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Abstract. Despite the known degrading impact of high nuisance and false alarm
rates (NAR/FAR) on operator performance, analyses of security systems often
ignores operator performance. We developed a model to analyze the impact of
nuisance alarm rates on operator performance and on overall system perfor-
mance. The model demonstrates that current methods that do not account for
operator performance produce optimistic estimates of system performance. As
shown in our model, even low NAR/FAR levels and the associated alarm
queueing effect can increase operator detect and response time, which in turn
reduces the amount of time the response force has to interrupt the intruder. An
illustrative analysis shows that alarm processing times can be higher than the
assessment time due to queue wait times and that systems with only one or two
operators can become overwhelmed as NAR increases, decreasing system per-
formance.
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sance Alarms - Operator Performance

1 Introduction

Identifying an optimal design for a physical security system is critical to mission per-
formance. Facility or system owners are sometimes willing to invest millions of dol-
lars to increase intruder delay times by a few seconds. In most systems, a human
operator assesses the alarmed sensors and then calls on the response force to investi-
gate. With limited budgets, sites are searching for technologies that can reduce the
number of staff employed, thereby reducing the overall cost of the security system.
However, more technologies and sensors will usually increase the nuisance and false
alarm rates (NAR/FAR), which in turn may require additional operators to respond to
the increase in alarms.

Standard physical protection system (PPS) assessment methods include red team
exercises [1], adversary sequence diagrams, design basis threat and fault tree analysis
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[2]. Analyses of physical security systems primarily focus on the intruder delay times
due to physical barriers, the reliability of sensors, alarm assessment, and the response
times of the protective force [1, 2, 3, 4, 5]. These methods typically assume that the
operator is ready to begin assessment as soon as the intruder alarm is generated and
that the operator behavior never deviates from policy and training, such as ignoring
alarms.

As the rate of nuisance and false alarms increases, a system’s perceived reliability
decreases, causing the operator to lose trust in the system. Moray, Inagaki, & Itoh [6]
found that trust was impacted the most when system reliability fell below 90%. This
loss of trust can result in delayed response to alarms (the “cry wolf” effect) [7, 8];
probability matching response rates [9, 10]; and, in extreme cases, failure to respond,
ignoring or disabling alarms [11, 12].

Despite the known degrading impact of high of NAR/FAR on those monitoring the
alarms, analyses of security systems often ignore operator performance. Thus, an
operator who is slow to respond to an alarm or who simply ignores or disables the
alarm can weaken security systems that are considered highly reliable. Without in-
cluding a more realistic human response and assessment time, current system perfor-
mance estimates may be overly optimistic.

We previously developed a model to optimize the design of a PPS [13]. Building
on that model, we developed a new model to analyze the impact of nuisance alarm
rates on operator performance and overall system performance. The NAR/FAR level
and the associated alarm queueing effect for a proposed system design impact the
speed at which the operators will respond to alarms, which in turn affects the amount
of time the response force has to interrupt the intruder.

2 Physical Protection System (PPS)

The goal of a physical protection system (PPS) is to use detection, delay and response
to prevent an adversary from reaching a target [2]. Detection is the discovery of an
adversary when a sensor detects an abnormal event. A person assesses the alarm to
determine if it is valid (an adversary is detected) or invalid (a nuisance or false alarm).
Delay is the use of obstacles to increase the adversary task time. Obstacles can be
passive barriers (e.g., locks, fences, and Jersey walls) or active barriers (e.g., engage-
ment by the response force, pop-up vehicle barriers). Response is the actions taken by
the response force to prevent adversary success.

Figure 1 shows the adversary task timeline and the relationship to the three PPS
functions. The total time for the adversary to accomplish their goal is labeled Adver-
sary Task Time. The Adversary Task Time is impacted by the delay provided by the
PPS. Any delay provided by the PPS before detection (the dotted line labeled Adver-
sary Undetected) does not count towards system effectiveness. After the first alarm at
time T, the alarm information is assessed to determine if it is valid or a false or nui-
sance alarm. If the alarm is assessed to be valid at time T, the alarm information is
communicated to the response force. Additional time is required for the response
force to deploy and respond to the adversary. The time at which the response force
interrupts the adversary is Ti. If the adversary is not interrupted, they will complete
their task at time Tc.
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Fig. 1. Relationship between PPS functions (delay, detect, respond) and the adversary task
timeline.

3 PPS Design Optimization Model

We previously developed a model to optimize the design of PPS [13]. We use proba-
bility of detection, probability of interruption, delay time, and response time as de-
fined by [2] as elements in our model. We represent the problem as an attacker-
defender model, in which the attacker (adversary) has perfect knowledge of the secu-
rity measures in place. The attacker’s goal is to reach a specific target which is pro-
tected by a physical security system. In this model, the defender is the designer and
operator of the security system. The defender’s goals are to minimize investment cost,
minimize the nuisance alarm rate and false alarm rate (NAR/FAR), and maximize the
probability of interrupting the adversary. The probability of interruption (P;) is the
probability that the travel time of the security response force will be less than the
travel time remaining for the attacker once they have been detected, allowing inter-
ception before the target has been reached. We use the P; given detection as the rele-
vant measure of interest for the quality of the path from the perspective of the attack-
er.

The model is not a simulation of the attacker attempting to reach the target. In-
stead, the model performs an implicit enumeration of all attacker paths [4, 5]. For
each PPS design solution, an algorithm explores the paths the attacker can take to
calculate the worst (lowest) Py [3]. This P; is then assigned to the solution. Increasing
the Py is accomplished by adding detection and delay security measures (such as cam-
eras and fences). Each technology investment has an associated cost and NAR/FAR.

The goal of the optimization is to suggest which technologies to place at which lo-
cations. The model only places barriers and sensors outside and on the exterior of
buildings. The final output is a Pareto frontier that identifies a collection of efficient
solutions. This allows a decision maker to identify an acceptable trade-off between
the probability that the intruder is interrupted, investment costs, and NAR/FAR.



4 Operator Performance Model

We developed an operator performance model to begin including a more detailed
representation of operator behavior with a goal of analyzing the impact of alarm rates
on operator performance and on overall system performance. We chose to focus on
two impacts of alarm rate on performance. First, dependent on the alarm assessment
time, there is a maximum number of alarms a single operator can assess in a day.
Second, the alarm rate can affect the operator’s trust in the alarm system’s reliability.

4.1 Alarms as a Queue

Standard PPS assessment methods typically assume that the alarm station operator is
ready to begin assessment as soon as the intruder alarm is generated. However, the
operator may be busy assessing other alarms, thus delaying detection. There is also a
maximum number of alarms that can be assessed in a day. When the alarm rate is high
enough, the operator(s) may not be able to assess all of the alarms in the queue, which
can lead to missed detections.

To model the arrival and assessment time of alarms more realistically, we use a
queueing model. Our approach is to shift the mean of the response time distribution
by adding the steady state results of a queuing model which assumes there are k inde-
pendent servers and that all alarms generated are examined in the order received. We
assume that the alarms are independent of one another and arrive via a Poisson pro-
cess (M). We also assume that the service time for an alarm is arbitrarily distributed
(G) and that there are k operators examining the alarms. In queueing notation, this
implies an M/G/k queue.

Gans [14] gives a classical result that a reasonable approximation for the average
waiting time per alarm in the queue is as follows.

2
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where C is the coefficient of variation of the service time distribution, and the
E[WM/M/"] is as follows.
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erators, and p is the mean of the service rate distribution.

P, is the probability that there are zero alarms in the system and is computed as fol-
lows.
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Generally, this approximation works well for operators in the tens, which we as-
sume to be a plausible range for this application.

Strengths of this approach are that it is tractable and allows us to represent invest-
ment in the operators that examine alarms. The weakness is that there may be priori-
ties among the alarms, which this approach ignores.

4.2 Operator Trust in the Alarm System

In the standard PPS assessment methods, the operator performance can be included in
the probability of detection (Pp) as follows.

PD = PsXPA_ (4)

where Pg is the probability that a sensor detects the abnormal event, and P, is the
probability that the cause of the alarm is accurately assessed by the operator. P, does
not include the operator’s response rate, so these methods do not account for operator
behavior that deviates from policy and training, such as ignoring alarms.

To better represent operator behavior, we allow the system NAR/FAR to effect op-
erator response time. First, since the original PPS design model focuses on the opti-
mization of technology investments, operators are added as an investment item with
an annual cost per operator. More operators can deal with higher alarm rates, but this
will increase investment costs. Second, system NAR/FAR rate affects operator re-
sponse times. Operator distrust in the system is quantified as a delay in response time.
Since the original model uses P; as a measure of quality for solutions, we include
delay in response time in our calculation of P; in order to better anticipate the true
performance of a design in practice.

The operator performance model requires the following inputs, to be provided by
the site physical security expert. Each sensor type has an alarm rate (which includes
correct detections, NAR and FAR) per day. The sensor alarm rates are aggregated to
obtain the system alarm rate per day. The site will have a maximum number of opera-
tors that they are willing to hire k. The operator has an average assessment time for a
single alarm AT. Many alarm station operators perform a primary task in addition to
monitoring alarms [2, 15], so there will be an average lag time, L7, when the operator
has to switch tasks to respond to an alarm.

As the sensors’ Pg increases, the NAR also increases, and the operator’s trust in the
system decreases. This causes an increase in response times [10, 16, 17, 18], which
we call the trust delay time 7DT. We bin the alarm rates into categories of low, medi-
um and high, based on acceptability levels in industry standards EEMUA Publication
191 [19] and ANSI/ISA-18.2 [20], which result in proportional trust delay times. We
define the alarm rate levels for a single operator. The low category signifies the max-
imum alarm rate deemed to be acceptable, with high operator trust. The medium cate-
gory signifies the maximum alarm rate deemed to be manageable. The high category
contains alarm rates above the medium category and is deemed to be over-demanding

The operator’s total response and assessment time OAT for a single alarm is calcu-
lated as follows:

OAT = AT+ LT +TDT . 5



where the TDT value is selected based on the system NAR/FAR category. OAT is
used to calculate u in the queueing model.

We did not include the trust delay time or allow variability in Ps or P, in the origi-
nal model. Since each solution on the Pareto frontier represents a unique PPS design
solution, the inclusion of additional variables would make it difficult to quantify the
impact of each variable on the probability of interruption. Instead, the operator per-
formance analysis begins with a single PPS design solution generated by the original
model. The number of operators is varied from 1 to k. The Ps for each sensor type and
the P, for operators are varied across a range provided by the site physical security
expert. The alarm rate is calculated as a function of Ps in lieu of actual performance
data.

The goal of this second model is to identify the acceptable trade-off between the
system performance P,, cost of employing more operators, Ps, and the NAR.

5 Hlustrative Analysis

For our analysis, we assume a site size of 400m x400m, with a single target at the
center of the site. The baseline architectures are generated using the PPS design opti-
mization model, using a single barrier type (fence), a single sensor type with Ps=0.9,
and P, = 1.0. We selected the PPS design option with the highest P;.

Since we did not have access to actual operator performance data, we looked for
data in the literature. We found a small set of studies that looked at changes in re-
sponse time due to system reliability [10, 16, 17, 18, 21], but the target identification
tasks were not analogous to alarm station operator tasks. Due to lack of data, the val-
ues used are notional (see Table 1).

We calculated the NAR/FAR categories based on an operator assessment time of
45 seconds, which gives a maximum possible rate of 1,920 assessments performed per
day. The queueing model showed this value to be too high, even with no trust delay.
We set this as the medium category threshold and set the low category threshold to
half of that value. Increasing sensory sensitivity increases the rate of nuisance alarms
[2], so we created the sensor alarm rate function (Table 1) to generate a range of
alarms based on the Pg, from 1 alarm at P = 0.3 to 10 alarms at P =0.9.

We performed two experiments: one which included trust delay in the assessment
time and one that did not. First, the highest P; PPS architecture with no trust delay was
generated (Figure 2, a) and was used to compare the impact of no trust delay versus
trust delay on system performance. Second, , the highest P; PPS architecture with trust
delay was generated (Figure 2, b) and compared to a second design with fewer sen-
sors (Figure 2, c) to analyze the trade-offs in system performance Pj, ten-year cost,
number of operators, Pg, and the NAR.
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Fig. 2. The PPS architectures for Trust/No Trust Delay (a) and Low Sensor (b)/High Sensor (c)
experiment conditions. The target is protected by fences and sensors.

Table 1. Notional values used in all of the operator performance model experiments.

Input Variable | Notional Values for Experiments
Max number of operators k 5
Operator assessment time AT 45 seconds
Coefficient of variation in 0.1 (assume standard deviation is 10% of a mean
assessment time ¢ with Gaussian distribution)
Probability of assessment P, range from 0.6 to 1.0 in 0.1 steps
Lag time for task switching LT 1 second
low: 0 seconds (high trust, immediate response)
Trust delay time categories TDT | medium: 10 seconds
high: 20 seconds
low threshold: 960 alarms/day or 40 alarms/hour
Alarm rate categories medium threshold: 1,920 alarms/day or 80
alarms/hour
high threshold: > 1,920 alarms/day
Sensor alarm rate 12 * (Pg)*
Sensor probability of detec- Py range from 0.3 to 0.9 in 0.05 steps

tion
70 seconds (assume standard deviation is 10% of a

R nse force tim . . NS
esponse force ime mean with Gaussian distribution)

5.1 No Trust Delay Versus Trust Delay

The baseline architecture for this experiment is three fences surrounding the target
with 272 sensors (NAR/FAR range 272-2720 alarms/day) across the site (Figure 2).
The best P; = 0.9992 with 3operators. The operator performance model varies the
number of operators, Ps, and Pa. The step effect seen in the graph in Figure 3 is due to
increases in Pg that are not significant enough to raise the NAR per the sensor alarm
rate function (see Table 1).




No Trust Delay Condition. This experiment excluded the trust delay time from as-
sessment times to establish a baseline and to show the impact of the queueing model.
Figure 3 shows the average processing time for a single alarm, which includes the
queue wait time and the operator assessment time. The higher times indicate a longer
queue. The queueing model shows that even at the low alarm rates, the average pro-
cessing time is higher than the operator assessment time due to queue wait times.
With the notional values used, one to two operators are most sensitive to increasing Ps
(which increases the NAR), with minimal impact on operator groups of size three to
five.

The higher alarm processing times negatively affect system performance in terms
of Py. Higher Pg lead to higher P, for all P4, as seen in Figure 4, a and Figure 5, a for
three to five operators. However, the increased alarm processing times for one to two
operators reduce the maximum P; that can be achieved. When P; drops to zero, the
NAR level overwhelms the operator, who can no longer clear the queue.

Trust Delay Condition. The effects of the trust delay are seen for one to two opera-
tors (Figure 3). For one operator, the processing time jumps when the medium trust
delay time is added. For two operators, the processing time jumps when the high trust
delay time is added. Trust delay has no impact on three to five operators, which have
the same processing times as the no trust delay condition.
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Fig. 3. Average processing times for a single alarm (in minutes) for the no trust/trust delay
conditions. No trust/trust delay have the same values for the three operator group. Four and five
operator groups have similar results to the three operators, so they are not shown.

As in the no trust delay condition, the increase in alarm processing times impacts
the maximum P; that can be achieved. The dip in the one operator P; curve in Figure
4, b is caused by the addition of the medium trust delay and occurs for all P,. The
decline in the P; curve for two operators is caused by the addition of the high trust
delay and is most visible for the lower P, = 0.6 and 0.7. Figure 5, b shows that for the
highest NAR level (Ps = 0.9), the longer processing times for two operators (Figure 3)
greatly reduce the system’s Py for all P.
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Fig. 4. System performance for operator P, = 0.7 improves as the Pg increases. The higher
NAR levels have a negative impact on one to two operators. In both conditions, three to five
operators have the same values.
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Fig. 5. Comparison of system performance P; when P = 0.9 for the no trust/trust delay condi-
tions as operator P, increases. P; = 0 for one operator. In both conditions, three to five operators
have the same values.

5.2 Low Versus High Number of Sensors

The baseline architecture for this experiment is two fences surrounding the target
(Figure 2 b, c¢). The high sensor architecture has 324 sensors (NAR range of 324-3240



alarms/day) across the site and has a ten-year cost of $115M. The best P; = 0.9995
with five operators. The low sensor architecture has a sensor gap around and within
the fences to simulate a work area that is not alarmed in order to avoid nuisance
alarms. The best P; = 0.9898 with three operators, 184 sensors (NAR range of 184-
1840 alarms/day) and has a ten-year cost of $67M.

Let us assume a goal of P; > 0.8. Initially, we assume an operator P, = 1.0. We ex-
clude the single operator (Figure 6, a) because he can only achieve the target P; for a
narrow band of Ps. In the low sensor solution, two operators can achieve P; > 0.8
(Figure 6, b). The high sensor solution achieves better system performance at lower
Ps, but eventually the two operators’ P, declines to zero. For the low sensor with two
and three operators, the performance curves are almost identical. Therefore, the low
sensor solution with two operators appears to be the better choice since it is signifi-
cantly cheaper and has lower NAR than any high sensor solution.

What if operator Po = 0.6? The low sensor solution can never achieve P; > 0.8.
With three operators, the high sensor solution meets the target, but P, eventually drops
below the target (Figure 6, c). With four operators, the high sensor solution meets the
target (Figure 6, d). The high sensor solution with four operators achieves the best
system performance, but costs $105M. The system owner will need to decide if the
increased performance warrants the increased cost and higher NAR.

Py=1 P,=06 Px=1 P.= 06
1 1 -

". (a) 1 Operator 0.8 "," ) (c) 3 Operators

: i ~— High Sensor 06 /" ‘/" — High Sensor

i ! $74.92M 04 $94.92M
-_— ) ] .
ﬂ-“ ': '; ==== Low Sensor 0.2 ===~ Low Sensor
g ! A $46.92M 0 $66.92M
E 0"5 0'% Q"\ QC_’) Q"‘, 0" Ql\ Q‘?’ Q“J Q‘p Q"\ 09 Q?J Q‘p Q"\ Q"”
=
=
.g P.=1 P,=06 Py=1 P,=06
s 1 -
g (b) 2 Operators 08 -/ .~ .+ (d) 4-5 Operators
E — High Sensor 06 -/ ‘.'“’ — High Sensor
< §84.92M 04 $104.92M
Q ==== Low Sensor 0.2 —

Low Sensor
Y $56.92M 0 $76.92M
R’ P o o? ot o o7 o o o?

Probability of Sensing, P Probability of Sensing, Pg

Fig. 6. Comparison of system performance P; for the low/high sensor solutions when operator
P, =0.6 and 1.0. In both conditions, five operators have similar performance to four operators.



6 Conclusion and Future Work

With limited budgets, sites are searching for technologies that can reduce the number
of staff employed, thereby reducing the overall cost of the security system. However,
more technologies and sensors will increase the nuisance and false alarm rates
(NAR/FAR), which in turn will require more operators to maintain current system
performance levels. While analyses of security systems often ignore operator perfor-
mance, its inclusion is important to improving the accuracy of system performance
estimates. Our illustrative analysis demonstrates that current methods that do not ac-
count for operator performance produce optimistic estimates.

First, the queueing model shows that even at the low alarm rates, the average alarm
processing time can be higher than the operator assessment time due to queue wait
times. In our illustrative analysis, the lowest processing time was well above the as-
sessment time, even for the larger groups of operators.

Second, system owners need to consider the current alarm rate generated by their
system and the additional alarms generated by new technologies. There is a maximum
the number of alarms that can be assessed during a day, which can lead to missed
detections when the system alarm rate exceeds this threshold. Our model can help
system owners understand where these thresholds occur.

Third, operator assessment performance can have a major impact on system per-
formance. If we assume an overly optimistic assessment performance when analyzing
architectures, then the system performance will also be lower than anticipated.

Future work will include adding alarm priorities in the queueing model and adding
response rate to the probability of assessment in our model, which adds the scenario
where operators silence alarms without assessment. There are many more details that
can be added, but adding more realism to the operator’s probability of assessment
requires more studies. There is limited data on how well alarm station operators can
detect a target against various backgrounds on a video monitor. Studies are needed to
obtain a baseline of operator assessment performance, including the impact of factors
such as the vigilance decrement, the work environment, and the psychophysical char-
acteristics of the assessment tasks.
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