LA-UR-17-22137

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

Introduction to Python for CMF Authority Users
Pritchett-Sheats, Lori A.

Instructional slides intended for wide distribution

2017-03-14

VA

.
s LonLuamos

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

ofog Alamos

NATIONAL LABORATORY
EST.1943

(U) Introduction to Python for CMF Authority
Users

Primary V&V Seminar
Lori A. Pritchett-Sheats, XTD-PRI

2017 March 7

LA-UR-17-XXXXX UNCLASSIFIED

Abstract

This talk is a very broad over view of Python that highlights
key features in the language used in the Common Model
Framework (CMF). | assume that the audience has some
programming experience in a shell scripting language (C
shell, Bash, PERL) or other high level language (C/C++/
Fortran). The talk will cover Python data types, classes
(objects) and basic programming constructs. The talk
concludes with slides describing how | developed the basic
classes for a TITANS homework assignment.

Slide 2

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAELS::;?SORATORY

Outline

Python

Introduction
Language Basics
Data types
Functions
Memory and References
Classes
Simple Template
Inheritance (Animal Example, zootopia. py)
Operators
Packages
Unit Tests

TITANS Example
Resources

Slide 3

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATlONAELS::?:)RATORY

Python — Brief History

Advanced (3™ generation) language
No compiling, an interpreted run-time environment
language

Memory management handled internally unlike C/C++
First developed in the late 1980s

Version 1.0, 1994

Version 2.0, 2000

Version 3.0, 2008

Last release from the 2.x series is 2.7 and Python 3.6 is the latest
(December 2016) release

Version 2.6 and higher are available on all the LANL
platforms and nearly any UNIX-flavored OS ships with
Python installed.

Slide 4

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S::S;I:;ORATORY

Python — Why Use Python?

Over the past several years, it has established itself as one of the
most popular languages in use today.

TIOBE, #5

IEEE, #3

In mix with C, C++, Java and C# as a top 5 language.

Crowd source solutions to common needs
Large (HUGE) open source add-ons especially for scientific
programming.

Excellent language, combined with NumPy and SciPy, to proto-type
numerical algorithms

Built-in Object Oriented (OO) programming

Unlike PERL that attempted to graft OO onto a language that was not
originally intended to be OO.

The learning curve to write code is not as steep as other languages
such C, Java, etc.

Slide 5

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:QQ:SORATORY

Python — What | Don’t Like About Python

These are m@g opinions, but | think many others in the X* community would have similar
complaints.

Python 2.x versions are all backwards compatible, Python 3.x versions are not.
They changed the print statement syntax. WHY?!?!
https://www.python.org/dev/peps/pep-3105/ - rationale for an explanation on why print was changed.

Uses indentation (tabs and/or spaces) to create code blocks instead of {' or statements like
‘iffendif, do/end’ etc.

Can create extremely dense code files, which annoy me. | like white-space.
Parser will hit a syntax error and die one line later. *sigh*
It is a poor substitute for shells like CSH, BASH or even PERL.

In my own work, anything that is sequence of shell commands | still use CSH or BASH (>20
command sequence or | want functions).

The solution to “How do | capture STDOUT/STDERR output from a system command?” varies quite
a bit from version 2.3 to 2.7

Regular expression handling in Python is clumsy compared to shell languages.
You will be annoyed with Python’s Regular Expression (RegEx) handling coming from PERL.

Slide 6

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:QQ:SORATORY

Matlibplot combined
with scipy and

Python — Add-on Packages numpy can

duplicate many

basic MatLab
features!

NumPy: Numerical Python
N-dimensional arrays
Linear algebra routines, Fourier transforms and random number generators.
Think GSL with out the licensing hassles.

SciPy: Scientific Python
Requires NumPy
Hundreds of common numerical algorithms.

Other Python packages
matlibplot, 2D plotting package (www.matlibplot.org)
mpi4py, MPI for Python (mpi4py.scipy.org)

Nose, Python unit test framework (github.com/nose-devs/nose)
Python has a built-in unit-test module, but nose is a fantastic extension!

Slide 7

« Los Alamos

LA_UR_17_XXXXX UNCLASS'FIED NATIONAELS::ZORATORY

Python — Availability and Versions

The topics covered in this talk are valid for Python 2.7

Same version | use for CMF development

Be aware that Python 3.x does have differences
Use binary installers or modules to access different versions of Python

Source code for Python exists, but it's a challenging package to boot-strap build.

Enthought Python Distribution (EPD), software that packages Python 2.x

with common third party software like numpy and scipy.

Available through a module load on LANL systems:

module Toad python-epd
Nice GUI editor

Ananconda, another Python package with third party software, includes
Python 2.x and Python 3.x

Also available on the HPC platforms through modules:
module load python/x.x-anaconda-y.y

Slide 8

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:QQ:SORATORY

Python — Everything is An Object

Everything is an instance of an object

Example: A string has multiple methods (actions on the
characters in the string). It is more that just a collection of

chars!
Type ‘python’ at the
. . . command line and
>>> a='this 1s a string’ this will bring up an
. 5o interactive python
>>> print a.count('i') session; See the
3 >>>’ prompt.

>>> print a.upper()
THIS IS A STRING
The command

>>>print dir(a) print dir(anyobject)
will display all the
implemented methods for
that object.

Slide 9

« Los Alamos

LA_UR_17_XXXXX UNCLASS'FIED NAT[ONAELSTF:S;;B:)RATORY

Python - Numbers

Four numeric data types float, complex, 1nt and
long.
1nt is a signed integer the same size as a word, usually 32-bit
lTong is 64-bit integer
In Python 2.x, math operations between integers results in
another integer, i.e.2/3=0

Most machines, at least the ones we care about, will map float to
double precision.

Numpy defaults to double precision, but other data-types are
possible.

In Python3, integers are now longs and integer math returns
floats, i.e. 2/ 3 = 0.66666666667
Good web reference for the different numeric data types.
www.tutorialspoint.com/python/python numbers.htm

Slide 10

. Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED DT A

Python — Logic and Loop Control

if sum > 0.0: No switch/
print ‘It i1s positive’ case control,
elif sum < 0.0: use the else i
print ‘It is negative’ (elif) syntax
else:

print ‘It is zero’

Notice the “’ that cnt=0

ends both the logic . _
and loop declarations. while cnt < max:

Indentation defines print ‘Hello!’
cnt+=1

the code block where
the logic/loop is
defined

for cnt in range(0,9):
print ‘Hello!’

> 11

« Los Alamos

LA_UR_17_XXXXX UNCLASS'FIED NATIONAELS::;B:)RATORY

Python — Basic Data Types

Lists (Array)

Ordered sequence (stack)

Behaves like arrays you find in other languages

Use the brackets [] to access particular element of a list.
X[0]: First element in list
X[5]: Fifth element in list
x[-1]: Last element in list

Can manipulate any list with following the methods
Add element or another list to the end: append
Remove first occurrence of value: remove
Remove and return items in the list at some index, default is the last: pop

Loop Control, use the ‘in’ operator

myList=[3,4,5,6,7]
for x in myList:
print 3*x
Slide 12

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:1A;14330RATORY

Python — Basic Data Types

Tuples

An ordered sequence where the members can NOT be changed (immutable)
once defined.

Created with () brackets, use the [] brackets to access a particular member.
For a one member tuple: myTuple=(‘this’,)

Loop control is the same as lists

Existing tuple can be appended, but not spliced/pop

>>> tupExample=('foo', 'bar', 'hello', 1, 3)

_In alanguage 35 fupExampielo]
without the concept

of private/public 3>> tupbxample[-1]
members and nearly >>> tupExample[1]=3

everything else IS
Traceback (most recent call last):
mUtab_Ie, tuples File "<stdin>", line 1, in <module>
come In handy! TypeError: 'tuple' object does not support item assignment

>>> tupExample+=('more', 'stuff')

>>> print tupExample
('foo', 'bar', 'hello', 1, 3, "more', 'stuff')

Slide 13

« Los Alamos

LA_UR_17_XXXXX UNCLASS'FIED NATIONAELS::;I:)RATORY

Python — Basic Data Types

Sets
Unordered collection with unique elements
Define using set(tuple or 1list)

In Python3 or Python 2.7, can be defined with curly
braces

mySet={1,2,100, 'this’,’etc.’}
Need only the unique values in a list, use set
unig=1l1st(set(myList))

Set operations are a >>>setExample=set(('duck’', "duck', "duck', 'goose'))

compact way to
compare or unionize

wo lists without >>> print setExample

creating duplicate set(['goose’, 'duck'])
elements.

Slide 14

« Los Alamos

LA_UR_17_XXXXX UNCLASS'FIED NATIONAELS::;I:)RATORY

Python — Basic Data Types

Dictionary

Collection of pairs (key, value)

Define using {} brackets for the collection, using ‘.’ to separate key from value.
myDict={ ‘name’: ‘John’, ‘Age’:30, ‘Address’: ‘123 Street’}

Create an empty dictionary with dict() or {}

Key does not have to be a string!

Methods to modify dicts
Remove (key,value) pairs with de1: de1l myDict[‘Age’]
Add new pairs with [J: myDict[‘Height’]=6.5

Use 1teritems to loop through a dictionary

Dictionaries are
unordered. See

Sgﬁggﬁgﬁ’;";'nggﬁ for key, value in myDict.iteritems():

module to create print ‘%s=>%s’%(key,value)
dictionaries that will

output the keys in the
order they were added

Slide 15

« Los Alamos

LA_UR_17_XXXXX UNCLASS'FIED NATIONAELS::ZORATORY

Python - Functions

Block of the function definition
is indented. Parameters
defined in this block are not
accessible outside the

def functionname(functionParameti«s)/’- function (local scope)

a=[3.0, 1.0, 5.0]

return something

‘\

Return

f;atl:air:;znt 's not Tambda operator creates an anonymous

P C’lhon v;/iII (no name) function in one line. Used with
y . filter, map and reduce.

return a None if

not defined. >>> myList=range(0,10)

>>> print myList

[0,1,2,3,4,5,6,7,8, 9]

>>> odd_nums=filter(lambda x: x%2,myList)
>>> print odd_nums

[1,3,5,7,9]

Slide 16

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATlONAELS::?:)RATORY

Python — Function Parameters

There are different ways to call compute
« Positional
compute(l,2,3)

* Build a list and pass as positional
arguments

myArgs=[1,2, 3]
compute(*myArgs)

+ Keyword
compute(y=2,z=3,x=1)

* Build a dictionary and pass as
keywords

myArgs={‘x’:1, ‘y’:2, ‘z’:3}

compute(**myArgs)

def compute(x,y,z):
return (x*y)/z

Define default values of a function as

keywords (positional ALWAYS before keyword)

def compute(x,y,z=2):
return (x*y)/z

Functions can be nested!

def compute(x,y,z=2):
def average(a,b):
return (a+b)/2.0

return average(x,y)/z

LA-UR-17-XXXXX UNCLASSIFIED

Slide 17

« Los Alamos

NATIONAL LABORATORY
EST.1943

Python — Functions and *args, **kwrds

def compute_area_or_vol(*args,**kwrds):

if len(args) == 2:
area=args[0]*args[1]

elif len(args) == 3:
area=args[0]*args[1l]*args[2]

else:
w=kwrds.get(‘w’,None)
T=kwrds.get(‘1’ ,None)
h=kwrds.get(‘h’,None)

if w is not None and 1 is not None:

if h is None:
area=w*1
else:
area=w*1%*h
else:
msg=‘Error can not compute area’
raise valueError(msg)
return area

compute_area_or_vol1(40.0,50.0)
compute_area_or_vol1(40.0,50.0,90.0)

compute_area_or_vol(w=40.0,1=50.0)
compute_area_or_vol(w=40.0,1=50.0,h=90.0)

Listed above are ALL valid ways to call
compute_area. The *args (tuple) and

**kwrds (a dict pronounced keywords)
define variable length argument lists.

If you have used printf in C/C++, you
have used variable length argument lists.

Slide 18

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:1A;14330RATORY

Python — References (Memory!)

Try this in an The variables a and b
interactive Python a are references to a fixed
session \ place in memory

>>> a=range(0,10)
>>> print a

[O’ 11 2’ 31 4’ 5’ 61 7’ 81 9]
>>> b = a <J”
>>> b[0]=-100 b
>>> print a

-100, 1, 2, 3, 4, 5, 6, 7, 8, 9
:] ‘\What happened to a?!

The assignment (=) does not create a new object in memory
because lists are mutable, allowed to change in place. Behavior is
different for immutable objects (tuples!).

See

https://en.wikibooks.org/wiki/Python Programming/Data Types
for more examples.

Slide 19

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S::S;I:;ORATORY

Python — References (Memory!)

Languages like Python that manage
memory internally, typically pass
references.

When you want a new object in
memory with the same values as the
original reference, call the “copy
constructor”.

In the follow-up presentation, | will
point out the ‘copy’ functions that are
defined for many of the CMF

classes.

| also had tests fail in my TITANS
example that were failing because |
forgot about this!

Python will not delete this

a memory until all references

\ to it are deleted.

Each mutable object in
Python has a reference
pointer counter that tracks
how many references are
associated with that bit of

memory. If you write code
interfaces to other languages
like C/C++, you need to be
aware of this or you will have
memory leaks!

Slide 20

« Los Alamos

,,,,,,,, LA-UR-17-XXXXX UNCLASSIFIED NATIONAELS::?:)RATORY

Python Classes

Why use classes?
Organize data and desired software functionality
Leverage the Object-Oriented capability of Python
Reduce duplicate code
Based what | have seen of the setup tools for all the
teams prior to Common Model Framework (CMF), did
not use classes and programmed in a functional pattern.
Not surprising, since most developers came from a C or Fortran
background.
When classes have been used, polymorphism was rarely
used. Typically a class’s purpose was to provide
common functions.

/1) Slide 21

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED ATIONAL LABORATORY

Python Classes — A Simple Template

Foo inherits from object

Class name and will now have object
attributes. More on this
later.
Reserved Class Foo(object):
method that > def _init__(self,a,b): Reserved
initializes an self.a=a method that
instance of Foo self.b=b defines
dof . . @ behavior when
ef _cal 17(5e1 € ! an instance is
return c*self.a + self.b i
called like a
| def dosomething(self,d): function/method
et e e / return (self.a+self.b)*d (callable)
that use the sdef average(self):
data in Foo to return (self.a+self.b)/2.0
perform tasks.

Slide 22

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAELS:SZORATORY

Python Classes — Simple Template

class Foo(object): The syntax ‘class Foo(object):’
e 2 b means the Foo class inherits from the
ef _init_(self,a,b): object class. Foo will have all the
self.a=a attributes/methods/members defined in
self.b=b object.

def __call__(self,c):

return creelf.a s self.b The object class is a built-in class of

Python. This allows us to create classes
that inherit from Foo and use the super

def dosomething(self,d): function, more on that in later slides.

return (self.a+self.b)*d

def average(self):
return (self.a+self.b)/2.0

Slide 23

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATlONAELS::?:)RATORY

Python Classes — Simple Template

class Foo(object): Functions that are members of a class are called
methods.
ef __init__(self,a,b):
self.a=a __1init__ is the method called when a ‘new’
self.b=b instance of Foo is created.

f=F00(2.0,3.0)
grant f.a; print f.b

def __call__(self,c):
return c*self.a + self.b

3.0
def doSomething(self,d): .
return (self.a+self.b)*d For any method in the class, the first argument is a
reference to the instance calling the nﬁcthod.
. Typically this argument is labeled ‘se | 1.
def average(self): T?;is is similar to the ‘this’ pointer in a
return (self.a+self.b)/2.0 C++ class.

Slide 24

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAELS:SZORATORY

Python Classes — Simple Template

class Foo(object): Reserved Python methods are named:
def _init_ (self,a,b): __something__
self.a=a _
self.b=l __call__ isthe method called when
an instance of Foo is called like a
def __call__(self,c): function
return c*self.a + self.b
def dosomething(self,d): F?igo(g% .0 ’ 3. O)
return (self.a+self.b)*d 230 '
def average(self):
return (self.a+self.b)/2.0

Slide 25

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATlONAELS::?:)RATORY

Python Classes — Simple Template

class Foo(object):

def __init__(self,a,b):
self.a=a
self.b=b

def __call__(self,c):
return c* self.b

def dosomething(self,d):
return (self.a+self.b)*d

def average(self):
return (self.a+self.b)/2.

Any method defined in the class is
called with
instance.methodName ()

f=F00(2.0,3.0)
f.doSomething(5.0)
f.average()

Methods can have any number of
arguments

LA-UR-17-XXXXX

Slide 26

« Los Alamos

UNCLASSIFIED NATIONAL LABORATORY

Python Classes — A Simple Template

« fisreferred to as an instance of Foo
« Attributes are members of Foo. Can be parameters (a, b) or methods
(average, doSomething)

« Usedir(f) ordir(Foo) to return a list of all attributes, including
special (__something) and intended to be private attributes
(_doNotUse).
« Beware relying on internal attributes!
» Use the “." for any attribute (parameters or methods)
f.doSsomething()
f.a
* Instances of classes in Python are mutable
« The creation of a new member is allowed (f.c=8) even if c was not
defined in FOo source code.

Slide 27

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:1A;14330RATORY

Python Classes - Operators

The math operators (+,-,/.*) and comparison
operators (==, I=, >, <) are all defined for any
Python object through reserved methods.

class Foo(object): Operators m

def __init__(self,a,b):
self.a=a - = __eq__,

def __eq__(self,other): <> It gt
if isinstance(other,Foo):
return (self.a == other.a) and \ + - add
(self.b == other.b) - -
else: sub
return NotImplementedError * it
mu
def _ _ne__(self,other): div

eturn not self.__eq__(other

LA-UR-17-XXXXX UNCLASSIFIED

Python Classes — Inheritance Example

class Pet(object):

def _init__(self,name, species):

elfpfenmme * Pet is a base class (also
self.species=species Ca”ed Supel" ClaSS)

def 1) : 1f. y i i
ef getName(self): return self.name * Dog, Cat,and Fish inherit

def getSpecies(self): return self.species

def noise(self): return NotImplemented from Pet
« All will have getName
class Dog(Pet): and getSpecies (COde
def __init__(self,name): re-use!)

super(Dog,self).__init__(name=name, species=‘dog’)

e All must implement
noise, otherwise an error
class cat(pet): is thrown if called.

def _init__(self,name):)
super(Cat, self).__init__(name=name, species=‘cat’)

def noise(self): return ‘bark’

def noise(self): return ‘meow’

class Fish(pet):

What is super?

def __init__(self, name):
super(Fish,self).__init__(name=name, species=‘fish’)

def noise(self): return None

Slide 29

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAELS::;?SORATORY

Python Classes — Pet Example

In this simple inheritance

structure, super calls the
Pet __1n1t__ method to
Initialize an instance.

Useful to reduce code!
What about more

complicated inheritance
patterns?

super(Dog,self).__init__(name=n,species=s)

Execute the Dog parent class (Pet) __init method.

Slide 30

« Los Alamos

LA_UR_17_XXXXX UNCLASS'FIED NAT[ONAELSTF:S;;B:)RATORY

Python Classes — Animal Example

Farm
Critter

For M1 1kCow, what happens when superis called?

LA-UR-17-XXXXX UNCLASSIFIED

Create a base class Animal
that requires a minimum of
species and food.
 The noise method in the
previous Pet class will be
defined here.

Create two sub-classes, Pet,
that includes a name attribute
and FarmCritter, that
includes a flag (1sEdible)
and a dollar value.

inherits from Cow and
the 1sedible flag is defined
as False.

Slide 31

« Los Alamos

NATIONAL LABORATORY

Python Classes — zootopia.py

Simple script demonstrating super.

Notice:

Multiple instances of Dog types (f7do and buster)
and since Dog is mutable an attribute like food can
be changed after declaration. (See Buster’s change in
food preference)

Notice the print statements for Cow and M1 1kCow
when instances for these classes are created.

One super statement ensures that all the __init__ are
called in sequence.

Slide 32

LA-UR-17-XXXXX UNCLASSIFIED

Python Classes — Building a Horse

What if we want to create a Horse class that

inherits from Pet and FarmCritter? Animal

This creates what is called a diamond pattern of
inheritance and super can not resolve which
__1init__to call once past Animal.

Requires brute force to ensure the initialization in

the order | want. See the script.
FarmCritter

Which __str__ method is used? Both define
__Str__.

Answer: FarmCritter, because it is listed first in
the inheritance declaration!

Slide 33

« Los Alamos

LA_UR_17_XXXXX UNCLASS'FIED NAT[ONAELSTF:S;;B:)RATORY

Python - Inheritance

As Horse class demonstrates, this can become very complicated. So why
would we consider doing this?

Common interfaces to methods, but implementation
can be altered for different instances. Here each
animal has a unique definition for noi se, but identical
interface to make ‘noise’

animals=[Cat(‘Fluffy’), Fish(‘Sharkbait’), Cow(60.00)]

for a in animals:
print ‘%s says %s’%(a.species,a.noise())

Slide 34

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAELS:SZORATORY

Python - Inheritance

Easy to add a new type of Animal. Less lines of code
reduces maintenance.

Class chicken(FarmCritter):
def __init__(self):
super(Chicken,self).__init__(value=0.10,1isEdible=True)

Methods that require Animal types do not need
updating if a new sub-class of Animal is added.

def feedTheAnimals(*args):

for a in args:
feedFoodToAnimal (a.food)

Slide 35

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAELS:SZORATORY

Python — OO vs. Functional

Object Oriented Programming Functional Programming
Organize around abstract things Organize around an algorithm
that own data and tasks that requires input data.
performed on that data. d P

Methods and data are co- Procedure definitions and the
located. data are not co-located.

More common methods

(behavior) should be defined in Different behavior requires
base classes to reduce code. different data and usually a
Ble prepared to change base different procedure.
class

Slide 36

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:QQ:SORATORY

Python - Importing Packages

How do use all the built-in or third party packages available in Python?

import packagename adds
packagename to the local scope.

import sys
import os Can add package names, classes
or functions

from numpy.optimization import newton
from scipy.constants import N_A as AvoNum

path=os.path.join(‘usr’,’projects’) The ‘as’ mOdIfleI" IS used to alias
the name in the local scope

soln=newton(myfunc, x0)

num_particles=AtomicMass/AvoNum Environment variable
PYTHONPATH controls where
Python searches for packages.

Slide 37

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S::D;?SORATORY

Python — Defining Packages

module: a file with class and function definitions
package: a collection of modules

Organize sub-packages into subdirectories that are
also packages

Modules are base. py,

material/ .

E;y;y_.py solid.py, gas.py,

solid.py etc.

gas)py

eos .
b_1'n1't_. py Packages are material

ase. :

P 'f’%’y and eos is sub-package
sesame. py of material.

What's __init__.py?

/1) Slide 38

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED ATIONAL LABORATORY

Python Packages
The __1nit__.py is a special file
material/__init__.py that Python uses to determine what is
visible through import of the package.

from .solid import Solidmat

from .gas import GasMat Allows the code that defines
SolidMat to reside in a separate file.

material/eos/ _init__.py from .solid import Solidmat

from .sesame import SesameEos

: : means:
from .i1deal import IdealGasEos

“Look in the local (.) directory for the
modaule file solid.py to find the code
that defines class SolidMat.”

from authority.material import Solidmat

from authority.material.eos import IdealGasEos

Slide 39

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:QQ:SORATORY

Python — Unit Tests

One of the best features of the Python language is the unittest
module.

| could spend an entire hour on this.

Unit tests exercise behavior of small units of code. As a project
evolves, these tests will catch changes in behavior.

Remember OOP is designing abstract objects and their behavior.

Attempting to write OOP code without unit testing is ill-advised

Resources

A good introduction to unit testing
https://taco.visualstudio.com/en-us/docs/unit-test-01-primer/

Nose, an extended unit test Python framework
http://nose.readthedocs.io/en/latest/index.html

Write tests as you write code!

Slide 40

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:1A;14330RATORY

Python — Unit Test (Example)

from scipy.constants import N_A import unittest

class Particle(object): . .
T (obj) class TestNuclides(unittest.TestCase):

Base particle class that holds population value

iparam N float: Number of particles (default 0.0) def test_initial(self):
from ..nuclides import Nuclide
def __init_ (self,N=0.0): pummy=Nuclide(z=0.0,A=0.0)
self._N=N self.assertTrue(True) A simple test for import errors or typos
@propert .
dgf ﬁ(se¥f): return self._N def test_N(se]f). . .
from ..nuclides import Nuclide Check the attribute settings
@N.setter NO=1.0e+3 g
def N(self,value): C=Nuclide(z=6.0,A=12.0107 ,N=NO)
self._N=float(value) self.asserteEqual (C.N,NO, 'Failed to set initial
class Nuclide(Particle): population value')
e . self.assertEqual(C.z,6.0,'Failed to set Z value')
Base Nuclide class self.assertEqual(C.A,12.0107, 'Failed to set A value')

:param z float: Atomic number

:param N £10aL: Anopic weight (VY2 (default 0.0) def test_mass(self):
from scipy.constants import N_A
def —init__(self,z,A,N=0.0): from ..nuclides import Nuclide
super(Nuclide,self).__init__(N) c=Nuclide(z=6.0,A=12.0107) Check N/mass updates
gg}ﬁii;i C.mass=12.0107
self.asserteEqual (C.N,N_A,'Failed to update the mass/N
@property correctly')

def mass(self):return (self.A*(self.N/N_A))

@mass.setter
def mass(self,value):
self.N=((float(value)/self.A)*N_A)

Slide 41

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAELS::;?SORATORY

Python - Resources

Use Google

Incredibly large and diverse community using Python in many

scientific settings. If someone local can not answer your question,

Lhere is a very good chance someone on Reddit or StackOverflow
as.

Books

| do not recommend the O’Reilley books. Most of the information is
found online for free. Although the pocket reference looks handy and
cheap (<$10)

Python Scripting for Computational Science, H.P. Langtangen

Web Pages
Well organized tutorial site: http://www.tutorialspoint.com/python/
The Newbie Python sub-reddit: http://www.reddit.com/r/learnpython
SciPy: http://www.reddit.com/r/scipy

Slide 42

« Los Alamos

LA-UR-17-XXXXX UNCLASSIFIED NATIONAEI.S:1A;14330RATORY

