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= Mesoscale simulation of HNS
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How do we validibrate our simulation?
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This type of data (velocity histories) has not been collected for
detonator materials where run-up is 10s ns and 10s-100s um.



The experiment: small scale “cutback”
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Samples: Vapor-deposited HNS (50-200um thick)

These samples are extremely cool
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What should we expect to see?

Inert shock imparted by 1600 m/s flyer
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What should we expect to see?
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Velocity histories from HNS films ( 60 pm thick)

3000 : .
60 um thick HNS film
2500 }
Q) flyer velocity
i?'ooo ' 3000 m/s |
'O 2500 m/s
21500+ ... 2200 m/s
O 1600 m/s
S 1000} 1600 m/s
©
Q- LR R R EETEEEEEER
500 N ,\_\

1500
Time (ns)




PDV HNS ( 90 pm thick) ( 120 pm thick)
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Experimental results
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Up Max (km/s)

Proposed optimization
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CTH optimization HVRB model
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Table 1. HVRB model and Dakota optimization details for fd_gradient_step_size=1e-4.

Parameter PR ZR MR XR Pl
Lower Bound 1e10 1 1 0.1 1e9
Initial Guess 3e10 3 1.5 1 3e9
Best Parameters  3e10 3.0131 1.4687 0.9291 3e9
Upper Bound 50e10 10 2 2 3e10

Gradient based optimization, “personally frustrating.”



CTH optimization ARB model
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Table 1. ARB model parameters and Dakota optimization.

Parameter FF AT
Lower Bound 1€e9 0.01
Best Parameters 2.0156€9 0.43236
Upper Bound 1e10 0.7

Evolutionary algorithm with a population size of 16.



Experimental results (NEW)
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Plan to collect data at one velocity for 4 thicknesses (60, 90, 120, 150 pm)

Transition seems to be more abrupt than we assumed.



Grain-Scale (mesoscale) simulation o

Reaction at 1.95e-08 s
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Grain-Scale (mesoscale) simulation
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Preliminary PETN results

200 um films, 50 um x 2.54mm flyer
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Summary

We used PDV to capture the the build-up to detonation in flyer initiated
HNS and PETN at the micron/nanosecond scale.

These data will be used to evaluate the appropriateness of currently
available reactive-burn models for hydrocode simulation.

PDV from lower velocity flyer impacts show transit of an inert shock,
which might be used to evaluate the unreacted equations of state used to
model these materials.

We plan to optimize the experiments and collect more data.
- window treatment, statistics, probes, analysis (jump off), ...

We plan to change flyer thickness, sample thickness and density.

Can we determine where reactions are starting and when?
- homogeneous or heterogeneous






