show any likely coordination
of the IL with the metal in the 15t or 2"9 shell (data analysis is still on-

going).

25
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Variation of lonic Liquid Cation ) i,

@)
N Nz

F. S~ Ss_ F
0.1 M Er(OTf); in NTf, ionic liquids at a platinum surface F>( Y5 d \KF
F F

. N

0.2 0.2 0.2
o o o
£ £ £
o o o
< 0.0t < 0.0 < 0.0t
e e £
I= = c
£-0.2 .02t © .02
> > >
° NeatIL | © S
-0.4 eat 04! ] 0.4} platinum WE |
0.1 M Er(OTf), ' 100 mV/s
-3 -2 -1 0 1 -3 -2 -1 0 1 -3 -2 -1 0 1
Potential vs. Fc/Fc* / V Potential vs. Fc/Fc* / V Potential vs. Fc/Fc™ / V

Redox active intermediates formed during Er3* reduction




Variation of lonic Liquid Cation h) i,

F. S~ Ss_ F
0.1 M Er(OTf); in NTf, ionic liquids at a platinum surface F>( Y5 d \KF
F F

<] N
N .-

/NJ“\/\/ \/\/ ~ \/\
Deposit at -2.9 V for 2 hours

Amorphous, anion-contaminated ErO, deposited onto Pt.




Er Deposition onto Different Materials [,

0.2 -

o4 platinum
0- ..... . .
. = No deposition on
| glassy carbon
0.2t
5.03] neatIL || = Oxidizable species
< 0.1 M Er(OTf), ,
S . . . Il . . . . only on platinum
° nickel | | | lassy carbon |
o 0.1; | B1assY = No intermediate
0.0y on nickel
-0.1¢
-0.2¢
-0.37 100 mV/s 1
5t scan for each
3 2 A 0 13 2 0 1

Potential vs. Fc/Fc* / V

30
-



Current (Amp x e-6)

Er(OTf); Reduction in DMF

6.473 [ . ‘
Cyclic Voltammetry
3.397
0.322
-2.753
3+ -
Er’* + 3e- 2 Er vs. AgiAg®

-5.829

-2.250 -1.375 -0.500 0.375 1.250

Pulses/eV

Potential (V)

Signal A = InLens Width = 28 81 um

EHT = 5.00 k¥ WD = 4.4 mm




Attempt at In-situ XAS E-chem ) e,

= We carried out a series of cyclic voltammetry and
chronoamperometry experiments in search of a system that
will allow for the clean reduction of Er3* to ErY

= One of the more promising CV’s we recorded at the beamline
was not in IL but in acetonitrile using TBA/TFSI as a supporting
electrolyte

= Held constant potential at
-2.6 V for two hours while
collecting XANES spectra




In-situ XAS and Chronoamperommetry )
Er(OTf); in CH,CN with TBA/TFSI as a supporting electrolyte

Close-up of the Data from the peak of
Er L; absorption edge the 1st derivative of the energy spectrum
i i er—chSIcn-3.082 === 8362
e | I
e | R 8361 eV = Er’*
@ 1 Z:;EE;:EEEE — = 8361.7 8358 eV = Ero
=3 %Ehaz::ahm < 83616
E k %assl.s m " g m u N =
E “ 83614
E 83613
83612
- :
o 83:55 83:60 83:65 83:?0 o 2 4 o e ¢ 10 12
Energy (eV) Demeter 0.0.18 © Bruce Ravel 2008-2013 Time Increasing to the Right

One would expect to see the position of the edge shift
to lower energy as the amount of Er’* decreased and Er?°

increased — not observed here
33




In-situ XAS and Chronoamperommetry )
Er(OTf); in CH,CN with TBA/TFSI as a supporting electrolyte

x®l A

pseudo-radial distribution plot
Unfortunately we did not see a detectable change in Er

structure over time nor a change in oxidation state

34
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Summary ) e,
= The reaction of Er® with HCl(aqg) generates a chloride-hydrate
complex which can be used as a spring board for the synthesis of a

range Er coordination compounds with varying degrees of solubility
inIL’s.

= The family of triflate and bistriflimide IL’s have wide electrochemical
windows and appear to allow for the reduction of Er3*to Er® though
the deposited Er material to date is poorly formed though the
cleanest film so was deposited in DMF not an IL.

= EXAFS experiments conducted at NSLS-I in three different IL’s using
Er(OTf); as the starting material do not show any likely coordination
of the IL with the metal in the 15t or 2"9 shell (data analysis is still on-

going).

35




Sandia
Acknowledgements ) s,
= Timothy Boyle, Jeremiah Sears, Michael Neville, and Daniel
Yonemoto — erbium precursor chemistry/characterization

= Timothy Lambert —ionic liquid and extractant synthesis
= Steven Limmer and Leo Small - electrochemistry

= Michael Brumbach and Adam Cook — EXAFS data collection and in-
situ electrochemistry cell design

= Joseph Woicik (NIST) — EXAFS data collection

" Funding: SNL Laboratory Directed Research &Development program
36




Extra rh) s




Sandia

Precedence for Ln Reduction in IL’s rih) e

= 2005: May and co-workers from the University of Manchester and
Ural State Technical University were able to reduce La, Sm, and Eu
triflate hydrates in trimethyl-n-butylammonium NTf, on a Pt
electrode at ambient temperature!

= 2008: Legeai and co-workers from the Universite Paul Verlaine
Metz were able to reduce La(NO;); in 1-octyl-1-
methylpyrrolidinium NTf2 on a Pt electrode at 25t0 85 ° C2

= 2009: Nagarajan and co-workers from Indira Gandhi Centre for
Atomic Research were able to reduce Eu(NTf,); in N-butyl-N-
methylpyrrolidinium NTf, on a glass carbon and stainless steel
electrodes at 100° C 3

1. Bhatt, A.l.; May, |.; et.al.; Inorg. Chem.; 44; (2005); 4934-4940
2. Legeai, S.; et.al.; Electrochem. Comm.; 10; (2008); 1661-1664
3. Rao. Ch.J.: Nagarajan. K.: et.al.: Electrochim. Acta; 54: (2009): 4718-4725 38




Commercial Er(OTf); EXAFS ) B
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Er-trif-merge in R space

—_
=

9 i i i Er-trif-merge
n w_ H
window R-factor = 0.016
8 -
L _
Toof ‘
— 5F ]
i3
x 4r 7
I ]
2 F _
1 E _
0 | | | |
1] 1 2 3 4 5 B
Radial distance (A) Dermeter 0.8.18 @ Bruce Ravel 2008-2013
name N S02 sigma”2 el delr Reff R

O1.1 6.000 0.974 0.00336 7.274-0.02217 2.34670 2.32453
021 3.000 0.974 0.00336 7.274-0.01467 2.48850 2.47383
O4.1 12.000 0.974 0.02070 7.274-0.03413 4.55100 4.51687
O1.1 6.000 0.974 0.00336 7.274-0.02217 2.34670 2.32453
021 3.000 0.974 0.00336 7.274-0.01466 2.48850 2.47384
O4.1 12.000 0.974 0.02070 7.274-0.03413 4.55100 4.51687 39
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Lu(OH,)4(CF;SO;); by Harrowfield et. al.

Feff calculation
25 T T T I

(A2)

IX(R)|

Fig. 1. Unit cell contents projected down . ‘ Radial distance (}g-) Demeter0.9.18 @ Bruce Ravel 2008-2013

Harrowfield et.al. Aust. J. Chem, 1983, 36, 483-92 Our FEFF6 calculation

40
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Bhatt and May’s La Bistrfilimide ) e,

Feff calculation

[x®I A%

Radial distance (A)

Their crystal structure Our FEFF6 calculation

LaOg4 with 3 bidentate NTf2 ligands and 3 H,O

La bistriflimide from lan May icsd 048199, Bhatt, A.l.; May, lain; et.al.
Inorg Chem, 44, 2005, 4934-4940 i




Er(OTf); in EMI-trif EXAFS Analysis ) i,

merge in R space
T T

D 1 2Radial distgance (A)4 Dematarngwmsaruceszelznnszni

name N S02 sigma*2 €0 delr Reff R

01.1 9.000 2.729 0.02638 -5.149 -0.07337 2.34670 2.27333
04.1 12.000 2.729 0.03179 -5.149 -0.10601 4.55100 4.44499
H1B.1 24.000 2.729 0.01642 -5.149 -0.15165 2.85010 2.69845
O1.1H1B.1 24.000 2.729 -0.00367 -5.149 -0.63255 2.98500 2.35245
01.1 9.000 2.729 0.02638 -5.149 -0.07337 2.34670 2.27333
04.1 12.000 2.729 0.03179 -5.149 -0.10601 4.55100 4.44499
H1B.1 24.000 2.729 0.01642 -5.149 -0.15165 2.85010 2.69845

O1.1H1B.1  24.000 2.729 -0.00367 -5.149 -0.63255 2.98500 2.35245 4




Er(OTf); in EMI-trif EXAFS Analysis ) i,

merge in R space

merge
fit —— H
window

Ix®| (A

& & IS I o = IS > @
T T T T

Radial distance (A)  pemeter09.13 @ ruce Ravel 2008-2013

name N S02 sigma*2 €0 delr Reff R

011 9.000 2.729 0.02638 -5.149 -0.07337 2.34670 2.27333
O1.1H1B.1 24.000 2.729 -0.00367 -5.149 -0.63255 2.98500 2.35245
H1B.1 24.000 2.729 0.01642 -5.149 -0.15165 2.85010 2.69845
041 12.000 2.729 0.03179 -5.149 -0.10601 4.55100 4.44499

43




Characterization of film from Er(OTf), reduction in DMF () s,

Laboratories
X-ray Photoelectron Spectroscopy
Only Er, O, C, Pt present
No S, N, minimal F - no triflate left in electrodeposited area
3 Feageie s All erbium is oxidized (by air?).
g : g 5 helim line u!: _
: i Reference sample — Er,O, + Er. 5
= Sy
'l.\_,,‘_\ ///
50 mm,_ﬁr'
i
gi = =& 3 & A
£ S . EZ) 3 et
usué A : EE ) .L. A .
“’ E Electrodeposited sample
/B S NN TR T WUNNNNS NN " VNN I R """"'t'"u'-a"'ulhl
o 70 Bim:'ling:l[:]ergy{ev) . ’ 2 g EH-lHtl!::ri;- ¥V
Survey spectra — above, on, below “water” line Erbium 4d
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Er3* Electrochemistry ) Yoo

Cyclic Voltammogram - Er(trif)3 in BTMA-TFMS on Pt

= Studied electrochemistry of Er s
triflate in BTMA-TFMS ionic o =
liquid — looking for Er -
reduction and effect of scan

rate

= Also did some experiments looking at C
and Au working electrodes

—50 mV/s

w75 mV/s

Current {A)

—25mV/s

Voltage (V)

Er-BTMA-TFMS in R space

3 T T T

I
Er-BTMA-TFMS ——
fit —

04.1 4.000 0.609 -0.00024 -3.278 -0.07454 2.32310 2.24856
1 06.1 2.000 0.609 0.00566 -3.278-0.37693 2.43560 2.05867
4 011 2.000 0.609 -0.00307 -3.278 -0.06295 2.46550 2.40255
Er3.1  2.000 0.609 0.01414 -3.278 0.09988 3.47110 3.57098
1 N1.1 1.000 0.609 0.01051 -3.278 0.07628 2.93750 3.01378

XR)| (A

Radial distance (A) Demeter 0.0.18 @ Bruce Ravel 2008-2013
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In-situ XANES and Chronoamperommetry @i

Laboratories

In-situ experiment using acetonitrile solvent with TBA/TFMS as supporting electrolyte

Consists of Kapton windows with silver working and counter electrodes printed on
them using SNL direct write technology

Cyclic Voltammogram

marked groups

Current (mA)

bl A%

el \ | XANES pseudo-radial distribution plot

Unfortunately we did not see a detectable

change in Er structure over time nor a

Held fixed potential of -2.6V for approximately 2 change in oxidation state
hours while collecting X-ray absorption data

Chronoampergram
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