SAND2016- 2064C

Secure Embedded
System Design
Methodologies for Military
Cryptographic Systems

High Integrity

Software Systems Gary N. McGovney

Sandia National Laboratories

@ Sandia PO Box 5800
National .
Laboratories Mail Stop 0860

Albuquerque, NM 87185

Exceptional

Overview rh) peim

= Embedded System Software Failure

= Access Control vs. Enablement

= Dual-Redundant Processor Comparator Design Architecture
= Comparator Base Element Design

= Covered Output Data Generation

= Authenticated Output Example

= Failure Calculations

= Summary

Embedded System Software Failure @

= Secure cryptographic embedded systems
= Safeguard access to both data and control of external systems
= @Grant access to authorized users during normal operation, but also...
= Shouldn’t release data or control because of internal flaws or damage

= |nternal or externally-induced failures do occur
= Formalized failure type and rate calculations exist for hardware
= Analyzing software failure rates and behavior is much more difficult
= What is the probability that failures will cause unauthorized output?

= Dual-redundant processor comparator designs
= Protect against random failures, but...

= Common mode failures are still a matter of concern
= Both failure types are addressed with this approach

Access Control vs. Enablement) e,

= Access control requires authenticated requests
= Requests prove source authentication via encryption and/or signature
= QOperations are performed or denied based upon authentication
= |nternal failures could lead to unauthenticated operations

= Enablement requires information from outside the system

= Rather than executing a hard-coded algorithm, controlling an external
system uses the comparator to make a series of blind data writes

= Each processor has a unique, different copy of the output data
= The output data is not stored plaintext — it can only be uncovered with
a combination of external information and processor-unique data
= |f the uncovered output data in each processor is not identical
the comparator will alarm and the system will be locked

Dual-Redundant Processor) .
Comparator Design Architecture

= [solated processors and memories within a security boundary
= Comparator arbitration for all data/control leaving boundary
= System alarm and lock on error detection

alpha processor copies | —— — — — — — — — — I | beta processor copies of
of software and data software and data

alpha processor —} r beta processor

|
' |
| |
| |
| |
| |
' |
: |
| n-bit output register n-bit output register :
' |
' |
| |
' |
: |
: |
: |

L] v

comparator

v

n-bit output latch

All external communication and control outputs

Comparator Base Element Design @&

= Parallel redundant compare elements (C1 & C2)
= Serial redundant blocking elements (B1 & B2)

= Comparator hardware can be fully analyzed and tested
= Fault Tree Analysis (FTA) and Built-In Self Test (BIST)
= Software validation of hardware BIST result

beta comparator

processor

>
C2
Eps
1 _\ FﬂD com parator

external
B1 B2 output

processor
outputs

alpha
processor

%LJ

Built-In Self Test

Covered Output Data Generation — @E=.

Simple example with a single 16-bit output value of 0x0001
(One output changed from 0 to 1)

= Concatenate:

"= Enablement value valid enablement value: “Laconic”
“«) alpha beta
* example — “Laconic unique phr;se: -alpha” nique phrase: Petd’
. .
Processor unique values plaintext 0x0001 plaintext 0x0001
n example - ”-alpha" & “-beta” output value = output value = o
hash of hash
u —
HaSh (example SHA256) “Laconic-alpha” = O0x72FF...“Laconic-beta” = OxF771...
= “Laconic-alpha” => 0x72FF... covered covered
. output value = 0x72FE output value = OxF770
= “Laconic-beta” =>O0xF771... P g
= XOR hash with output data Y Y

alpha memory beta memory

= alpha pattern: Ox72FE
. Unique covered data is stored
beta pattern: OxF770 in each processor’s memory

Authenticated Output Example

valid authenticated input: “Laconic”

= Concatenate:

Sandia
rh National

Laboratories

alpha memory beta memory
= Authenticated input phrase: - *-alpha” phrase: *-peta”
covered output: Qx72FE covered output: QxF770

= “Laconic”

covered covered
® Processor unique values output value = 0x72FE output value = OxF770
o ” o ” @
= “-alpha” & “-beta hash of hash of
“Laconic-alpha” = Ox72FF... Laconic-beta” = OxF771...
= Hash | |
plaintext plaintext
n ”Laconic-alpha” => Ox72FF... output value = 0x0001 output value = 0x0001
= “laconic-beta” =>0xF771... * *
. 16-bit output 16-bit output
= XOR hash with stored data ¥ ¥
. alpha: Ox72FF @ 0x72FE = 0x0001 comparator : successful compare and latch
= beta: O0xF771 @ 0xF770 = 0x0001 *
. -bi latch
= Write output data o ot e | Qutput 0

= Matching data => successful output

Failure Calculations) S

= |f an unspecified fault causes the software to begin driving
outputs without authenticated input, it will either:
= Write the covered data values to the comparator, or
= Write the covered data XORed with the hash of invalid data
= Fail-safe operation depends upon mismatch detection

= For strong hash algorithms, such as SHA-256 in the example, the
probability of two output bit positions having the same value for
different input strings is like flipping coins — % of the time they match

= The probability that this fault will be detected and shut down
by comparator hardware for 16 and 32-bit output data is:

16
1— (%) — 0.99998 16-bit data word

32
1- (%) = 0.9999999998 32-bit data word

Summary)

= Secure software-based systems can guarantee to a
quantifiable level of confidence that outputs will not
be driven upon software failures

= Using dual-redundant processor comparator designs

= The comparator is an analyzable and testable discriminator
= Qutput data is uniquely stored/protected in each processor
= External enablement data is required to create valid output
= Qutputs will not be driven with bad values (no thrashing)

= Desired levels of confidence can be achieved via
selection of output drive complexity, sequence steps,
and compared output data size

