

ALEGRA Based Computation of Magnetostatic Configurations

Michael Grinfeld, Jason MacDonald,
ARL

John Niederhaus,
SANDIA

UNCLASSIFIED

OUTLOOK

ARL

About ALEGRA MHD

Ellipsoid in electrostatic or magnetostatic field (exact solution)

Validation and Verification of ALEGRA MHD

Conclusion

Grinfeld, M., Niederhaus, J., and Porwitzky, A., Using the ALEGRA Code for Analysis of Quasi-Static Magnetization of Metals, ARL-TR-7415 SEP 2015.

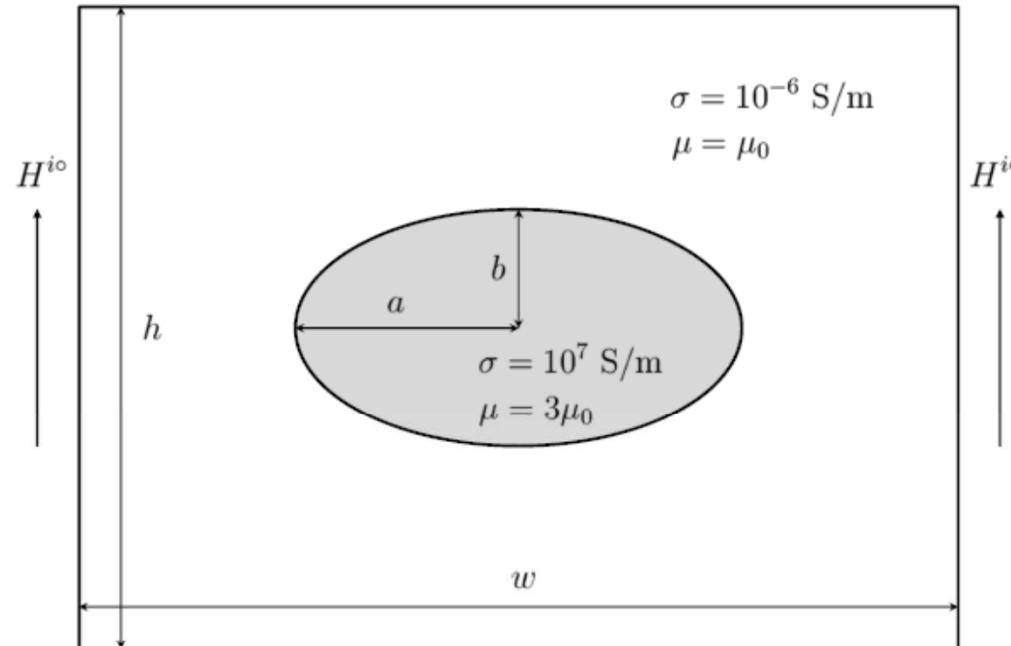


Fig. 1: Schematic diagram (not to scale) showing problem to be considered.

The boundary value problem

The PDE

$$\nabla_i (\mu H^i) = 0, \quad H^i = -\nabla^i \eta \rightarrow \nabla_i \nabla^i \eta = 0$$

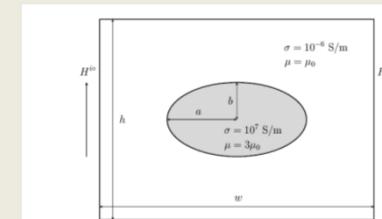


Fig. 1: Schematic diagram (not to scale) showing problem to be considered.

The matrix/inclusion BC

$$[\eta]_+^+ = [\mu \nabla^i \eta]_+^+ N_i = 0$$

Conditions at infinity

$$\eta \rightarrow -H_i^\circ z^i \text{ at } |z| \rightarrow \infty$$

The exact solution of BVP

$$\text{Inside inclusion} \quad \eta_- = -K_i z^i$$

$$\text{Inside matrix} \quad \eta_+ = A^i \nabla_i \Theta - H_i^\circ z^i,$$

The Newtonian potential

$$\Theta = - \int_{\omega} d\omega^* \ln \left| \vec{z} - \vec{z}^* \right| \quad \Theta_-(z) = C - \frac{1}{2} Y_{ij} z^i z^j$$

The boundary value problem

The PDE $\nabla_i (\mu H^i) = 0, \quad H^i = -\nabla^i \eta \rightarrow \nabla_i \nabla^i \eta = 0$

The matrix/inclusion BC $[\eta]_+^+ = [\mu \nabla^i \eta]_+^+ N_i = 0$

Conditions at infinity $\eta \rightarrow -H_i^\circ z^i \text{ at } |z| \rightarrow \infty$

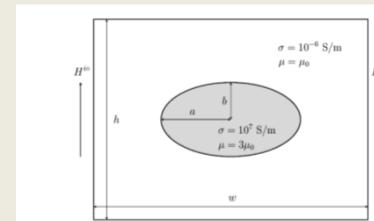


Fig. 1: Schematic diagram (not to scale) showing problem to be considered.

The exact solution of BVP

Inside inclusion $\eta_- = -K_i z^i$ **Inside matrix** $\eta_+ = A^i \nabla_i \Theta - H_i^\circ z^i$,

The Newtonian potential $\Theta = - \int_{\omega} d\omega^* \ln \left| \vec{z} - \vec{z}^* \right|$ $\Theta_-(z) = C - \frac{1}{2} Y_{ij} z^i z^j$

The Newtonian potential

$$\Theta = - \int d\omega^* \ln \left| \vec{z} - \vec{z}^* \right|$$

$$\Theta_-(z) = C - \frac{1}{2} Y_{ij} z^i z^j$$

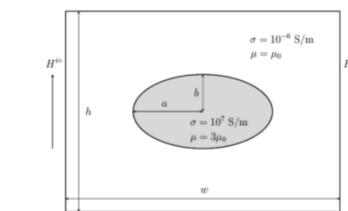


Fig. 1: Schematic diagram (not to scale) showing problem to be considered.

The magnetic field inside the inclusion

$$\begin{aligned} \left\| K_1 \right\| &= \left\| \frac{a_1 + a_2}{a_1 + \mu a_2} H_1^\circ \right\| \\ \left\| K_2 \right\| &= \left\| \frac{a_1 + a_2}{\mu a_1 + a_2} H_2^\circ \right\| \end{aligned}$$

The Maxwell sub-system

$$z^{ijk} \nabla_j E_k = -\frac{1}{c} \frac{\partial E^i}{\partial t}, \quad z^{ijk} \nabla_j H_k = \frac{4\pi}{c} J^i,$$

$$\nabla_i E^i = 0, \quad \nabla_i H^i = 0$$

Hydrodynamics sub-system

$$\rho \left(\frac{\partial v^i}{\partial t} + v^j \nabla_j v^i \right) = -\nabla^i p + \rho q (E^i + z^{ijk} v_j H_k) - \rho v^i Q$$

$$\nabla_i v^i = 0$$

Boundary conditions

$$\left[E^i \right]_-^+ \tau_i = \left[H^i \right]_-^+ \tau_i = 0, \quad \left[D^i \right]_-^+ N_i = \left[B^i \right]_-^+ N_i = 0 \quad v^j N_j = 0$$

Grinfeld, M., Niederhaus, J., and Porwitzky, A., Using the ALEGRA Code for Analysis of Quasi-Static Magnetization of Metals, ARL-TR-7415 SEP 2015.

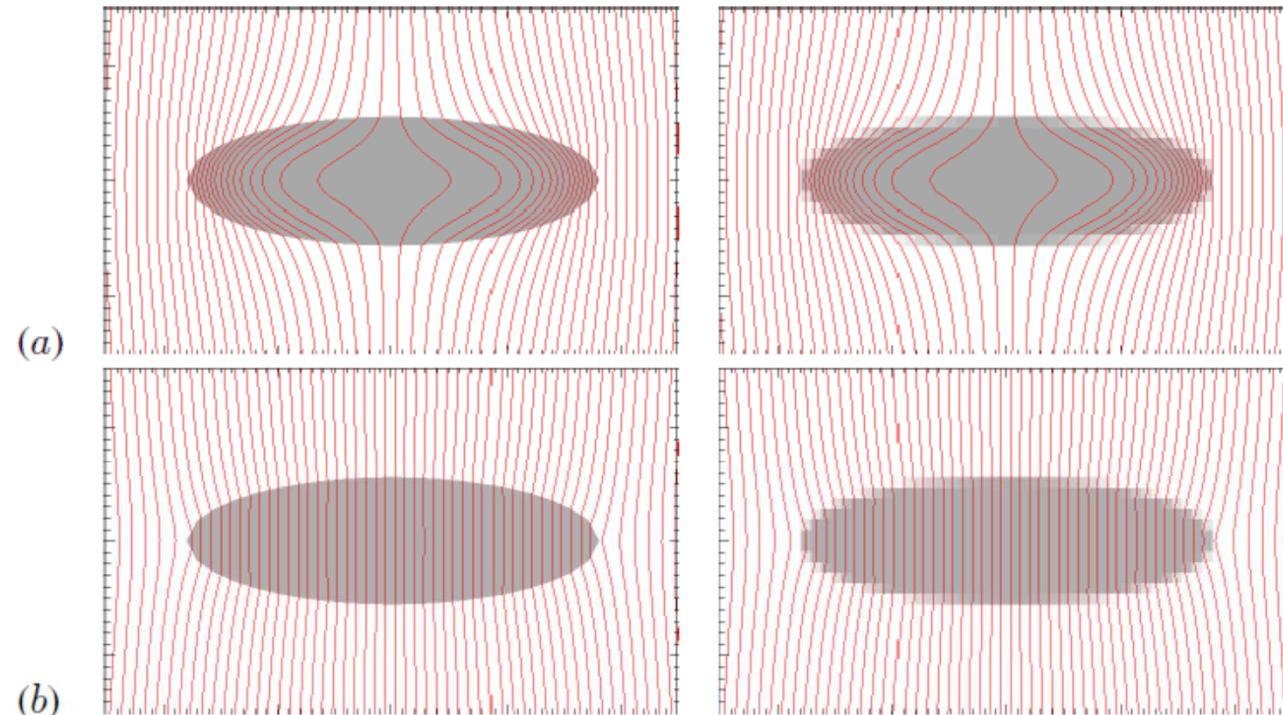
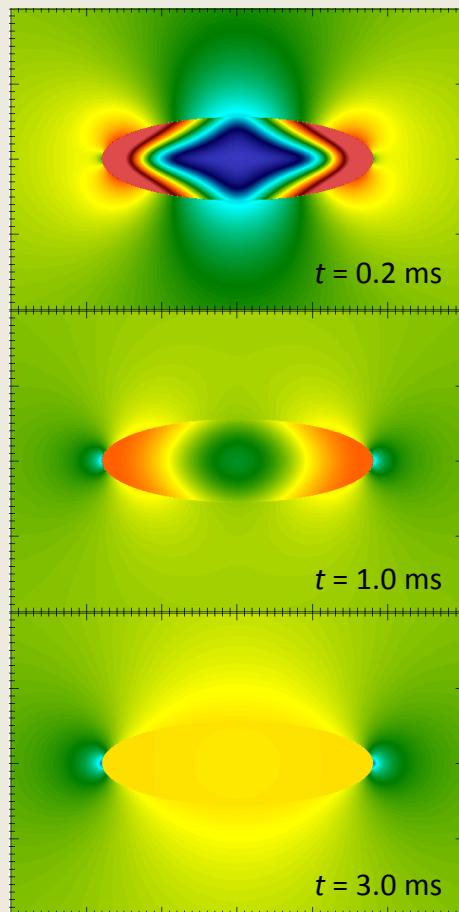
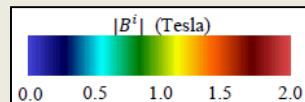
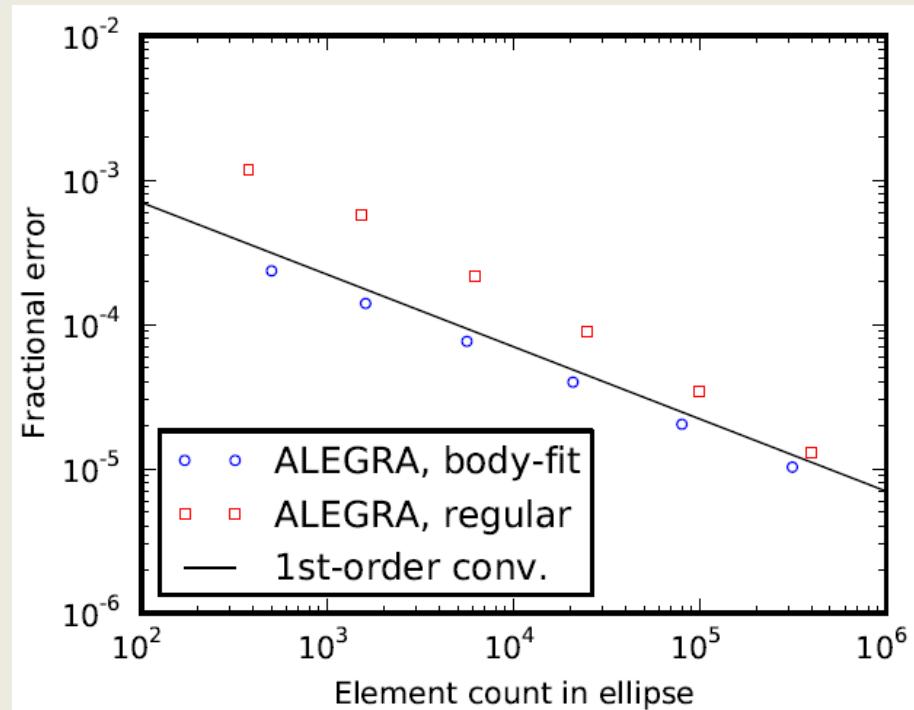


Fig. 3: Configuration of B^i field lines before *a*) and after *b*) after the equilibrium state is reached, for the body-fitted (left) and regular (right) mesh types. Simulation times: *a*) 0.2 ms, *b*) 3.0 ms.

Magnetic ellipse response to external field:



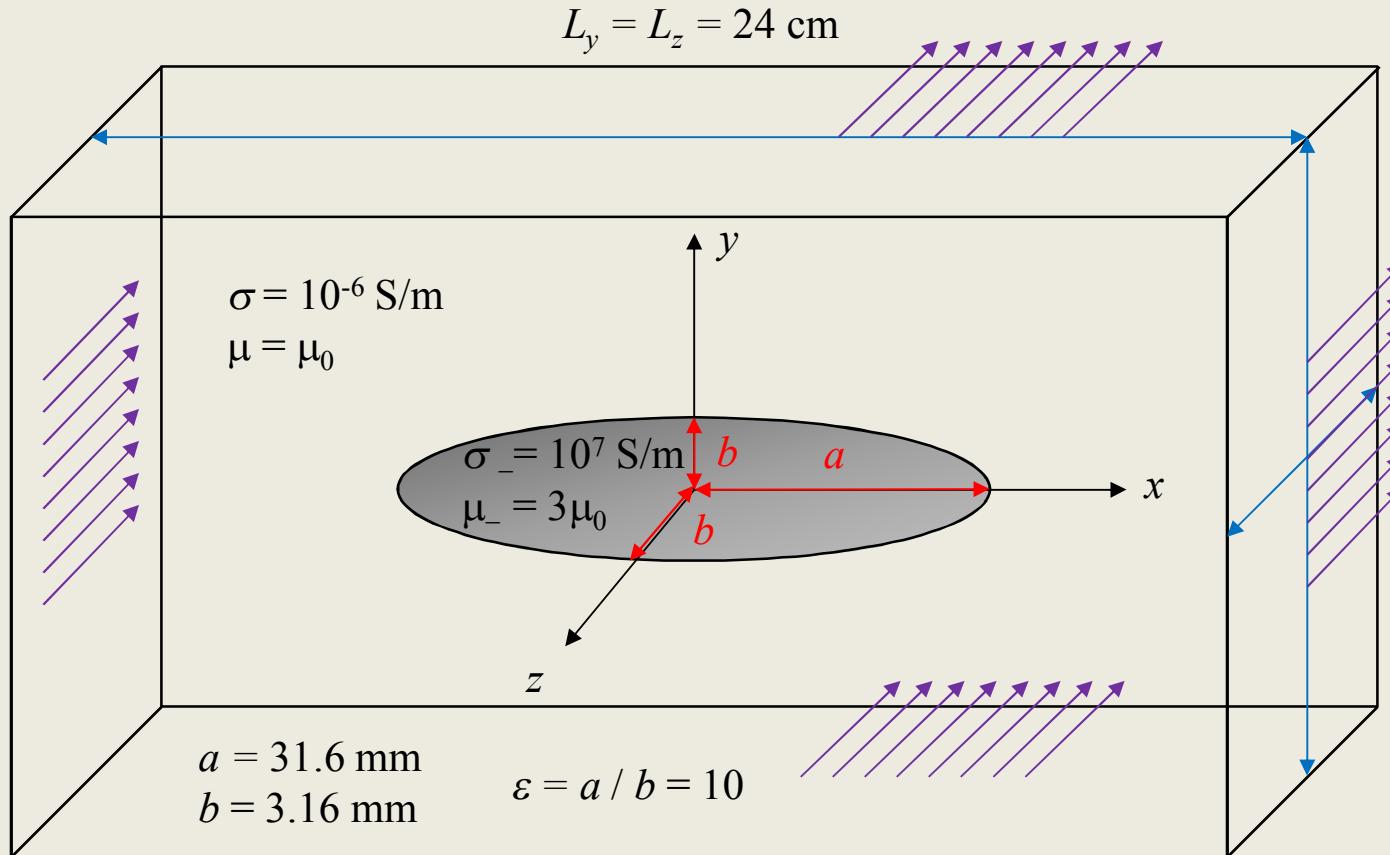
Convergence to analytic solution:



M. Grinfeld, J. Niederhaus, and A. Porwitzky, "Using the ALEGRA code for analysis of quasi-static magnetization of metals," U.S. Army Research Laboratory Technical Report ARL-TR-7415, 2015.

3D verification test

$$H^\infty = \frac{1}{\sqrt{3}\mu_0} (\hat{x} + \hat{y} + \hat{z})$$



$$L_y = L_z = 15 \text{ cm}$$

$$G = \frac{1}{2} Y_{axial} = 2\pi - \frac{2\pi\varepsilon}{(\varepsilon^2 - 1)^{3/2}} \left(\varepsilon\sqrt{\varepsilon^2 - 1} - \operatorname{arccosh} \varepsilon \right)$$

$$H_{||} = \left(1 + 2G \frac{\mu_- - 1}{4\pi} \right)^{-1} H_{||}^{\infty}$$

$$H_{\perp[2,3]} = \left(1 + (2\pi - G) \frac{\mu_- - 1}{4\pi} \right)^{-1} H_{\perp[2,3]}^{\infty}$$

1 → axial (x),	2 → transverse (y),	3 → transverse (z)
----------------	---------------------	--------------------

$$B_1 = \mu_- H_{||}$$

$$B_2 = \mu_- H_{\perp 2}$$

$$B_3 = \mu_- H_{\perp 3}$$

$B_1 = 1.6645 \text{ T}$

$B_2 = 0.8749 \text{ T}$

$B_3 = 0.8749 \text{ T}$

UNCLASSIFIED

Convergence study

ARL

N = elements spanning spheroid major axis

- $N = 40$ 134,400 elements
- $N = 80$ 1,075,200 elements
- $N = 160$ 8,652,800 elements
- $N = 320$ 70,090,384 elements

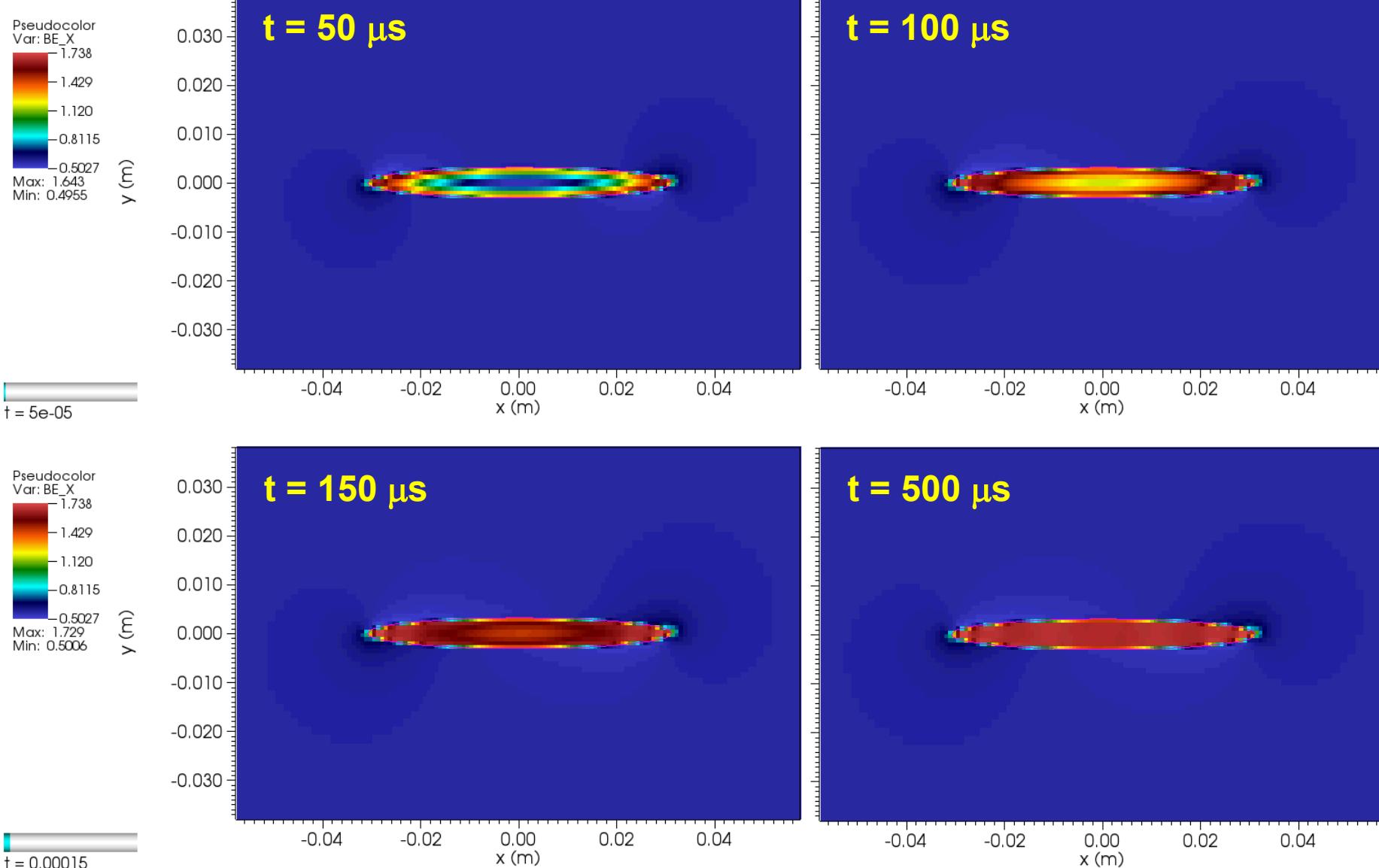
Mesh is rectangular, Eulerian, uniform in region of spheroid, graded by 4x near boundaries.

Error magnitude computed using the L2 norm relative to the exact solution:

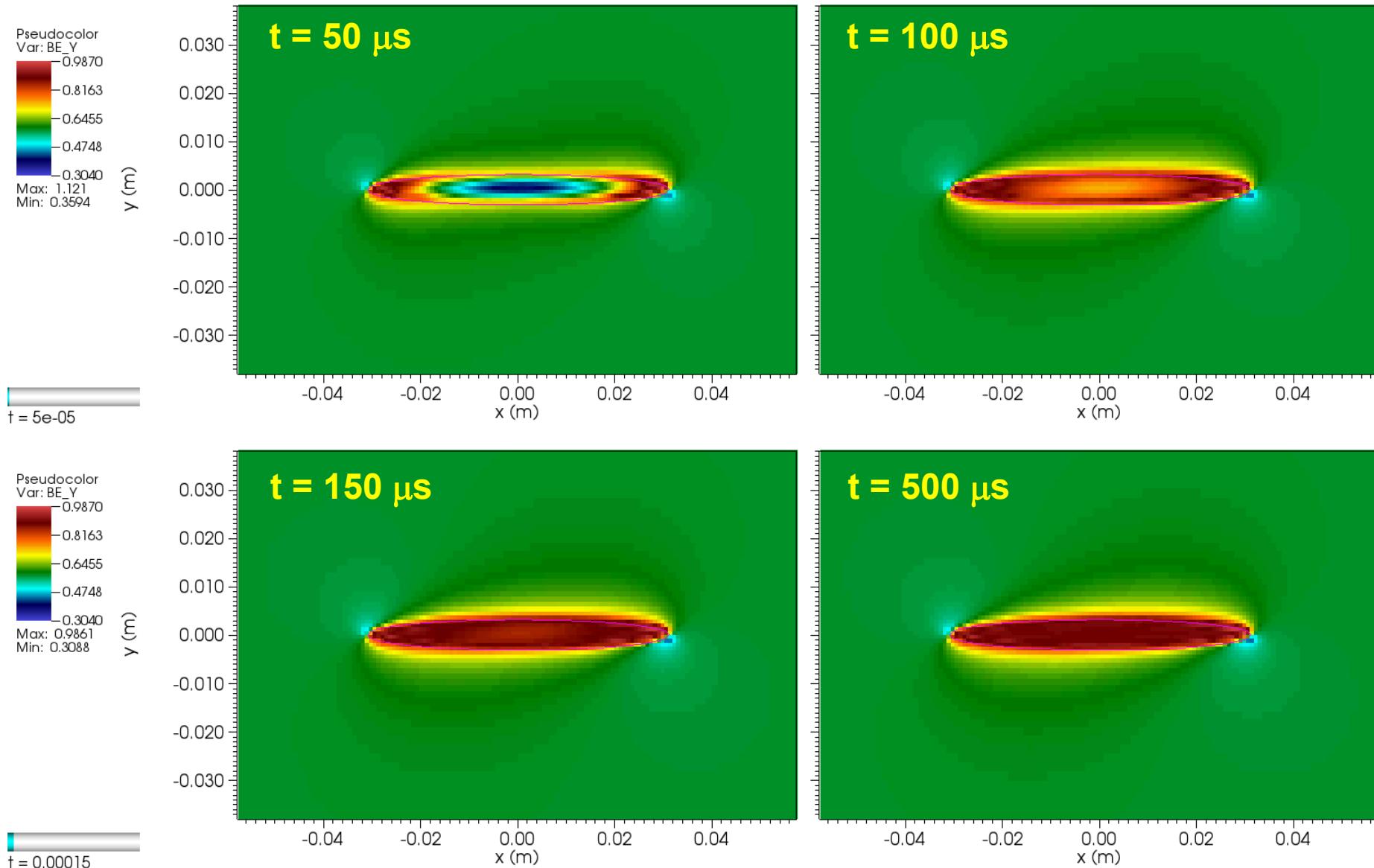
$$e = \sqrt{\frac{1}{N} \sum_{n=1}^N \frac{(B - B_{exact})^2}{B_{exact}}}$$

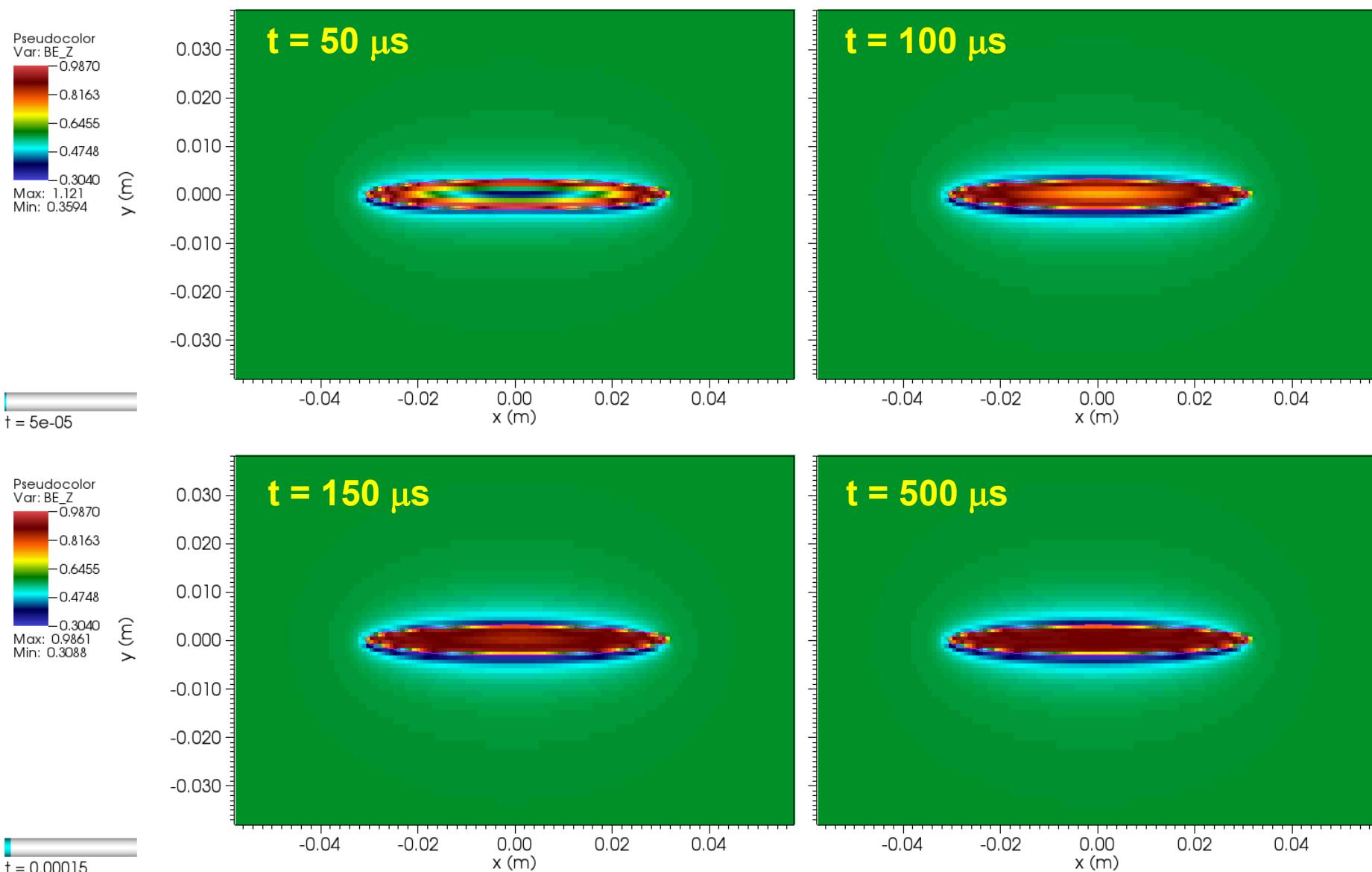
UNCLASSIFIED

The Nation's Premier Laboratory for Land Forces



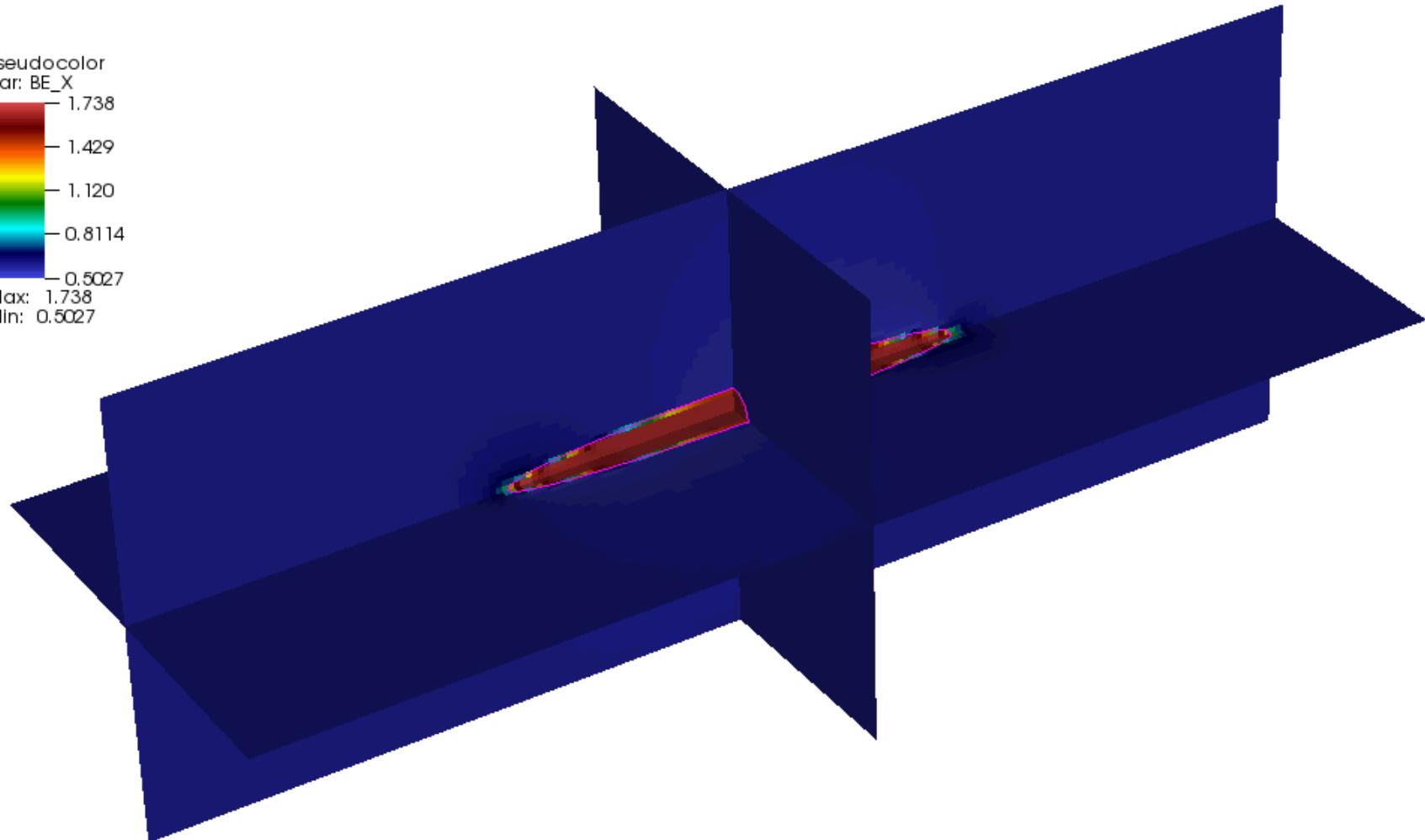
Time evolution ($N = 80$): B_y



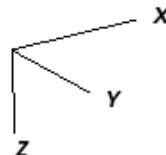
Time evolution ($N = 80$): B_z 

Solution at equilibrium: B_x

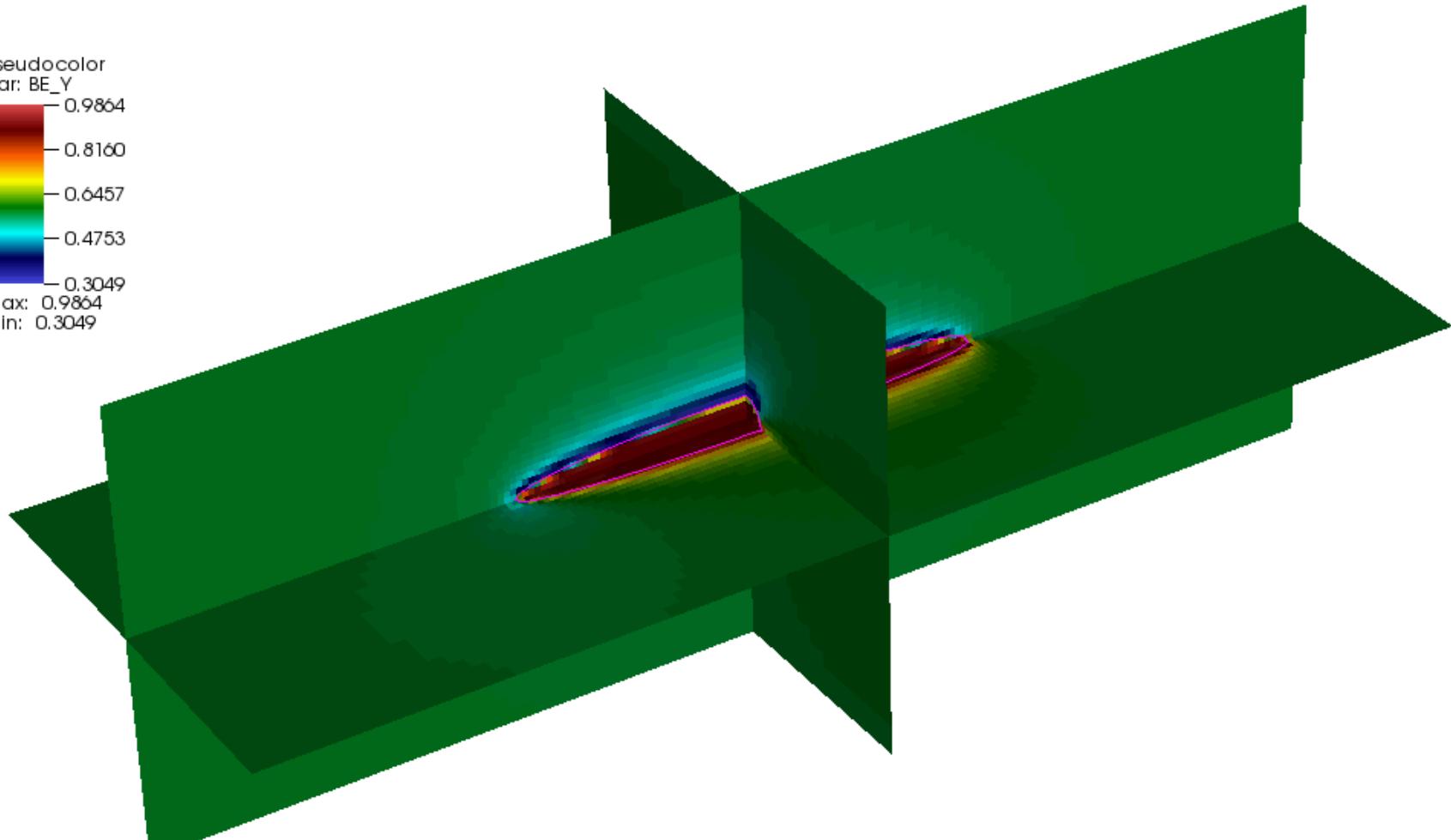
Pseudocolor
Var: BE_X
1.738
1.429
1.120
0.8114
0.5027
Max: 1.738
Min: 0.5027



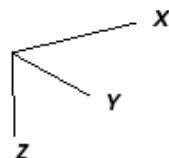
Pink line: surface of ellipsoid.



Pseudocolor
Var: BE_Y
- 0.9864
- 0.8160
- 0.6457
- 0.4753
- 0.3049
Max: 0.9864
Min: 0.3049

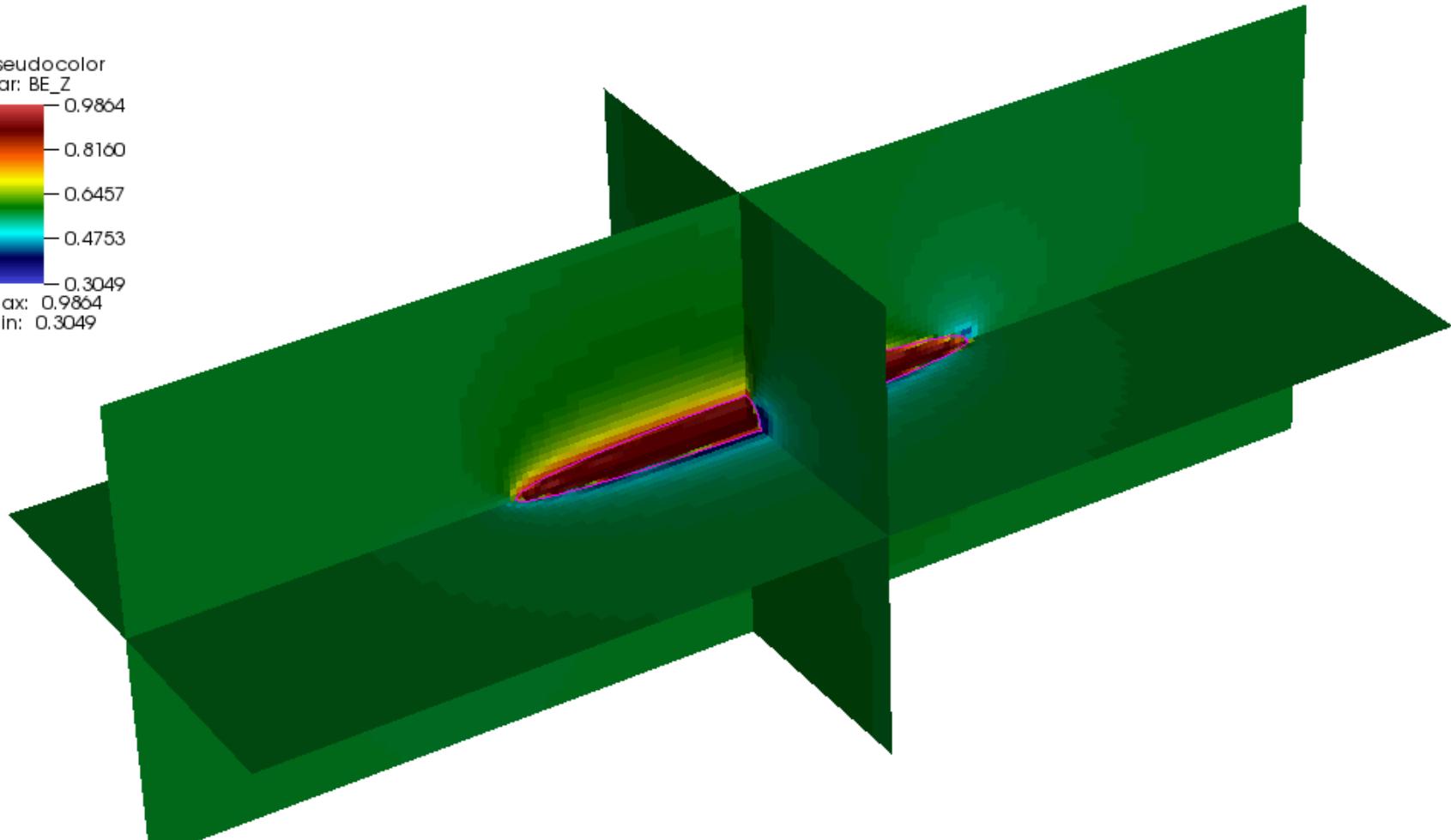


Pink line: surface of ellipsoid.

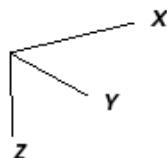


Solution at equilibrium: B_z

Pseudocolor
Var: BE_Z
- 0.9864
- 0.8160
- 0.6457
- 0.4753
- 0.3049
Max: 0.9864
Min: 0.3049



Pink line: surface of ellipsoid.



Magnetic field lines overlaid

Pseudocolor
Var: BE_X
1.738
1.429
1.120
0.8114
0.5027
Max: 1.738
Min: 0.5027

y (m)

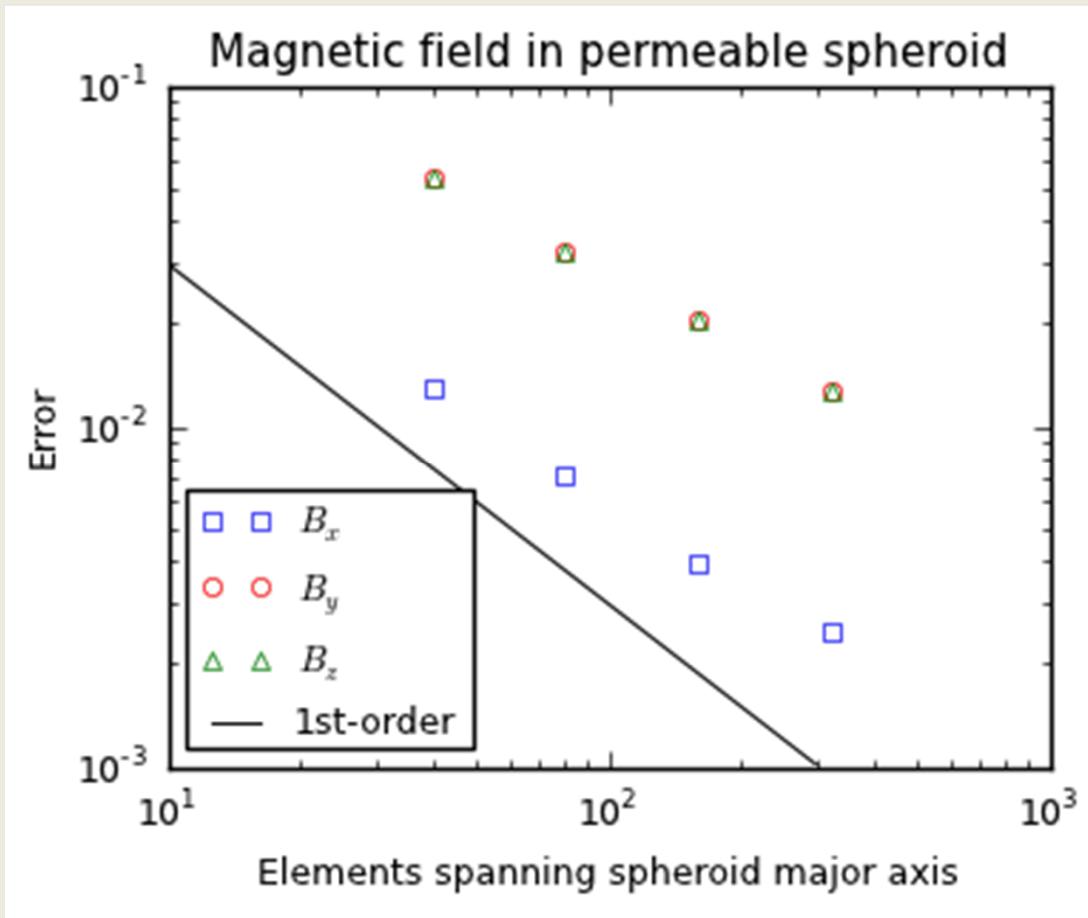
0.030
0.020
0.010
0.000
-0.010
-0.020
-0.030

-0.04 -0.02 0.00 0.02 0.04

x (m)

t = 0.00075

Convergence trend



Error computed using the L2 norm relative to the exact solution, in single-material elements only.

Average rate for B_x : 0.8

Average rate for B_y and B_z : 0.7

Convergence trend

The logo consists of the letters "ARL" in a bold, black, sans-serif font, with a yellow triangle above the "A".

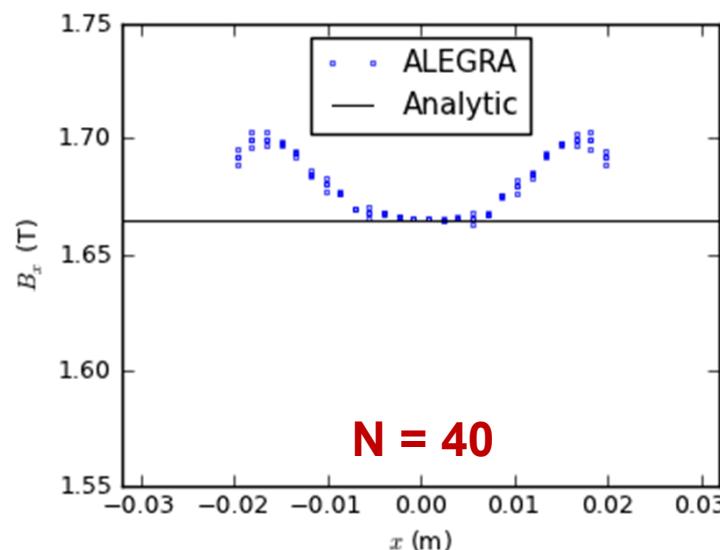
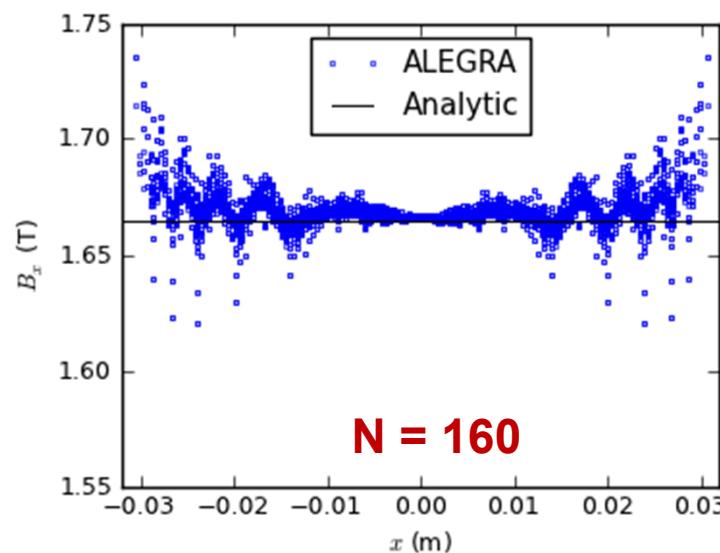
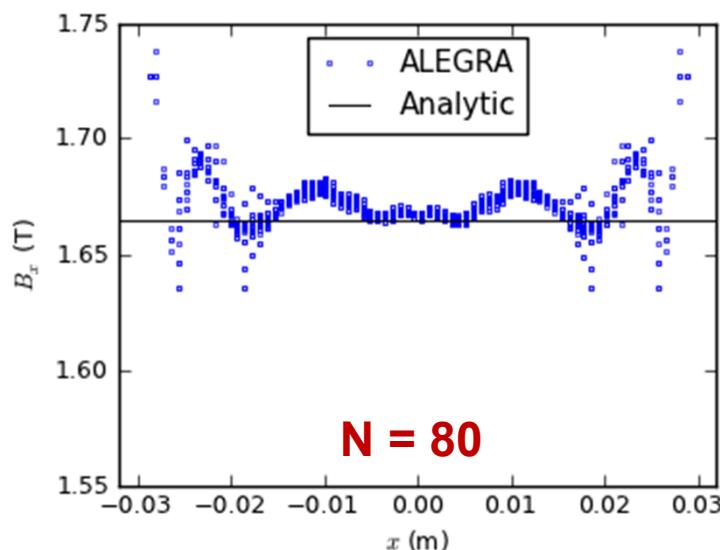
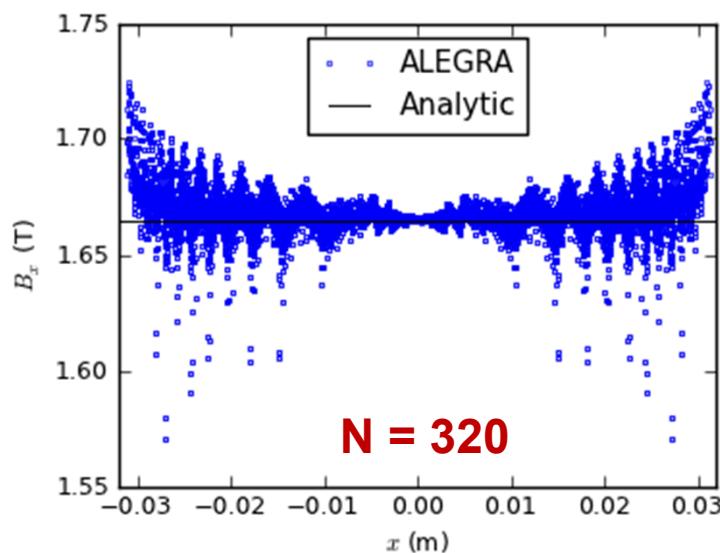
EXTRA SLIDES

U.S. ARMY
RDECOM[®]

UNCLASSIFIED

Scatter plots: B_x

ARL



The Nation's Premier Laboratory for Land Forces

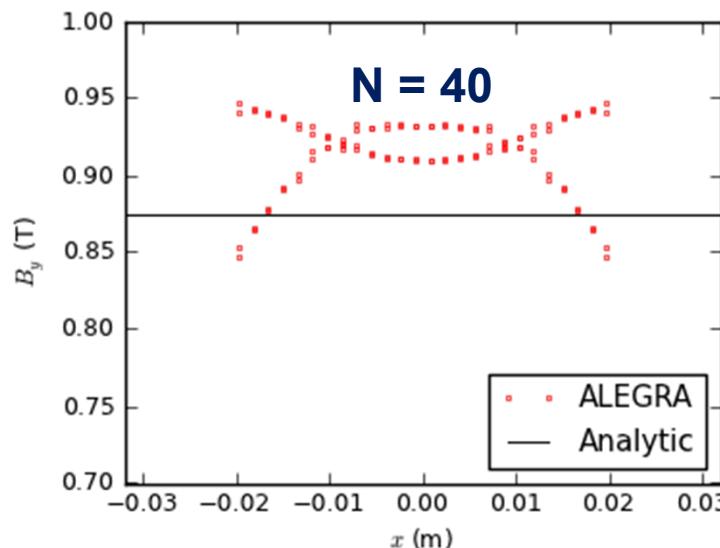
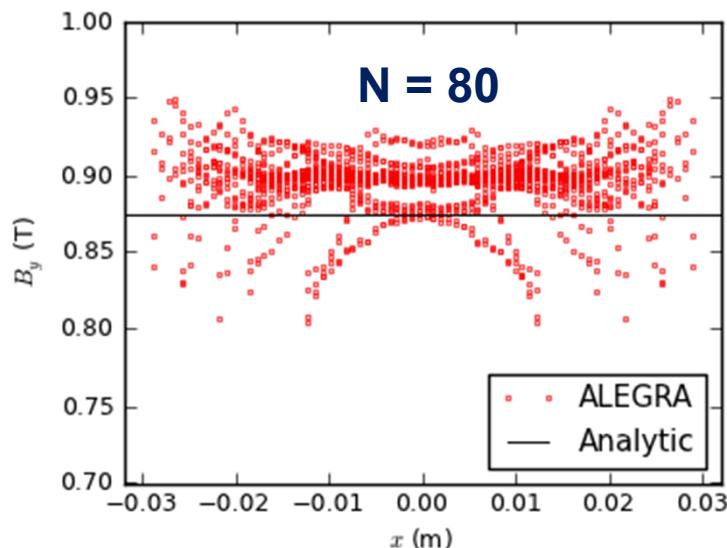
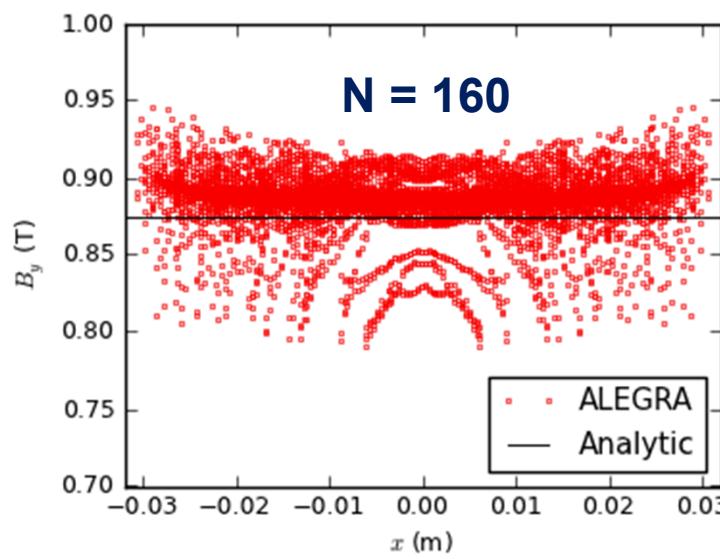
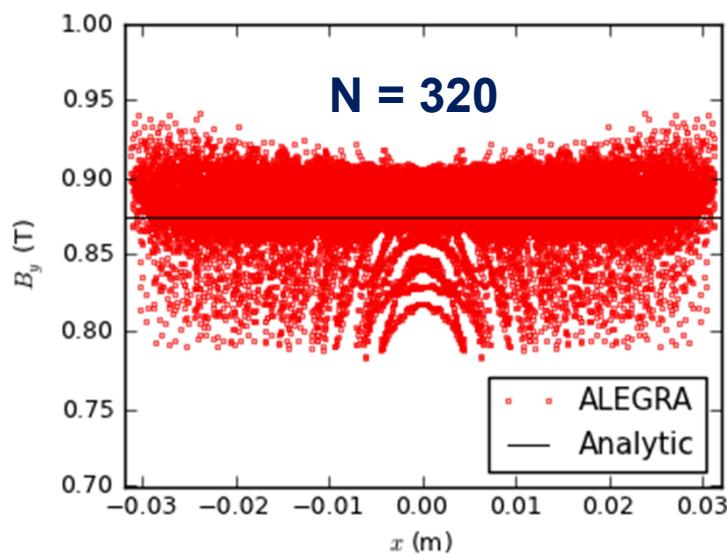
UNCLASSIFIED

U.S. ARMY
RDECOM[®]

UNCLASSIFIED

Scatter plots: B_y

ARL



The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED