
High Integrity
Software Systems

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Secure Embedded
System Design

Methodologies for Military
Cryptographic Systems

Gary N. McGovney

Sandia National Laboratories
PO Box 5800

Mail Stop 0860
Albuquerque, NM 87185

SAND2016-2064C

Overview

 Embedded System Software Failure

 Access Control vs. Enablement

 Dual-Redundant Processor Comparator Design Architecture

 Comparator Base Element Design

 Covered Output Data Generation

 Authenticated Output Example

 Failure Calculations

 Summary

2

Embedded System Software Failure

 Secure cryptographic embedded systems
 Safeguard access to both data and control of external systems

 Grant access to authorized users during normal operation, but also…

 Shouldn’t release data or control because of internal flaws or damage

 Internal or externally-induced failures do occur
 Formalized failure type and rate calculations exist for hardware

 Analyzing software failure rates and behavior is much more difficult

 What is the probability that failures will cause unauthorized output?

 Dual-redundant processor comparator designs
 Protect against random failures, but…

 Common mode failures are still a matter of concern

 Both failure types are addressed with this approach

3

Access Control vs. Enablement

 Access control requires authenticated requests
 Requests prove source authentication via encryption and/or signature

 Operations are performed or denied based upon authentication

 Internal failures could lead to unauthenticated operations

 Enablement requires information from outside the system
 Rather than executing a hard-coded algorithm, controlling an external

system uses the comparator to make a series of blind data writes

 Each processor has a unique, different copy of the output data

 The output data is not stored plaintext – it can only be uncovered with
a combination of external information and processor-unique data

 If the uncovered output data in each processor is not identical
the comparator will alarm and the system will be locked

4

Dual-Redundant Processor
Comparator Design Architecture

5

 Isolated processors and memories within a security boundary

 Comparator arbitration for all data/control leaving boundary

 System alarm and lock on error detection

alpha processor beta processor

alpha processor copies

of software and data

comparator

beta processor copies of

software and data

n-bit output register n-bit output register

n-bit output latch

All external communication and control outputs

Security Boundary

Comparator Base Element Design

6

 Parallel redundant compare elements (C1 & C2)

 Serial redundant blocking elements (B1 & B2)

 Comparator hardware can be fully analyzed and tested
 Fault Tree Analysis (FTA) and Built-In Self Test (BIST)

 Software validation of hardware BIST result

comparator

alpha

processor
B2

C2processor

outputs

comparator

external

outputB1

C1

Built-In Self Test

beta

processor

Covered Output Data Generation

7

 Concatenate:
 Enablement value

 example – “Laconic”

 Processor unique values

 example – “-alpha” & “-beta”

 Hash (example – SHA256)
 “Laconic-alpha” => 0x72FF…

 “Laconic-beta” => 0xF771…

 XOR hash with output data
 alpha pattern: 0x72FE

 beta pattern: 0xF770

Simple example with a single 16-bit output value of 0x0001
(One output changed from 0 to 1)

Unique covered data is stored
in each processor’s memory

alpha memory

alpha

unique phrase: “-alpha”
beta

unique phrase: “-beta”

plaintext

output value =

hash of

“Laconic-alpha” =

covered

output value =

0x0001

0x72FF…

0x72FE

plaintext

output value =

hash

“Laconic-beta” =

covered

output value =

0x0001

0xF771…

0xF770

beta memory

valid enablement value: “Laconic”

Authenticated Output Example

8

 Concatenate:
 Authenticated input

 “Laconic”

 Processor unique values

 “-alpha” & “-beta”

 Hash
 “Laconic-alpha” => 0x72FF…

 “Laconic-beta” => 0xF771…

 XOR hash with stored data

 alpha: 0x72FF ⊕ 0x72FE = 0x0001

 beta: 0xF771 ⊕ 0xF770 = 0x0001

 Write output data
 Matching data => successful output

16-bit output

comparator : successful compare and latch

16-bit output latch

0x0001

phrase:

covered output:
“-alpha”

0x72FE

phrase:

covered output:
“-beta”

0xF770

covered

output value =

hash of

“Laconic-alpha” =

plaintext

output value =

0x72FE

0x72FF…

0x0001

alpha memory

covered

output value =

hash of

Laconic-beta” =

plaintext

output value =

0xF770

0xF771…

0x0001

beta memory

16-bit output

Output 0

set to “1”

valid authenticated input: “Laconic”

Failure Calculations

 If an unspecified fault causes the software to begin driving
outputs without authenticated input, it will either:
 Write the covered data values to the comparator, or

 Write the covered data XORed with the hash of invalid data

 Fail-safe operation depends upon mismatch detection
 For strong hash algorithms, such as SHA-256 in the example, the

probability of two output bit positions having the same value for
different input strings is like flipping coins – ½ of the time they match

 The probability that this fault will be detected and shut down
by comparator hardware for 16 and 32-bit output data is:

𝟏 −
𝟏

𝟐

𝟏𝟔
= 𝟎. 𝟗𝟗𝟗𝟗𝟖 16-bit data word

𝟏 −
𝟏

𝟐

𝟑𝟐
= 𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟖 32-bit data word

9

Summary

 Secure software-based systems can guarantee to a
quantifiable level of confidence that outputs will not
be driven upon software failures

 Using dual-redundant processor comparator designs

 The comparator is an analyzable and testable discriminator

 Output data is uniquely stored/protected in each processor

 External enablement data is required to create valid output

 Outputs will not be driven with bad values (no thrashing)

 Desired levels of confidence can be achieved via
selection of output drive complexity, sequence steps,
and compared output data size

10

