SAND2016- 2141C

Design and Implementation of a Scalable HPC
Monitoring System

S. Sanchez, A. Bonnie, G. Van Heule,
C. Robinson, A. DeConinck, K. Kelly, Q. Snead
Los Alamos National Laboratory

Los Alamos, NM

J. Brandt
Sandia National Laboratories
Albuquerque, NM.
Email: brandt@sandia.gov

Email: (samsanchez||noranzyk||grahamvh||crobinson||ajdecon||kak||ajdecon||quellyn @lanl.gov)

Abstract—Over the past decade, platforms at Los Alamos
National Laboratory (LANL) have experienced large increases in
complexity and scale to reach computational targets. The changes
to the compute platforms have presented new challenges to the
production monitoring systems in which they must not only cope
with larger volumes of monitoring data, but also must provide
new capabilities for the management, distribution, and analysis
of this data. This schema must support both real-time analysis
for alerting on urgent issues, as well as analysis of historical
data for understanding performance issues and trends in system
behavior.

This paper presents the design of our proposed next-generation
monitoring system, as well as implementation details for an
initial deployment. This design takes the form of a multi-stage
data processing pipeline, including a scalable cluster for data
aggregation and early analysis; a message broker for distribution
of this data to varied consumers; and an initial selection of
consumer services for alerting and analysis. We will also present
estimates of the capabilities and scale required to monitor two
upcoming compute platforms at LANL.

I. BACKGROUND AND JUSTIFICATION

System monitoring for large-scale high-performance com-
puting (HPC) platforms is a difficult task which becomes
more challenging as the scale and complexity of the plat-
forms increases. Like the platforms themselves, HPC mon-
itoring systems are frequently comprised of many distinct
elements, interconnected by a variety of networks and with
access to multiple tiers of storage. Provisioning and managing
these systems is correspondingly complex and is made more
challenging when components may be located in different
information security domains and have significantly different
configurations in terms of operating system and application
software.

Los Alamos National Laboratory (LANL) hosts many plat-
forms from a variety of vendors with correspondingly different
architectures. Under the Alliance for Computing at Extreme
Scale (ACES), LANL and the Sandia National Laboratories
(SNL) are currently in the process of deploying Trinity [1], a

LA-UR-16-293982

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research.

Cray XC-40 compute platform which will include over 19,000
compute nodes and hundreds of special-purpose service nodes.

In this paper we will present our next-generation monitor-
ing system, specifically developed in response to the scale
and complexity of the new Trinity deployment. This system
includes several different data processing elements, forming a
scalable and flexible pipeline for analysis and alerting. We will
also describe the infrastructure we have developed to support
provisioning, configuration management, system updates, and
scaling the system based on compute platform requirements.
While monitoring Trinity is our immediate objective, we plan
to use this model for monitoring future clusters as well.

A. Monitoring Objectives

Drivers for our new monitoring system are based on three
key objectives: 1) multiple sources for data correlation 2)
data management and analysis over time, and 3) capturing
meaningful data.

1) Multiple sources for data correlation: HPC monitoring
covers a broad scope of potential data sources, including many
different system components with widely varied software
stacks such as compute nodes, switches, file systems, etc. Data
gathered from these sources must be correlated to provide
insight into system behavior. This requires capturing a large
quantity of data from disparate sources, each with their own
unique behaviors and interfaces.

2) Data management and analysis over time: The lifespan
of HPC platforms typically extends multiple years, and trends
in their behavior can be important in understanding their
performance over time. Given the large quantity of monitoring
data produced by these platforms at scale, management and
storage of this data is an important factor for enabling this
kind of trend analysis.

3) Capturing meaningful data: Through data analysis and
correlation, it may be determined that certain logs provide
a more meaningful notification of the state and health of a
cluster. This type of analysis allows us to reduce our data
storage requirements by eliminating noise in the logs.

B. Current Monitoring System

LANL’s current HPC monitoring system was designed
around Zenoss, an open-source monitoring tool which we

DUPLICATED FEEDS
TO DOWNSTREAM CONSUMERS

LOGGER

CLUSTER

CLUSTER

MOSTLY
SEGREGATED
FACILITIES DATA

FACILITIES

7/ % ZENOSS

RABBITMQ

SPLUNK

: SPLUNK

MON-BOX

MON-BOX

SEPERATE ZENOSS
+ SPLUNK INDEXERS
PER CLUSTER

SPLUNK
SEARCH
HEAD

ZENOSS
SEARCH
,,,,,,,,,,,,,, HEAD

Fig. 1. Current Monitoring Infrastructure

modified to meet requirements ([3], [4]). Our monitoring sys-
tem primarily utilized system logs, network logs, and hardware
logs from compute node chassis.

Figure 1 depicts our current monitoring system. Each HPC
platform is assigned a single dedicated monitoring server (the
mon-box). Log data for components associated with more
than one cluster such as shared networks and filesystems is
escalated to a shared central server (the Zenoss Search Head).

While this system functions well for most purposes, we have
experienced challenges with scaling. At high volumes of data
packets are frequently dropped, and complex events such as
cluster reboots can produce bottlenecks in the network layer
and result in failure of real-time monitoring. Zenoss stores
all its data in a MySQL database which presents additional
problems, as the ability to search through large amounts of
data using complex queries can take an unacceptable amount
of time to produce usable results.

As our goals for monitoring have expanded and evolved,
so has our infrastructure. The desire to perform data corre-
lation between network and cluster components led to the
introduction of Splunk which, while providing us with new
tools for analysis, lacks the flexible alerting capabilities of
Zenoss. Additionally sending full data streams to both Zenoss
and Splunk imposes the twin penalties of increased bandwidth
and data storage requirements.

C. New Metrics and Data Volumes

Although the current monitoring system has scaled reason-
ably well up until now, our latest addition to the data center,
Trinity, is a game-changer. At more than double the size of
our previous advanced computing platforms, Trinity requires
new capabilities in metric-gathering and the ability to process
far larger volumes of data than previously.

The data volume and bandwidth estimates for Trinity alone
are based on assumptions and calculations listed below. It is
expected that the full Trinity system will generate approxi-
mately 2 x 10'° individual data metrics per day. Assuming all
metrics are 64-bit integers, this translates into 15TB of raw
data per day. Note that we are exploring options to minimize
the storage space required.

Data sources include log messages and numeric metrics
from the platform as well as metrics we are collecting in-band
from each node, as described in Section III-C. The estimates
for data sizes and rates are based on those we see from our
Trinity testbed system, Trinitite, with a goal of a 1-second
collection interval for all numeric data. (Trinitite has the same
architecture as Trinity, but is a fraction of the size at 100
nodes.)

Data sizes and rate assumptions are as follows:

e Log files: ~ 10® lines/day, or ~ 10° bytes/day
e In-band data: ~7TB/day (unsigned long int)
e Data volume: 500 metrics/sec/node * 20,000 nodes
* 86,400 sec/day = 864 x 10° metrics/day * 8
bytes/metric = 6.9TB/day
e Data network traffic: 6.9TB/day + 86,400 sec/day =
80MB/sec = 640Mb/sec

e Out-of-band data: ~8TB/day (unsigned long int)
e Data volume:

e 100 cabinets * 285 cab metrics/cab = 28,500
cabinet metrics

e 5000 blades * 92 blade metrics/blade = 460,000
blade metrics

e 20,000 nodes * 604 node metrics/node =
12,080,000 node metrics

e Total = 12,568,500 metrics/sec * 86,400 sec/day
= 1.09T metrics/day = 8TB/day

Our plan is to capture all data for post processing and data
mining. The working set kept on the monitoring cluster at any
given time would be about 10% of the volume of raw data
but may involve functional combinations of larger fractions of
raw data.

II. DESIGN
A. Scalable and Modular Monitoring

A scalable and modular monitoring system requires a simple
but flexible design. For scalability the system must be capable
of handling enormous amounts of data from numerous sources.
Taking into consideration that log collection has data storage
constraints, a scalable system needs the ability to dynamically
provision additional log collectors as needed.

Our current monitoring system utilizes Zenoss and Splunk
as software applications for real-time monitoring and analysis;
however, a modular infrastructure must have the ability to
provision different images containing different applications.
The monitoring system can satisfy unique software require-
ments by creating application-specific images that contain the
appropriate OS, libraries, dependencies, etc.

In order to integrate software applications into a production
environment, we need the ability to modify configuration files
and have those modifications persist through system failures
and reboots. A scalable and modular monitoring system must
have the ability to manage system configuration files such
as user accounts, file permissions, firewalls, etc., as well as
application-specific configurations.

B. Data Collection and Transport

In designing the new monitoring system we focused on three
main principles: (1) run-time parallel analysis, (2) distribution
of data streams using a common message broker, and (3)
deployment of multiple data stream consumers for performing
different types of analysis.

1) Run-time parallel analysis: Given the anticipated vol-
ume and data rates, a single dedicated server with serial
processing tools is no longer adequate. The monitoring cluster
and data flow design is intended to enable parallel transport of
high volume/high-rate data (principally the numeric data). The
analysis of all data (both numeric and log) must be parallel
for fast analysis and low latency response.

Run-time parallel analysis in this context has multiple
components: (1) collection of data at job run-time on the
computational platform, (2) parallel categorization of log
patterns as logs are being streamed, (3) parallel processing
of environmental data, and (4) post-processing of data across
disparate data stores. A detailed discussion of tools used to
achieve the above requirements is provided in Section III-C.

2) Message broker and downstream consumers: With the
increase in the amount of data collected, the need to minimize
duplication of this data has become more pressing. To address
this, the new monitoring system adopts an intermediary proto-
col known as a message broker. Data sources can send a single
data feed to the message broker, which then can provide to
multiple consumers through designated queues.

Figure 2 shows the message broker (RabbitMQ) as the
centralized point of data collection from multiple producers
which ultimately send to multiple consumers, including our
existing Zenoss and Splunk indexers. This eliminates the need
for each cluster to have its own instance of Zenoss and Splunk
and allows all the data to be sent to common pools for the
Splunk and Zenoss main search nodes. This new organization
also means that if a user requires a particular subset of metrics
for analysis their request can be accommodated without impact
to the rest of the monitoring system infrastructure.

This configuration can reduce the amount of hardware
required to maintain multiple copies of the same data, as well
as reduce the number of failure points end-to-end.

C. Immediate Objectives

Our immediate objectives are to build a modular and
heterogeneous monitoring system that provides the ability to
quickly monitor new platforms from the earliest stages of
their deployment. Since applications can differ considerably in
their system dependencies, multiple operating systems may be
required. In addition, software upgrades and security-related
patches need to be deployable in a uniform and timely manner.

FUTURE
CLUSTER

—_

FUTURE
COLLECTOR
?

RABBITMQ ——=| RABBITMQ

USER

MULTIPLE DOWNSTREAM
NSU!

CLUSTER LEVEL PRODUCERS
(SYSLOG, LDMS, NETWORK, SCHEDULER...)

CLUSTER

COLLECTOR

RUN-TIME PARALLEL

COLLECTOR COLLECTOR ANALYSIS NODES

MANAGEMENT BROKERS

FACILITES
DATA WITH FAIL-OVER

ALL FACILITIES
DATA INCLUDED

#

ZENOSS

INDEXERS SPLONK

INDEXERS

%

ZENOSS
SEARCH
HEAD

SPLUNK
SEARCH
HEAD

Fig. 2. Scalable and Modular Infrastructure

D. Expected Results

The monitoring system will allow for efficient building
and managing of its component systems. Introducing new
systems into the production environment, as well as replac-
ing/refreshing existing hardware, should be a relatively simple
task. System administrators will be able to quickly and easily
provision new components upon request.

III. IMPLEMENTATION PLAN
A. Provisioning Objectives

The new monitoring system provides the ability to over-
provision and have failover capability. In the event an indi-
vidual host becomes unavailable due to failure or planned
maintenance, its roles can be transferred to another host.

In the past our monitoring system consisted of standalone
servers. The new infrastructure features a clustered solution.
This monitoring cluster is composed of a top-level server (the
master) which provisions and manages multiple nodes over a
private shared network.

Our master is a typical enterprise-class server whose pri-
mary purpose is to provide the operating system images for the
cluster and facilitate booting of its cluster nodes. The master
itself is subject to full provisioning through an independent,
centralized configuration management (CM) service, so that
even in the event of catastrophic hardware failure we can
simply replace and rebuild the master in its entirety with
minimal downtime.

The master utilizes a diskless image provisioning system
(a heavily-modified implementation of PERCEUS) to provide
each node with its required operating system image. Nodes
within the same functional class (e.g., message broker, collec-
tor), will be served the same image. The images are a hybrid
model in which operating system files required at boot time are
loaded into RAM on a node, while other files may be served

||| COLLECTORS

CONFIGURATION
MANAGEMENT

MACHINE

MACHINE

“

@ —

MESSAGE
BROKERS

Fig. 3. The Provisioning Infrastructure

out on demand via an NFS share on the master. Configurations
unique to a particular node can be handled dynamically in
scripts.

While they are provisioned “disklessly”, meaning their
operating system is a hybrid of RAM and NFS, some nodes
may still use local disk for data storage for performance
reasons and/or persistence. This clustered monitoring approach
offers many advantages:

e The infrastructure may be grown as needed by adding

and provisioning new nodes,

e The ability to evaluate the impact of software updates and
other changes through the creation of new images which
can be targeted to specific nodes for testing, without
affecting nodes running in production

e With proper revision control, images can be reverted to
a previous state and re-deployed with a simple reboot of
the affected nodes,

e By sharing their images, nodes of the same class can be
expected to be highly consistent.

Figure 3 depicts the provisioning infrastructure that allows

for quick and efficient deployment of new nodes into the
monitoring system.

B. Hardware Requirements

Monitoring cluster hardware was selected based on multiple
factors: the expected volume of data, the ability to performing
both post processing and run-time analysis, and the desire to
provide an interactive interface for administrators to work with
the data.

The various node classes within the cluster were built in
a 442 configuration, meaning that four nodes are actively
handling the full system monitoring load, while the other two
provide fast failover and load sharing to ensure responsive data
browsing, analysis, and virtualization without impacting data
collection. These extra two nodes may also be used to perform
rolling upgrades for hardware, software, and firmware, again
while minimizing impact to the production data collection.

Data storage requirements were given the following guide-
lines: (1) RAM sufficient to store a minimum of one hour’s
worth of data (144GB) for on-the-fly data processing while
also accommodating background post-processing, (2) high-
speed flash memory sufficient to store at least one day’s worth
of data (3.5TB) to enable responsive browsing of recent data,
(3) local hard disk space sufficient to store a minimum of two
weeks’ worth of data (50TB) to provide timely access and
allow post-processing of recent data.

Monitoring nodes are expected to support a variety of tasks
beyond parallel log and data collection. These include: (1)
continuous background logging and numeric analysis, (2) web
and CLI based data browsing, analytics, and visualization,
and (3) automated notification for potential problems based
on comparison between incoming data and characteristics
with defined thresholds. Therefore, hardware was selected to
maximize processing ability concurrent with data collection
within the constraints of budge and form factor. Hardware
specifications are provided in Table 1.

TABLE I
MONITOR HOST HARDWARE SPECIFICATIONS
CPU: 2 x 10 core Intel Haswell @ 3.1GHz
RAM: 256GB DDR4
STORAGE: | RAID6 70TB HDD & 5.4TB NVMe
1/0O: 2 x 10/40GigE Mellanox RoCE

C. Software Requirements

Such a large and diverse body of data cannot be processed
by any single software application. Multiple collection and
analysis tools have been incorporated into the new monitoring
system. The clustered design is intended to enable parallel
transport of high-volume/high-rate data (principally the nu-
meric data). Additionally, analysis of both numeric and log
data must be parallelized for reasons of speed and latency.
We evaluated a series of applications and adapted them as
needed to meet requirements:

1) LDMS: The Lightweight Distributed Metric Service
(LDMS) collects and aggregates per-node metrics on resource
status and utilization, such as network congestion, parallel file
system operations, or CPU utilization. LDMS resides on the
platform nodes and provides collection of high-fidelity data at
runtime with minimal impact on job performance. The data
it collects can be accessed on-node or transported off-node
for storage in a variety of formats. LDMS provides numeric
in-band data aggregation, transported via a small number of
daemon processes. This permits derivation of new metrics with
minimal impact to a node’s processor, memory, or network
capabilities. The results of these analyses can be combined
to provide a holistic statistical analysis on a per-timestep,
windowed, or aggregate basis [6].

2) Baler: Baler is a post-processing tool that allows analy-
sis of both numeric and log data across separate collectors.
Baler uses a master-slave model to provide consistency of
tokens while enabling parallel classification of log patterns.
Baler binds numeric data in parallel across the collectors and

then use the same parallel data fetch for assocation rule mining
across both binned data and pattern tokens. Relevant logs are
then forwarded to a message broker for further processing and
analysis ([7]).

3) RabbitMQ: RabbitMQ is a message broker application
based on the Advanced Message Queueing Protocol (AMQP).
Data packets are captured in messaging queues which are
uniquely keyed, allowing multiple consumers to subscribe to
a particular queue for consumption of data. Having multiple
instances of RabbitMQ provides failover and redundancy,
preventing data loss([5]).

4) Splunk: A consumer in the monitoring infrastructure,
Splunk is an application used for efficient analysis and search-
ing of logs. Customizable dashboards provide users with real-
time monitoring and notification ([4], [8]).

5) Zenoss: Another consumer, Zenoss provides real-time
monitoring and notification. Through the creation of custom
filters, log data may be correlated and refined based on pattern
recognition and sequence. De-duplication of identical logs
eliminates the collection of redundant data [2].

6) SEDC: The System Environmental Data Collector
(SEDC) is a Cray-specific tool which collects environmental
data from sensors at the cabinet and blade level of the system,
e.g., air and water temperatures, power consumption, and
voltages at various points in the system. The SEDC data stream
is forwarded serially through the Cray System Management
Workstation (SMW) to the monitoring cluster, where it is
split across all nodes for load-balancing and storage. We are
working with Cray to address the serialization issue of this
datastream to eliminate performance bottlenecks and to enable
more frequent sampling (1 second intervals).

7) Locally-developed applications: Locally-developed ap-
plications specific to the LANL environment are also con-
sumers of monitoring data. These applications are used for
monitoring job statistics and generating usage reports for our
HPC computation platforms.

IV. CONCLUSION

HPC computational platforms will continue to evolve dra-
matically, requiring a flexible and scalable monitoring infras-
tructure to meet changing requirements over the lifecycle.
Analysis and correlation of monitoring data allows for deeper
understanding of how platform components interact with each
other and provides insight for improved responses to future
incidents as well as sparking numerous research opportunities
to further our technological evolution. Our monitoring infras-
tructure will provide us with unprecedented capabilities for
analysis on Trinity and successive platforms.

V. FUTURE WORK

There are many challenges on the road ahead. The infras-
tructure as described is an ambitious endeavor, which we
intend to to adapt to existing platforms as well as future
acquisitions. It will require continuous learning and adaptation
on our part to provide the best possible tools for capture
and analysis of monitoring data so that we can both respond

quickly and appropriately to issues to maximize system uptime
for our users, while also keeping an eye to collecting data of
value to present and future research.

REFERENCES

[1] “Trinity”, http://www.lanl.gov/projects/trinity

[2] “Zenoss”, http://zenoss.com.

[3] R. Rheinheimer, “LANL Monitoring Metrics and Zenoss HPC”,
NNSA/CEA Computing Sciences Collaboration Workshop, 2011

[4] DeConinck, A.; Kelly, K., “Evolution of Monitoring over the Lifetime of
a High Performance Computing Cluster,” in Cluster Computing (CLUS-
TER), 2015 IEEE International Conference on , vol., no., pp.710-713,
8-11 Sept. 2015 doi: 10.1109/CLUSTER.2015.123

[5] “RabbitMQ”, http://rabbitmq.com

[6] A. Agelastos et al “Lightweight Distributed Metric Service: A Scalable
Infrastructure for Continuous Monitoring of Large Scale Computing
Systems and Applications,” in Proc. Int’l Conf. for High Performance
Storage, Networking, and Analysis (SC), 2014.

[7] N. Taerat, J. Brandt, A. Gentile, M. Wong, and C. Leangsuksun, “Baler:
deterministic, lossless log message clustering tool,” Computer Science -
Research and Development, vol. 26, no. 3-4, pp. 285-295, 2011.

[8] “Splunk”, http://splunk.com.

