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Embedded System Software Failure 

 Secure cryptographic embedded systems 
 Safeguard access to both data and control of external systems 

 Grant access to authorized users during normal operation, but also… 

 Shouldn’t release data or control because of internal flaws or damage 

 Internal or externally-induced failures do occur 
 Formalized failure type and rate calculations exist for hardware 

 Analyzing software failure rates and behavior is much more difficult 

 What is the probability that failures will cause unauthorized output? 

 Dual-redundant processor comparator designs 
 Protect against random failures, but… 

 Common mode failures are still a matter of concern 

 Both failure types are addressed with this approach 
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Access Control vs. Enablement 

 Access control requires authenticated requests 
 Requests prove source authentication via encryption and/or signature 

 Operations are performed or denied based upon authentication 

 Internal failures could lead to unauthenticated operations 

 Enablement requires information from outside the system 
 Rather than executing a hard-coded algorithm, controlling an external 

system uses the comparator to make a series of blind data writes 

 Each processor has a unique, different copy of the output data 

 The output data is not stored plaintext – it can only be uncovered with 
a combination of external information and processor-unique data 

 If the uncovered output data in each processor is not identical 
the comparator will alarm and the system will be locked 
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Dual-Redundant Processor 
Comparator Design Architecture 
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 Isolated processors and memories within a security boundary 

 Comparator arbitration for all data/control leaving boundary 

 System alarm and lock on error detection 

alpha processor beta processor

alpha processor copies 

of software and data

comparator

beta processor copies of 

software and data

n-bit output register n-bit output register

n-bit output latch

All external communication and control outputs

Security Boundary



Comparator Base Element Design 
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 Parallel redundant compare elements (C1 & C2) 

 Serial redundant blocking elements (B1 & B2) 

 Comparator hardware can be fully analyzed and tested 
 Fault Tree Analysis (FTA) and Built-In Self Test (BIST) 

 Software validation of hardware BIST result 
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Covered Output Data Generation 
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 Concatenate: 
 Enablement value 

 example – “Laconic” 

 Processor unique values 

 example – “-alpha” & “-beta” 

 Hash (example – SHA256) 
 “Laconic-alpha” => 0x72FF… 

 “Laconic-beta” => 0xF771… 

 XOR hash with output data 
 alpha pattern: 0x72FE 

 beta pattern: 0xF770 

Simple example with a single 16-bit output value of 0x0001 
(One output changed from 0 to 1) 

Unique covered data is stored 
in each processor’s memory 

alpha memory

alpha

unique phrase: “-alpha”
beta

unique phrase: “-beta”

plaintext

output value =

hash of

“Laconic-alpha” =

covered

output value =

0x0001

0x72FF…

0x72FE

plaintext

output value =

hash

“Laconic-beta” =

covered

output value =

0x0001

0xF771…

0xF770

beta memory

valid enablement value: “Laconic”



Authenticated Output Example 
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 Concatenate: 
 Authenticated input 

 “Laconic” 

 Processor unique values 

 “-alpha” & “-beta” 

 Hash 
 “Laconic-alpha” => 0x72FF… 

 “Laconic-beta” => 0xF771… 

 XOR hash with stored data 

 alpha: 0x72FF ⊕ 0x72FE = 0x0001 

 beta: 0xF771 ⊕ 0xF770 = 0x0001 

 Write output data 
 Matching data => successful output 

16-bit output

comparator : successful compare and latch

16-bit output latch

0x0001

phrase:

covered output:
“-alpha”

0x72FE

phrase:

covered  output:
“-beta”

0xF770

covered

output value =

hash of

“Laconic-alpha” =

plaintext

output value =

0x72FE

0x72FF…

0x0001

alpha memory

covered

output value =

hash of

Laconic-beta” =

plaintext

output value =

0xF770

0xF771…

0x0001

beta memory

16-bit output

Output 0

set to “1”

valid authenticated input: “Laconic”



Failure Calculations 

 If an unspecified fault causes the software to begin driving 
outputs without authenticated input, it will either: 
 Write the covered data values to the comparator, or 

 Write the covered data XORed with the hash of invalid data 

 Fail-safe operation depends upon mismatch detection 
 For strong hash algorithms, such as SHA-256 in the example, the 

probability of two output bit positions having the same value for 
different input strings is like flipping coins – ½ of the time they match 

 The probability that this fault will be detected and shut down 
by comparator hardware for 16 and 32-bit output data is: 

𝟏 −
𝟏

𝟐

𝟏𝟔
= 𝟎. 𝟗𝟗𝟗𝟗𝟖  16-bit data word 

𝟏 −
𝟏

𝟐

𝟑𝟐
= 𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟖 32-bit data word 
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Summary 

 Secure software-based systems can guarantee to a 
quantifiable level of confidence that outputs will not 
be driven upon software failures 

 Using dual-redundant processor comparator designs 

 The comparator is an analyzable and testable discriminator 

 Output data is uniquely stored/protected in each processor 

 External enablement data is required to create valid output 

 Outputs will not be driven with bad values (no thrashing) 

 Desired levels of confidence can be achieved via 
selection of output drive complexity, sequence steps, 
and compared output data size 
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