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Contact example

Contact problem of two solid bodies with
finite deformations
Problem formulation based on mortar FEM
methods
Initial boundary value problem of nonlinear
elastodynamics
KKT conditions for contact and Coulomb
friction (optional)

Simulation parameters
Material: NeoHooke
ρ,E ,ν 0.1 kg

m3 , 10 GPa, 0.3
Timestep size: 0.01s
Timesteps: 50

Timestep 0

Timestep 25

Popp, A., Gee, M.W., Wall, W.A. (2011): Finite deformation mortar contact based on a 3D dual mortar and
semi-smooth Newton approach, In: Lecture Notes in Applied and Computational Mechanics, Volume 58, pp.
57-77, G. Zavarise, P. Wriggers (Eds.), Springer-Verlag Berlin Heidelberg, Germany



Contact in saddle point formulation
Solve the linear system:
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Legend
(·)Ni inner DOFs of solid body i
(·)M master DOFs
(·)S slave DOFs
u displacement DOFs
λ Lagrange multipliers
r residual

Structural equations
(cartesian coordinates)

Lagrange multipliers
Contact constraints
(normal-tangential
coordinate system)
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Challenges:
Different (local)
coordinate systems
Saddle point structure

⇒ Need for special saddle
point solvers



What usually is done...

Saddle point preconditioners
Block preconditioner based on
Schur complement, e.g.
SIMPLE(R) or variants
Approximations for Schur
complement, e.g.
A ≈ Â := diag(A).
Use standard multigrid within
Schur complement preconditioner
(CheapSIMPLE)

CheapSIMPLE algorithm
1. Calculate residual(

r1
r2

)
=
(
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)
−
(
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)(
x1
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)k

2. Solve approximately for
displacement prediction:

A∆x̃1 = r1

3. Solve approximately
“SchurComplement” equation:(
C−B2Â−1BT

1

)
∆x̃2 = r2−B2∆x̃1

4. Update step:

∆x̂2 = ω∆x̃2

∆x̂1 = ∆x̃1 − 1
ω

Â−1BT
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5. Increment k → k + 1:(
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)k+1

=
(
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+
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∆x̂1
∆x̂2

)
M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of
saddle point problems. Acta Numerica, 14, 2005.



Preconditioner schemes

What usually is done...

CheapSIMPLE(AMG)

Contact constraints are
considered on finest level
only!

⇒ Switch role of SIMPLEC and
AMG!

AMG for saddle point problems

AMG (CheapSIMPLE):

Contact constraints are
considered on all multigrid
levels!



Multigrid for saddle point problems – Idea

Main idea
Keep saddle point problem
on all multigrid levels with
coarse contact constraints.
Multigrid hierarchy:
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Challenges for contact multigrid:
1) Aggregates

Build valid aggregates for all
physical fields (matrix blocks)
→ needed for transfer operators

2) Transfer operators

Transfer operators shall preserve
saddle point structures on all
multigrid levels

3) Level smoothers

Use appropriate level smoothers for
saddle point problems



Multigrid for saddle point problems – Idea

Idea 1: Reuse contact interface aggregates

Aovid crossing aggregates for
displacement variables using
segregated aggregation strategy
(filtered A).
Build aggregates for Lagrange
multipliers by reusing contact interface
aggregates
Motivation: keep 1-to-1 representation
of coarse level slave DOFs and
Lagrange multipliers
Constant ratio:

# slave nodes
# Lagrange multipliers = const

uS

uM
λ

uN2

uN1



Multigrid for saddle point problems – Idea

Idea 2: Segregated transfer operators

Define segregated transfer operators as

P =
(

P11 0
0 P̂22

)
R =

(
R11 0
0 R̂22

)
.

⇒ Ac = RAP =
(

R11AP11 R11BT
1 P̂22

R̂22B2P11 R̂22CP̂22

)
.

Displacement aggregates define tentative transfer operators
P̂11 and R̂11.
Use matrix block A to build smoothed transfer operators P11
and R11.
Contact interface aggregates define P̂22 and R̂22.
No transfer operator smoothing for P̂22 and R̂22 due to
inappropriate smoothing information in block C .



Multigrid for saddle point problems – Idea

Idea 3: Saddle point smoothers

Segregated transfer operators
preserve saddle point structure
on all coarse multigrid levels
Use saddle point smoothers
S absolutely necessary
SchurComplement-type block
smoothers due to (near) zero
block C

SIMPLE-type variants
Cheap Braess-Sarazin
smoother
any other saddle point
smoother
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2D example: 1000 collapsing rings

Settings
Simulation
I # timesteps: 4000
I timestep size: 0.0005s
I E modulus: 42 GPa
I ρ: 7.83 g

cm3

Discretization
I # nodes: 110000
I # DOFs: 220000 +X
I # procs: 16

Contact
I formulation: saddle point
I Lagrange multipliers: standard

Solver
I Newton convergence: 10−8 (abs)
I GMRES convergence: 10−8 (rel)

Linear solver
Preconditioned GMRES
Comparison of:
I SIMPLE based preconditioners
I AMG block preconditioners



1000 collapsing rings – Preconditioners

SIMPLE based preconditioners

CheapSIMPLE (PA-AMG)
1 CheapSIMPLEC (0.8)

• PA-AMG
Max. Levels: 3
Max. coarse size: 1000
Min. agg. size: 6
Level smoother: 1 SGS (0.8)

• KLU
CheapSIMPLE (SA-AMG)

1 CheapSIMPLEC (0.8)
• SA-AMG

Max. Levels: 3
Max. coarse size: 1000
Min. agg. size: 6
Level smoother: 1 SGS (0.8)

• KLU

Multigrid preconditioners

PA-AMG (CheapSIMPLE)
PA/PA-AMG

• Max. Levels: 3
• Max. coarse size: 1000
• Min. agg. size: 6
• Level smoother:

1 CheapSIMPLEC (0.8)
– Pred. smoother: 3 SGS (0.8)
– Corr. smoother: ILU (0)

Emin (CheapSIMPLE)
PG/PA-AMG

same as PA-AMG (CheapSIMPLE)



1000 collapsing rings – Results
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1000 collapsing rings – Results

0

2

4

6

8

10

12

14

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

1

2

3

4

5

Nu
m

be
ro

fn
on

lin
ea

ri
ter

ati
on

s[
·]

Timesteps

Ac
cu

m
ul

ate
d

so
lv

er
tim

ep
er

tim
es

tep
[s
]

Nonlinear iterations

PA-AMG (CheapSIMPLE)

Emin (CheapSIMPLE)

CheapSIMPLE (PA-AMG)

CheapSIMPLE (SA-AMG)



1000 collapsing rings – Results

Timings:

Method Solver time
PA-AMG (CheapSIMPLE) 10013
Emin (CheapSIMPLE) 8679
CheapSIMPLE (PA-AMG) 11103
CheapSIMPLE (SA-AMG) 10763

Exemplary timings in [s] of the different preconditioning variants for the
full simulation (4000 time steps).

Findings:
Saddle point AMG preconditioners lead to a significantly lower
number of linear iterations
No “obvious” dependency of the linear iterations from the
active contact nodes



3D two tori impact example

Settings
Simulation
I # timesteps: 200
I timestep size: 0.05s
Discretization
I # nodes: 350208
I # DOFs: 1050624 +X
I # procs: 64

Contact
I formulation: saddle point
I Lagrange multipliers: standard

Solver
I Newton convergence: 10−6 (rel)
I GMRES convergence: 10−8 (rel)

Linear solver
Preconditioned GMRES
Comparison of:
I SIMPLE based preconditioners
I AMG block preconditioners



3D two tori impact – Preconditioners

SIMPLE based preconditioners

CheapSIMPLE (SA-AMG)
2 CheapSIMPLEC (ω = 0.8)

SA-AMG (0.4)
Max. Levels: 3
Max. coarse size: 5000
Min. agg. size: 18
Level smoother:
2 SGS (0.8)
(all levels)

ILU(0)

CheapSIMPLEC (SGS)
2 CheapSIMPLEC (ω = 0.8)

3 SGS (0.8)
ILU(0)

Multigrid preconditioners

PA-AMG (CheapSIMPLE)
PA/PA-AMG

Max. Levels: 3
Max. coarse size: 5000
Min. aggregate size: 18
1 CheapSIMPLEC (0.8)

1 SGS (ω = 0.8)
ILU(0)

SA-AMG (CheapSIMPLE)
SA/PA-AMG (0.4)
same as PA-AMG
(CheapSIMPLE)



3D two tori impact – Results
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3D two tori impact – Results
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3D two tori impact – Results

Timings:

Method Solver time
PA-AMG (CheapSIMPLE) 4658
SA-AMG (CheapSIMPLE) 4564
CheapSIMPLE (SA-AMG) 4731
CheapSIMPLE (SGS) 9320

Exemplary timings in [s] of the different preconditioning variants for the
full simulation over 200 time steps.

Findings:
Saddle point AMG preconditioners lead to a significantly lower
number of linear iterations
No “obvious” dependency of the linear iterations from the
active contact nodes



Thank you for your attention

Conclusion

Full aggregation-based AMG preconditioner for contact
problems in saddlepoint formulation
Physically motivated aggregation strategy for Lagrange
multipliers
Implementation in MueLu, the next-generation multigrid
framework in Trilinos
Demonstration of efficiency with several numerical examples
Linear solver/preconditioner for use in industrial applications

On-going work

Develop new multigrid algorithms for other interface problems
Generalize multigrid framework for general multiphysics
problems (new applications)


