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Contact example

m Contact problem of two solid bodies with
finite deformations

m Problem formulation based on mortar FEM
methods

m Initial boundary value problem of nonlinear
elastodynamics

m KKT conditions for contact and Coulomb Timestep 0
friction (optional)
Simulation parameters
Material: NeoHooke
p.Ev 0.1%,10 GPa, 0.3
Timestep size:  0.01s
Timesteps: 50 Timestep 25

Popp, A., Gee, M\W., Wall, W.A. (2011): Finite deformation mortar contact based on a 3D dual mortar and
semi-smooth Newton approach, In: Lecture Notes in Applied and Computational Mechanics, Volume 58, pp.
57-77, G. Zavarise, P. Wriggers (Eds.), Springer-Verlag Berlin Heidelberg, Germany




Contact in saddle point formulation
Solve the linear system:
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« Structural equations

inner DOFs of solid body i (cartesian coordinates)
master DOFs .
slave DOFs m Lagrange multipliers
displacement DOFs m Contact constraints
Lagrange multipliers (normal-tangential
residual

coordinate system)



Contact in saddle point formulation
Solve the linear system:

Challenges:

(-)n;  inner DOFs of solid body i = Different (local)

(-)m  master DOFs
()s slave DOFs

u displacement DOFs
A

r

Lagrange multipliers = Need for special saddle

residual point solvers

Kvinvg Kavam 0 0 0 0 0
Kvnvi Kvime Kuz Kaa 0 MT MY QZNI
0 Kzv  Kzz Kza  Kzag DI, A uM

Kam Aaz Kaa Kang Dﬁl D4 A UI _

| 0 0 Kz Kua Know 0 O | | Auge
0 0 0 0 0 | 0 AN -2
0 N vy : Ny 0 oC o N )‘I
0 0 Fr  Fu 0 0 DA A

coordinate systems

= Saddle point structure




What usually is done...

CheapSIMPLE algorithm

1. Calculate residual

. . b\ (A BT g
Saddle point preconditioners (2) = (é)f(@ é) <2>
m Block preconditioner based on 2 Bl el ity (ol

displacement prediction:
Schur complement, e.g.
SIMPLE(R) or variants

AAXL =n

3. Solve approximately

m Approximations for Schur “SchurComplement” equation:
compAIement, e.g. (C-BA'B]) A% = r—BalAsi
A= A= diag(A). A

m Use standard multigrid within A% = wi%

Schur complement preconditioner A% = A% — 5;\715;“2

(CheapSIMPLE)

5. Increment k — k + 1:

k+1 k e
M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of X1 _[(x Axy
saddle point problems. Acta Numerica, 14, 2005. X0 “ + A



Preconditioner schemes

What usually is done... AMG for saddle point problems

CheapSIMPLE(AMG) AMG (CheapSIMPLE):
OWRe) OWRe)
a0 GO

o o
= Contact constraints are \ X /
o0

considered on finest level

only!
= Switch role of SIMPLEC and m Contact constraints are
AMG! considered on all multigrid

levels!




Multigrid for saddle point problems — Idea

Challenges for contact multigrid:

1) Aggregates

Keep saddle point problem
on all multigrid levels with Build valid aggregates for all

coarse contact constraints. physical fields (matrix blocks)
— needed for transfer operators

2) Transfer operators

Transfer operators shall preserve
saddle point structures on all
multigrid levels

3) Level smoothers

Use appropriate level smoothers for
saddle point problems

Multigrid hierarchy:




Multigrid for saddle point problems — Idea

Idea 1: Reuse contact interface aggregates

m Aovid crossing aggregates for

displacement variables using
segregated aggregation strategy
(filtered A).
m Build aggregates for Lagrange
multipliers by reusing contact interface us
aggregates A
- . u
m Motivation: keep 1-to-1 representation M
of coarse level slave DOFs and
Lagrange multipliers
m Constant ratio:
# slave nodes

= const
# Lagrange multipliers




Multigrid for saddle point problems — Idea

Idea 2: Segregated transfer operators

m Define segregated transfer operators as

P11 O Ri1 O
(b m) == (0 )

R11AP11 R1151T/322
= Ac=RAP = ~ ~7 .
‘ (Rzz BoPii RopCPo

m Displacement aggregates define tentative transfer operators
P11 and Rll-

m Use matrix block A to build smoothed transfer operators P11
and R11.

m Contact interface aggregates define ,522 and ﬁzg.

m No transfer operator smoothing for I322 and /F\\)gz due to
inappropriate smoothing information in block C.




Multigrid for saddle point problems — Idea

Idea 3: Saddle point smoothers

m Segregated transfer operators
preserve saddle point structure
on all coarse multigrid levels

m Use saddle point smoothers
S absolutely necessary

m SchurComplement-type block
smoothers due to (near) zero
block C

m SIMPLE-type variants
m Cheap Braess-Sarazin
smoother S2
m any other saddle point
smoother




2D example: 1000 collapsing rings

Simulation )
» # timesteps: 4000 g
» timestep size: 0.0005s ¢

» E modulus: 42 GPa

> p: 7.83-5; %
Discretization :

» # nodes: 110000

» # DOFs: 220000 +X

> # procs: 16

Preconditioned GMRES

Contact c ; .

» formulation: saddle point omparison or-

» Lagrange multipliers: stangard » SIMPLE based preconditioners
' » AMG block preconditioners

Solver

» Newton convergence:  107° (abs)

» GMRES convergence: 1078 (rel)



1000 collapsing rings — Preconditioners @ .

SIMPLE based preconditioners Multigrid preconditioners

CheapSIMPLE (PA-AMG) PA-AMG (CheapSIMPLE)
1 CheapSIMPLEC (0.8) PA/PA-AMG
e PA-AMG o Max. Levels: 8
Max. Levels: 3 e Max. coarse size: 1000
Max. coarse size: 1000 e Min. agg. size: 6
Min. agg. size: 6 e Level smoother:
Level smoother: 1 SGS (0.8) 1 CheapSIMPLEC (0.8)
e KLU — Pred. smoother: 3 SGS (0.8)
CheapSIMPLE (SA-AMG) — Corr. smoother:  ILU (0)
1 CheapSIMPLEC (08) Emin (CheapSIMPLE)
Max. Levels: 3 PG/PA-AMG
Max. coarse size: 1000 same as PA-AMG (CheapSIMPLE)

Min. agg. size: 6
Level smoother: 1 SGS (0.8)
e KLU




1000 collapsing rings — Results
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1000 collapsing rings — Results

Accumulated solver time per timestep [s]

5 T T
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1000 collapsing rings — Results (]="

Timings:
Method Solver time
PA-AMG (CheapSIMPLE) 10013
Emin (CheapSIMPLE) 8679
CheapSIMPLE (PA-AMG) 11103
CheapSIMPLE (SA-AMG) 10763

Exemplary timings in [s] of the different preconditioning variants for the
full simulation (4000 time steps).
Findings:
m Saddle point AMG preconditioners lead to a significantly lower
number of linear iterations

m No “obvious” dependency of the linear iterations from the
active contact nodes




3D two tori impact example &

Simulation

» # timesteps: 200
» timestep size: 0.05s
Discretization

» # nodes: 350208
» # DOFs: 1050624 +X
» # procs: 64

Contact .
» formulation: saddle point Preconditioned GMRES

» Lagrange multipliers: standard Camipeiten oi

Solver » SIMPLE based preconditioners

» Newton convergence: 107° (rel) » AMG block preconditioners

» GMRES convergence: 1078 (rel)




3D two tori impact — Preconditioners (G}

SIMPLE based preconditioners Multigrid preconditioners

CheapSIMPLE (SA-AMG) PA-AMG (CheapSIMPLE)
m 2 CheapSIMPLEC (w = 0.8) = PA/PA-AMG
m SA-AMG (0.4) m Max. Levels: 3
m Max. Levels: 3 m Max. coarse size: 5000
®m Max. coarse size: 5000 m Min. aggregate size: 18
®m Min. agg. size: 18 m 1 CheapSIMPLEC (0.8)
m Level smoother: ® 1S5GS (w=0.8)
25GS (0.8) = ILU(0)
(all levels)
= 1ILU(0) SA-AMG (CheapSIMPLE)

CheapSIMPLEC (SGS) = SA/PA-AMG (0.4)

m 2 CheapSIMPLEC (w = 0.8) same as PA-AMG
= 3 SGS (0.8) (CheapSIMPLE)
= ILU(0)




3D two tori impact — Results

1,000 T T T T T T T T T
—o— PA-AMG (CheapSIMPLE) -1 1,400
—_ —o— SA-AMG (CheapSIMPLE)
_ —a— CheapSIMPLE (SA-AMG) N —_—
2 800 |- —o— CheapSIMPLE (SGS) 1,200 =
.9 g
+—
e 1,000 §
=600 9
3 800 5
£ I
G
T 400 600 ©
+— f-
o 2
£ 400 E
S 200 =
< 7 200
0 I I I I

| | | | |
0 20 40 60 80 100 120 140 160 180 208
Timesteps




3D two tori impact — Results
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3D two tori impact — Results () ..

Timings:
Method Solver time
PA-AMG (CheapSIMPLE) 4658
SA-AMG (CheapSIMPLE) 4564
CheapSIMPLE (SA-AMG) 4731
CheapSIMPLE (SGS) 9320

Exemplary timings in [s] of the different preconditioning variants for the
full simulation over 200 time steps.

Findings:
m Saddle point AMG preconditioners lead to a significantly lower
number of linear iterations

m No “obvious” dependency of the linear iterations from the
active contact nodes




Thank you for your attention @i

Conclusion
m Full aggregation-based AMG preconditioner for contact
problems in saddlepoint formulation

m Physically motivated aggregation strategy for Lagrange
multipliers

m Implementation in Muelu, the next-generation multigrid
framework in Trilinos

m Demonstration of efficiency with several numerical examples

m Linear solver/preconditioner for use in industrial applications
On-going work

m Develop new multigrid algorithms for other interface problems

m Generalize multigrid framework for general multiphysics
problems (new applications)




