
LA-UR-17-22137
Approved for public release; distribution is unlimited.

Title: Introduction to Python for CMF Authority Users

Author(s): Pritchett-Sheats, Lori A.

Intended for: Instructional slides intended for wide distribution

Issued: 2017-03-14

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

UNCLASSIFIED LA-UR-17-XXXXX

(U) Introduction to Python for CMF Authority
Users

Primary V&V Seminar
Lori A. Pritchett-Sheats, XTD-PRI

2017 March 7

UNCLASSIFIED LA-UR-17-XXXXX

Slide 2

This talk is a very broad over view of Python that highlights
key features in the language used in the Common Model
Framework (CMF). I assume that the audience has some
programming experience in a shell scripting language (C
shell, Bash, PERL) or other high level language (C/C++/
Fortran). The talk will cover Python data types, classes
(objects) and basic programming constructs. The talk
concludes with slides describing how I developed the basic
classes for a TITANS homework assignment.

Abstract

UNCLASSIFIED LA-UR-17-XXXXX

Slide 3

§  Python
–  Introduction
–  Language Basics

§  Data types
§  Functions
§  Memory and References

–  Classes
§  Simple Template
§  Inheritance (Animal Example, zootopia.py)
§  Operators

–  Packages
–  Unit Tests

§  TITANS Example
§  Resources

Outline

UNCLASSIFIED LA-UR-17-XXXXX

Slide 4

§  Advanced (3rd generation) language
§  No compiling, an interpreted run-time environment

language
–  Memory management handled internally unlike C/C++

§  First developed in the late 1980s
–  Version 1.0, 1994
–  Version 2.0, 2000
–  Version 3.0, 2008
–  Last release from the 2.x series is 2.7 and Python 3.6 is the latest

(December 2016) release
§  Version 2.6 and higher are available on all the LANL

platforms and nearly any UNIX-flavored OS ships with
Python installed.

Python – Brief History

UNCLASSIFIED LA-UR-17-XXXXX

Slide 5

§  Over the past several years, it has established itself as one of the
most popular languages in use today.
–  TIOBE, #5
–  IEEE, #3
–  In mix with C, C++, Java and C# as a top 5 language.
–  Crowd source solutions to common needs

§  Large (HUGE) open source add-ons especially for scientific
programming.
–  Excellent language, combined with NumPy and SciPy, to proto-type

numerical algorithms
§  Built-in Object Oriented (OO) programming

–  Unlike PERL that attempted to graft OO onto a language that was not
originally intended to be OO.

§  The learning curve to write code is not as steep as other languages
such C, Java, etc.

Python – Why Use Python?

UNCLASSIFIED LA-UR-17-XXXXX

Slide 6

§  These are my opinions, but I think many others in the X* community would have similar
complaints. J

§  Python 2.x versions are all backwards compatible, Python 3.x versions are not.
–  They changed the print statement syntax. WHY?!?!
–  https://www.python.org/dev/peps/pep-3105/ - rationale for an explanation on why print was changed.

§  Uses indentation (tabs and/or spaces) to create code blocks instead of ‘{‘ or statements like
‘if/endif, do/end’ etc.
–  Can create extremely dense code files, which annoy me. I like white-space.
–  Parser will hit a syntax error and die one line later. *sigh*

§  It is a poor substitute for shells like CSH, BASH or even PERL.
–  In my own work, anything that is sequence of shell commands I still use CSH or BASH (>20

command sequence or I want functions).
–  The solution to “How do I capture STDOUT/STDERR output from a system command?” varies quite

a bit from version 2.3 to 2.7
§  Regular expression handling in Python is clumsy compared to shell languages.

–  You will be annoyed with Python’s Regular Expression (RegEx) handling coming from PERL.

Python – What I Don’t Like About Python

UNCLASSIFIED LA-UR-17-XXXXX

Slide 7

§  NumPy: Numerical Python
–  N-dimensional arrays
–  Linear algebra routines, Fourier transforms and random number generators.
–  Think GSL with out the licensing hassles.

§  SciPy: Scientific Python
–  Requires NumPy
–  Hundreds of common numerical algorithms.

§  Other Python packages
–  matlibplot, 2D plotting package (www.matlibplot.org)
–  mpi4py, MPI for Python (mpi4py.scipy.org)
–  Nose, Python unit test framework (github.com/nose-devs/nose)

§  Python has a built-in unit-test module, but nose is a fantastic extension!

Python – Add-on Packages
Matlibplot combined

with scipy and
numpy can

duplicate many
basic MatLab

features!

UNCLASSIFIED LA-UR-17-XXXXX

Slide 8

§  The topics covered in this talk are valid for Python 2.7
–  Same version I use for CMF development
–  Be aware that Python 3.x does have differences

§  Use binary installers or modules to access different versions of Python
–  Source code for Python exists, but it’s a challenging package to boot-strap build.

§  Enthought Python Distribution (EPD), software that packages Python 2.x
with common third party software like numpy and scipy.
–  Available through a module load on LANL systems:

module load python-epd

–  Nice GUI editor
§  Ananconda, another Python package with third party software, includes

Python 2.x and Python 3.x
–  Also available on the HPC platforms through modules:

 module load python/x.x-anaconda-y.y

Python – Availability and Versions

UNCLASSIFIED LA-UR-17-XXXXX

Slide 9

§  Everything is an instance of an object
–  Example: A string has multiple methods (actions on the

characters in the string). It is more that just a collection of
chars!

Python – Everything is An Object

>>> a='this is a string'
>>> print a.count('i')
3
>>> print a.upper()
THIS IS A STRING
>>>print dir(a)

Type ‘python’ at the
command line and
this will bring up an
interactive python
session; See the

‘>>>’ prompt.

The command
print dir(anyObject)

 will display all the
implemented methods for

that object.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 10

§  Four numeric data types float, complex, int and
long.
–  int is a signed integer the same size as a word, usually 32-bit
–  long is 64-bit integer
–  In Python 2.x, math operations between integers results in

another integer, i.e. 2 / 3 = 0
–  Most machines, at least the ones we care about, will map float to

double precision.
–  Numpy defaults to double precision, but other data-types are

possible.
–  In Python3, integers are now longs and integer math returns

floats, i.e. 2 / 3 = 0.66666666667
§  Good web reference for the different numeric data types.

www.tutorialspoint.com/python/python_numbers.htm

Python - Numbers

UNCLASSIFIED LA-UR-17-XXXXX

Slide 11

Python – Logic and Loop Control

if sum > 0.0:
 print ‘It is positive’
elif sum < 0.0:
 print ‘It is negative’
else:
 print ‘It is zero’

cnt=0
while cnt < max:
 print ‘Hello!’
 cnt+=1

for cnt in range(0,9):
 print ‘Hello!’

No switch/
case control,
use the else if
(elif) syntax

Notice the ‘:’ that
ends both the logic

and loop declarations.
Indentation defines

the code block where
the logic/loop is

defined

UNCLASSIFIED LA-UR-17-XXXXX

Slide 12

§  Lists (Array)
–  Ordered sequence (stack)
–  Behaves like arrays you find in other languages
–  Use the brackets [] to access particular element of a list.

§  x[0]: First element in list
§  x[5]: Fifth element in list
§  x[-1]: Last element in list

–  Can manipulate any list with following the methods
§  Add element or another list to the end: append
§  Remove first occurrence of value: remove
§  Remove and return items in the list at some index, default is the last: pop

–  Loop Control, use the ‘in’ operator

Python – Basic Data Types

myList=[3,4,5,6,7]
for x in myList:
 print 3*x

UNCLASSIFIED LA-UR-17-XXXXX

Slide 13

§  Tuples
–  An ordered sequence where the members can NOT be changed (immutable)

once defined.
–  Created with () brackets, use the [] brackets to access a particular member.

§  For a one member tuple: myTuple=(‘this’,)
–  Loop control is the same as lists
–  Existing tuple can be appended, but not spliced/pop

Python – Basic Data Types

>>> tupExample=('foo', 'bar', 'hello', 1, 3)

>>> tupExample[0]
'foo’

>>> tupExample[-1]
3
>>> tupExample[1]=3

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

>>> tupExample+=('more', 'stuff')

>>> print tupExample
('foo', 'bar', 'hello', 1, 3, 'more', 'stuff')

In a language
without the concept

of private/public
members and nearly

everything else IS
mutable, tuples
come in handy!

UNCLASSIFIED LA-UR-17-XXXXX

Slide 14

§  Sets
–  Unordered collection with unique elements
–  Define using set(tuple or list)

§  In Python3 or Python 2.7, can be defined with curly
braces
–  mySet={1,2,100,’this’,’etc.’}

–  Need only the unique values in a list, use set
§  uniq=list(set(myList))

Python – Basic Data Types

>>>setExample=set(('duck','duck','duck','goose'))

>>> print setExample
set(['goose', 'duck'])

Set operations are a
compact way to

compare or unionize
two lists without

creating duplicate
elements.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 15

§  Dictionary
–  Collection of pairs (key, value)
–  Define using {} brackets for the collection, using ‘:’ to separate key from value.

§  myDict={ ‘name’: ‘John’, ‘Age’:30, ‘Address’: ‘123 Street’}

–  Create an empty dictionary with dict() or {}
–  Key does not have to be a string!
–  Methods to modify dicts

§  Remove (key,value) pairs with del: del myDict[‘Age’]
§  Add new pairs with []: myDict[‘Height’]=6.5

–  Use iteritems to loop through a dictionary

Python – Basic Data Types

for key, value in myDict.iteritems():
 print ‘%s=>%s’%(key,value)

Dictionaries are
unordered. See

OrderedDict in the
collections Python
module to create

dictionaries that will
output the keys in the
order they were added

UNCLASSIFIED LA-UR-17-XXXXX

Slide 16

Python - Functions

def functionname(functionParameters):
 :
 a=[3.0, 1.0, 5.0]
 :
 return something

Block of the function definition
is indented. Parameters
defined in this block are not
accessible outside the
function (local scope)

Return
statement is not
required.
Python will
return a None if
not defined. >>> myList=range(0,10)

>>> print myList
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> odd_nums=filter(lambda x: x%2,myList)
>>> print odd_nums
[1, 3, 5, 7, 9]

lambda operator creates an anonymous
(no name) function in one line. Used with
filter, map and reduce.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 17

Python – Function Parameters
def compute(x,y,z):
 return (x*y)/z

There are different ways to call compute

•  Positional

compute(1,2,3)

•  Build a list and pass as positional

arguments

myArgs=[1,2,3]
compute(*myArgs)

•  Keyword

compute(y=2,z=3,x=1)

•  Build a dictionary and pass as

keywords

myArgs={‘x’:1, ‘y’:2, ‘z’:3}
compute(**myArgs)

def compute(x,y,z=2):
 return (x*y)/z

Define default values of a function as
keywords (positional ALWAYS before keyword)

def compute(x,y,z=2):
 def average(a,b):
 return (a+b)/2.0

 return average(x,y)/z

Functions can be nested!

UNCLASSIFIED LA-UR-17-XXXXX

Slide 18

Python – Functions and *args, **kwrds

def compute_area_or_vol(*args,**kwrds):

 if len(args) == 2:
 area=args[0]*args[1]
 elif len(args) == 3:
 area=args[0]*args[1]*args[2]
 else:
 w=kwrds.get(‘w’,None)
 l=kwrds.get(‘l’,None)
 h=kwrds.get(‘h’,None)
 if w is not None and l is not None:
 if h is None:
 area=w*l
 else:
 area=w*l*h
 else:
 msg=‘Error can not compute area’
 raise ValueError(msg)
 return area

compute_area_or_vol(40.0,50.0)
compute_area_or_vol(40.0,50.0,90.0)

compute_area_or_vol(w=40.0,l=50.0)
compute_area_or_vol(w=40.0,l=50.0,h=90.0)

Listed above are ALL valid ways to call
compute_area. The *args (tuple) and
**kwrds (a dict pronounced keywords)
define variable length argument lists.

If you have used printf in C/C++, you
have used variable length argument lists.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 19

Python – References (Memory!)

>>> a=range(0,10)
>>> print a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = a
>>> b[0]=-100
>>> print a
[-100, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Try this in an
interactive Python
session

What happened to a?!

0 1 2 3 4 5 6 7 8 9

a

b

The variables a and b
are references to a fixed
place in memory

The assignment (=) does not create a new object in memory
because lists are mutable, allowed to change in place. Behavior is
different for immutable objects (tuples!).
See
https://en.wikibooks.org/wiki/Python_Programming/Data_Types
for more examples.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 20

Python – References (Memory!)

0 1 2 3 4 5 6 7 8 9

a

b

Python will not delete this
memory until all references
to it are deleted.

Languages like Python that manage
memory internally, typically pass
references.

When you want a new object in
memory with the same values as the
original reference, call the “copy
constructor”.

In the follow-up presentation, I will
point out the ‘copy’ functions that are
defined for many of the CMF
classes.

I also had tests fail in my TITANS
example that were failing because I
forgot about this!

Each mutable object in
Python has a reference

pointer counter that tracks
how many references are
associated with that bit of
memory. If you write code

interfaces to other languages
like C/C++, you need to be

aware of this or you will have
memory leaks!

UNCLASSIFIED LA-UR-17-XXXXX

Slide 21

§  Why use classes?
–  Organize data and desired software functionality
–  Leverage the Object-Oriented capability of Python
–  Reduce duplicate code

§  Based what I have seen of the setup tools for all the
teams prior to Common Model Framework (CMF), did
not use classes and programmed in a functional pattern.
–  Not surprising, since most developers came from a C or Fortran

background.
§  When classes have been used, polymorphism was rarely

used. Typically a class’s purpose was to provide
common functions.

Python Classes

UNCLASSIFIED LA-UR-17-XXXXX

Slide 22

 Python Classes – A Simple Template

Class Foo(object):

 def __init__(self,a,b):
 self.a=a
 self.b=b

 def __call__(self,c):
 return c*self.a + self.b

 def doSomething(self,d):
 return (self.a+self.b)*d

 def average(self):
 return (self.a+self.b)/2.0

Class name
Foo inherits from object
and will now have object
attributes. More on this
later.

Reserved
method that
initializes an
instance of Foo

Reserved
method that
defines
behavior when
an instance is
called like a
function/method
(callable) Other functions

that use the
data in Foo to
perform tasks.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 23

Python Classes – Simple Template

class Foo(object):

 def __init__(self,a,b):
 self.a=a
 self.b=b

 def __call__(self,c):
 return c*self.a + self.b

 def doSomething(self,d):
 return (self.a+self.b)*d

 def average(self):
 return (self.a+self.b)/2.0

The syntax ‘class Foo(object):’
means the Foo class inherits from the
object class. Foo will have all the
attributes/methods/members defined in
object.

The object class is a built-in class of
Python. This allows us to create classes
that inherit from Foo and use the super
function, more on that in later slides.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 24

Python Classes – Simple Template

class Foo(object):

 def __init__(self,a,b):
 self.a=a
 self.b=b

 def __call__(self,c):
 return c*self.a + self.b

 def doSomething(self,d):
 return (self.a+self.b)*d

 def average(self):
 return (self.a+self.b)/2.0

Functions that are members of a class are called
methods.

__init__ is the method called when a ‘new’
instance of Foo is created.

 f=Foo(2.0,3.0)
 print f.a; print f.b
 2.0
 3.0

For any method in the class, the first argument is a
reference to the instance calling the method.
Typically this argument is labeled ‘self’.
This is similar to the ‘this’ pointer in a
C++ class.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 25

Python Classes – Simple Template

class Foo(object):

 def __init__(self,a,b):
 self.a=a
 self.b=b

 def __call__(self,c):
 return c*self.a + self.b

 def doSomething(self,d):
 return (self.a+self.b)*d

 def average(self):
 return (self.a+self.b)/2.0

Reserved Python methods are named:
__something__

__call__ is the method called when
an instance of Foo is called like a
function

 f=Foo(2.0,3.0)
 f(10.0)
 23.0

UNCLASSIFIED LA-UR-17-XXXXX

Slide 26

Python Classes – Simple Template

class Foo(object):

 def __init__(self,a,b):
 self.a=a
 self.b=b

 def __call__(self,c):
 return c*self.a + self.b

 def doSomething(self,d):
 return (self.a+self.b)*d

 def average(self):
 return (self.a+self.b)/2.0

Any method defined in the class is
called with
instance.methodName()

 f=Foo(2.0,3.0)
 f.doSomething(5.0)
 f.average()

Methods can have any number of
arguments

UNCLASSIFIED LA-UR-17-XXXXX

Slide 27

Python Classes – A Simple Template

•  f is referred to as an instance of Foo
•  Attributes are members of Foo. Can be parameters (a, b) or methods

(average, doSomething)
•  Use dir(f) or dir(Foo) to return a list of all attributes, including

special (__something__) and intended to be private attributes
(_doNotUse).

•  Beware relying on internal attributes!
•  Use the ‘.’ for any attribute (parameters or methods)

 f.doSomething()
f.a

•  Instances of classes in Python are mutable
•  The creation of a new member is allowed (f.c=8) even if c was not

defined in Foo source code.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 28

§  The math operators (+,-,/.*) and comparison
operators (==, !=, >, <) are all defined for any
Python object through reserved methods.

Python Classes - Operators

Operators Method
==, != __eq__,

__ne__
<,> __lt__, __gt__
+, - __add__,

__sub__
*, / __mult__,

__div__

class Foo(object):

 def __init__(self,a,b):
 self.a=a
 self.b=b

 def __eq__(self,other):
 if isinstance(other,Foo):
 return (self.a == other.a) and \
 (self.b == other.b)
 else:
 return NotImplementedError

 def __ne__(self,other):
 return not self.__eq__(other)

UNCLASSIFIED LA-UR-17-XXXXX

Slide 29

Python Classes – Inheritance Example
class Pet(object):

 def __init__(self,name, species):

 self.name=name
 self.species=species

 def getName(self): return self.name

 def getSpecies(self): return self.species

 def noise(self): return NotImplemented

class Dog(Pet):

 def __init__(self,name):
 super(Dog,self).__init__(name=name, species=‘dog’)

 def noise(self): return ‘bark’

class Cat(Pet):

 def __init__(self,name):
 super(Cat, self).__init__(name=name, species=‘cat’)

 def noise(self): return ‘meow’

class Fish(Pet):

 def __init__(self, name):
 super(Fish,self).__init__(name=name, species=‘fish’)

 def noise(self): return None

•  Pet is a base class (also
called Super Class)

•  Dog, Cat, and Fish inherit
from Pet

•  All will have getName
and getSpecies (code
re-use!)

•  All must implement
noise, otherwise an error
is thrown if called.

What is super?

UNCLASSIFIED LA-UR-17-XXXXX

Slide 30

§  In this simple inheritance
structure, super calls the
Pet __init__ method to
initialize an instance.
–  Useful to reduce code!

§  What about more
complicated inheritance
patterns?

Python Classes – Pet Example

Pet

Fish Cat Dog

super(Dog,self).__init__(name=n,species=s)

Execute the Dog parent class (Pet) __init_ method.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 31

Python Classes – Animal Example
•  Create a base class Animal

that requires a minimum of
species and food.

•  The noise method in the
previous Pet class will be
defined here.

•  Create two sub-classes, Pet,

that includes a name attribute
and FarmCritter, that
includes a flag (isEdible)
and a dollar value.

•  MilkCow inherits from Cow and
the isEdible flag is defined
as False.

For MilkCow, what happens when super is called?

Animal

Pet

Fish

Farm
Critter

Cat Sheep Dog Cow

Milk
Cow

UNCLASSIFIED LA-UR-17-XXXXX

Slide 32

§  Simple script demonstrating super.
§  Notice:

–  Multiple instances of Dog types (fido and buster)
and since Dog is mutable an attribute like food can
be changed after declaration. (See Buster’s change in
food preference)

–  Notice the print statements for Cow and MilkCow
when instances for these classes are created.

–  One super statement ensures that all the __init__ are
called in sequence.

Python Classes – zootopia.py

UNCLASSIFIED LA-UR-17-XXXXX

Slide 33

§  What if we want to create a Horse class that
inherits from Pet and FarmCritter?

§  This creates what is called a diamond pattern of

inheritance and super can not resolve which
__init__ to call once past Animal.

§  Requires brute force to ensure the initialization in

the order I want. See the script.

§  Which __str__ method is used? Both define

__str__.
–  Answer: FarmCritter, because it is listed first in

the inheritance declaration!

Python Classes – Building a Horse

Animal

Pet

Horse

FarmCritter

UNCLASSIFIED LA-UR-17-XXXXX

Slide 34

Python - Inheritance
As Horse class demonstrates, this can become very complicated. So why
would we consider doing this?

animals=[Cat(‘Fluffy’), Fish(‘Sharkbait’), Cow(60.00)]

for a in animals:
 print ‘%s says %s’%(a.species,a.noise())

Common interfaces to methods, but implementation
can be altered for different instances. Here each
animal has a unique definition for noise, but identical
interface to make ‘noise’

UNCLASSIFIED LA-UR-17-XXXXX

Slide 35

Python - Inheritance

Easy to add a new type of Animal. Less lines of code
reduces maintenance.

def feedTheAnimals(*args):

 for a in args:
 feedFoodToAnimal(a.food)

Class Chicken(FarmCritter):
 def __init__(self):
 super(Chicken,self).__init__(value=0.10,isEdible=True)

Methods that require Animal types do not need
updating if a new sub-class of Animal is added.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 36

§  Organize around abstract things
that own data and tasks
performed on that data.

§  Methods and data are co-
located.

§  More common methods

(behavior) should be defined in
base classes to reduce code.
–  Be prepared to change base

class

Python – OO vs. Functional

§  Organize around an algorithm
that requires input data.

§  Procedure definitions and the
data are not co-located.

§  Different behavior requires
different data and usually a
different procedure.

Object Oriented Programming Functional Programming

UNCLASSIFIED LA-UR-17-XXXXX

Slide 37

How do use all the built-in or third party packages available in Python?

Python - Importing Packages

import sys
import os

from numpy.optimization import newton
from scipy.constants import N_A as AvoNum

path=os.path.join(‘usr’,’projects’)

soln=newton(myfunc,x0)

num_particles=AtomicMass/AvoNum

import packagename adds
packagename to the local scope.

Can add package names, classes
or functions

The ‘as’ modifier is used to alias
the name in the local scope

Environment variable
PYTHONPATH controls where
Python searches for packages.

UNCLASSIFIED LA-UR-17-XXXXX

Slide 38

§  module: a file with class and function definitions
§  package: a collection of modules
§  Organize sub-packages into subdirectories that are

also packages

Python – Defining Packages

material/
 __init__.py
 base.py
 solid.py
 gas.py
 eos/
 __init__.py
 base.py
 ideal.py
 sesame.py

Modules are base.py,
solid.py, gas.py,
etc.

Packages are material
and eos is sub-package
of material.

What’s __init__.py?

UNCLASSIFIED LA-UR-17-XXXXX

Slide 39

Python Packages

from .solid import SolidMat
from .gas import GasMat

from .sesame import SesameEos
from .ideal import IdealGasEos

material/__init__.py

material/eos/__init__.py

The __init__.py is a special file
that Python uses to determine what is
visible through import of the package.

Allows the code that defines
SolidMat to reside in a separate file.

from .solid import SolidMat

means:

“Look in the local (.) directory for the
module file solid.py to find the code
that defines class SolidMat.”

from authority.material import SolidMat

from authority.material.eos import IdealGasEos

UNCLASSIFIED LA-UR-17-XXXXX

Slide 40

§  One of the best features of the Python language is the unittest
module.

§  I could spend an entire hour on this.
§  Unit tests exercise behavior of small units of code. As a project

evolves, these tests will catch changes in behavior.
–  Remember OOP is designing abstract objects and their behavior.

§  Resources
–  A good introduction to unit testing

https://taco.visualstudio.com/en-us/docs/unit-test-01-primer/
–  Nose, an extended unit test Python framework

http://nose.readthedocs.io/en/latest/index.html
§  Write tests as you write code!

Python – Unit Tests

Attempting to write OOP code without unit testing is ill-advised

UNCLASSIFIED LA-UR-17-XXXXX

Slide 41

Python – Unit Test (Example)
from scipy.constants import N_A

class Particle(object):
 '''
 Base particle class that holds population value
 :param N float: Number of particles (default 0.0)
 '''

 def __init__(self,N=0.0):
 self._N=N

 @property
 def N(self): return self._N

 @N.setter
 def N(self,value):
 self._N=float(value)

class Nuclide(Particle):
 '''
 Base Nuclide class
 :param Z float: Atomic number
 :param A float: Atomic weight (AMU)
 :param N float: Number of particles (default 0.0)
 '''
 def __init__(self,Z,A,N=0.0):
 super(Nuclide,self).__init__(N)
 self.Z=Z
 self.A=A

 @property
 def mass(self):return (self.A*(self.N/N_A))

 @mass.setter
 def mass(self,value):
 self.N=((float(value)/self.A)*N_A)

import unittest

class TestNuclides(unittest.TestCase):

 def test_initial(self):
 from ..nuclides import Nuclide
 Dummy=Nuclide(Z=0.0,A=0.0)
 self.assertTrue(True)

 def test_N(self):
 from ..nuclides import Nuclide
 N0=1.0e+3
 C=Nuclide(Z=6.0,A=12.0107,N=N0)
 self.assertEqual(C.N,N0,'Failed to set initial
population value')
 self.assertEqual(C.Z,6.0,'Failed to set Z value')
 self.assertEqual(C.A,12.0107,'Failed to set A value')

 def test_mass(self):
 from scipy.constants import N_A
 from ..nuclides import Nuclide
 C=Nuclide(Z=6.0,A=12.0107)
 C.mass=12.0107
 self.assertEqual(C.N,N_A,'Failed to update the mass/N
correctly')

A simple test for import errors or typos

Check the attribute settings

Check N/mass updates

UNCLASSIFIED LA-UR-17-XXXXX

Slide 42

§  Use Google
–  Incredibly large and diverse community using Python in many

scientific settings. If someone local can not answer your question,
there is a very good chance someone on Reddit or StackOverflow
has.

§  Books
–  I do not recommend the O’Reilley books. Most of the information is

found online for free. Although the pocket reference looks handy and
cheap (<$10)

–  Python Scripting for Computational Science, H.P. Langtangen
§  Web Pages

–  Well organized tutorial site: http://www.tutorialspoint.com/python/
–  The Newbie Python sub-reddit: http://www.reddit.com/r/learnpython
–  SciPy: http://www.reddit.com/r/scipy

Python - Resources

