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Power Electronics for the Electrical Grid
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Semiconductors for Power Electronics

 Power electronics are necessary 
for energy modulation and 
introduction of storage on the 
electrical grid

 Leading technology today is Si-
based IGBTs
 Si-based devices are limited in operating 

temperature and electric field

 Costs and low mobility associated 
with SiC technology makes GaN
devices attractive
 Particularly useful for 600 V applications
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Silicon 4H-SiC GaN

Bandgap
(eV)

1.1 3.2 3.4

Tmax (°C) 300°C 600°C 700°C

Mobility 
(cm2/Vs)

1500 260 1500

Breakdown
Field
(MV/cm)

0.3 3.5 2.0

Jon Ihlefeld, Sandia National Laboratories

Data adapted from: R.S. Pengelly, et al. IEEE Trans. M.T.T., 60 (6)  (2012)
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GaN Devices

 “Ideal” GaN Device

 Voltage Controlled

 Smart Grid compatible

 Film Embodiment

 Inexpensive compared to SiC

 Enhancement Mode (nominally off)

 Existing HEMTs are typically 
always on

 Safety issue

 MOSFETs (or MOSHEMTs) would be 
advantageous
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GaN Devices

 Oxide requirements for MOSFETs:

 Large bandgap

 Band offsets > 1 eV with semiconductor

 Chemically compatible

 Grows as a smooth film on GaN

 Low interface defect density

 Our strategy:

 Identify chemically compatible wide bandgap oxides that may have 
acceptable offsets with WBG and UWBG semiconductors

 Utilize epitaxy to form well-controlled interfaces
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Lanthanide Oxides: Candidate Materials
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Data from:  G-Y. Adachi and N. Imanaka, Chem. Rev. (1998)
J-P. Maria in High Dielectric Constant Materials (2005).
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Oxide Molecular-Beam Epitaxy

Reactive MBE

 Metallic La and Gd
sources

 E-beam evaporation

 O2 oxidant

 In situ RHEED

 Growth rates 0.5-
1 Å/minute

 5x10-7 Torr O2

 550-600°C substrate 
temperature
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La2O3 Growth Characteristics
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 Hexagonal growth observed for 
thicknesses of ≤ 6nm

 Transitions to rough cubic 
phase for thicknesses > 6nmJ.F. Ihlefeld, M. Brumbach, and S. Atcitty, Applied Physics Letters, 

102, 162903 (2013)

X-ray Diffraction

RHEED
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XPS Determination of Band Offsets
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La2O3/GaN Band Alignments
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 Valence band offset of 0.63 eV
measured at the La2O3-GaN 
interface (La 4p & Ga 3s)

 0.64 ± 0.04 eV (La 4p & Ga2p)

 0.60 eV (O 1s & Ga 3s)

 0.68 eV (O 1s & Ga 2p)

 Ideally want band offsets >1 eV
to maximize performance and 
reliability

 Conduction band offset of 
1.47 eV

 Low valence band offset may 
limit applications

J.F. Ihlefeld, M. Brumbach, and S. Atcitty, Applied Physics Letters, 
102, 162903 (2013)
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Gd2O3 as Gate Dielectric
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 High temperature 
stable oxide gate

 High permittivity in 
hexagonal phase (24)

 Other reports of a 1 eV
valence band offset

 Potential for low 
interface trap density

Jon Ihlefeld, Sandia National Laboratories
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Gd2O3 on AlGaN Growth

 Films grown at 600°C

 5 x 10-7 Torr O2 atmosphere

 7 Å/minute growth rate

 All films grow smoothly on 
different AlGaN composition 
substrates

 In-plane lattice spacing identical 
for each Gd2O3 film consistent 
with same phase independent 
of substrate
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RHEED

J.F. Ihlefeld, M. Brumbach, A.A. Allerman, D.R. Wheeler, and S. 
Atcitty, Applied Physics Letters, 105, 012102 (2014)

Jon Ihlefeld, Sandia National Laboratories
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Gd2O3 on AlGaN Growth

 All Gd2O3 films are cubic (bixbyite) 
regardless of thickness or 
substrate

 In-plane twins are present
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J.F. Ihlefeld, M. Brumbach, A.A. Allerman, D.R. Wheeler, and S. 
Atcitty, Applied Physics Letters, 105, 012102 (2014)

400 reflection of cubic Gd2O3

(2 = 33.2°, Ψ = 54.7°)

Jon Ihlefeld, Sandia National Laboratories
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Gd2O3 on AlGaN Band Offsets

 Band offsets are 
strongly semiconductor 
bandgap dependent

 All valence band offsets 
are < 0.5 eV

 Lanthanides may not 
work for UWBG devices
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J.F. Ihlefeld, Brumbach, Allerman, Wheeler, and Atcitty, Applied Physics Letters, 105, 012102 (2014)
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Gd2O3 on AlGaN Band Offsets

 Band offsets are 
strongly semiconductor 
bandgap dependent

 All valence band offsets 
are < 0.5 eV

 Lanthanides may not 
work for UWBG devices
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J.F. Ihlefeld, Brumbach, Allerman, Wheeler, and Atcitty, Applied Physics Letters, 105, 012102 (2014)
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Lanthanide Summary

 Lanthanide oxides possess some favorable attributes 
for use as a gate dielectric with GaN

 Chemical compatibility

 Large bandgaps

 High dielectric constants

 Low band offsets, interfacial defects, difficult to 
control polymorphs may make lanthanide oxides poor 
choices for GaN and AlGaN gate dielectric applications
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Dielectrics for GaN Devices

 Oxide requirements for MOSFETs and MOSHEMTs:

 Large bandgap

 Band offsets > 1 eV with semiconductor

 Chemically compatible

 Grows as a smooth film on GaN

 Low interface defect density

 Our strategy:

 Identify chemically compatible wide bandgap oxides that may have 
acceptable offsets with WBG and UWBG semiconductors

 Utilize epitaxy to form well-controlled interfaces
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 MCO/GaN: Mg0.5Ca0.5O

 MCO/67% AlGaN: 
Mg0.63Ca0.37O

MgO-CaO/AlN-GaN growth compatibility

We can lattice-match to GaN through AlN…

CaO
-6.5%

MgO
+6.9%

MCO
+0%

GaN
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• Band offsets measured on:

– GaN: 3.4 eV

– 28% AlGaN: 4.0 eV

– 67% AlGaN: 5.2eV

• Band offsets are strongly 
semiconductor bandgap
dependent

• Both EC and EV > 1 eV

• MgO/CaO are viable as 
AlGaN gate dielectrics on 
the basis of band offsets

MgO/AlxGa1-xN band offsets

XPS by Michael Brumbach at SNL

Paisley et al. Applied Physics Letters, 107, 102101 (2015)
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The problem: Band offsets are wildly 
inconsistent

MgO Gd2O3 La2O3 Sc2O3

Paisley et al. APL 2015

Craft et al. APL 2007 

Chen et al. APL 2006 

Ihlefeld et al. APL 2014

Lay et al. J. Cryst. Growth 2005

Chang et al. Adv. Mater 2009

Ihlefeld et al. APL 2013

V. Wheeler Ph.D. Dissertation 2009 

Liu et al. Phys. Status Solidi C 2007

Chen et al. APL 2006

V. Wheeler Ph.D. Dissertation 2009 

We want < 0.1 eV differences…
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The problem: Band offsets are wildly 
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What role does the substrate play?
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Band offset inconsistency experiment:

1. Acquire 5 GaN substrates: Lumilog, MTI, Sandia, and 
two from Maria group at NCSU

2. Clean substrates identically: acetone, methanol, UV-O3, 
and HF dip

3. Grow MgO on top identically

4. Measure band offsets of MgO|GaN with XPS

 M. Brumbach at SNL

EV = (Ga3d-GaNVBM)GaN– (G3d-Mg2p)MgO/GaN – (Mg2p-MgOVBM)MgO

Waldrop and Grant, APL, 68 (1996).
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Band offset inconsistency experiment:

Test what role the substrate plays in determining oxide/nitride band 
offsets:

1. Dislocation density of GaN

2. Surface stoichiometry of GaN
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1. Dislocation density of GaN:

Sandia

MTI

Lumilog

NCSU 2

NCSU 1  Large changes in 
valence band offset 
across sample series

 No clear trend with 
dislocation density 
across the 5 
substrates.

 Dislocations may 
matter, but the trend 
isn’t obvious
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2. Surface stoichiometry of GaN:

Ga Ga Ga Ga Ga Ga

 When we epitaxially grow MgO on GaN along [111]MgO:

Ga
GaN
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2. Surface stoichiometry of GaN:

GaN

 When we epitaxially grow MgO on GaN along [111] MgO:

Ga Ga Ga Ga Ga GaGa

O O O O
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2. Surface stoichiometry of GaN:

Mg Mg Mg Mg Mg Mg Mg
MgO

We expect abrupt MgO/GaN interfaces.

O O O O

Ga Ga Ga Ga Ga GaGa

OOO

• When we epitaxially grow MgO on GaN along [111] MgO:

GaN
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2. Surface stoichiometry of GaN:

Subsurface 
oxygen

But, what about subsurface oxygen?

Baldereschi et al., PRB 1991: “Tuning band offsets in GaAs/AlAs with 
Si intralayers”

We expect abrupt MgO/GaN interfaces.

Mg Mg Mg Mg Mg Mg Mg

GaN

MgO
O O O O

Ga Ga Ga Ga Ga GaGa

OOO

OOO

 When we epitaxially grow MgO on GaN along [111] MgO:
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Band offsets with (sub)surface oxygen:

 Large change in band 
offsets has a clear 
trend with oxygen 
concentration in GaN

 Differences are 
similar to the 
magnitude of 
inconsistencies seen 
in the literature

MTI

Lumilog

NCSU 1

NCSU 2

0.44 eV

Sandia
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Oxides for GaN Devices

 Oxide requirements for MOSFETs and MOSHEMTs:

 Large bandgap ✔

 Band offsets > 1 eV with semiconductor ✔

 Chemically compatible ✔

 Grows as a smooth film on GaN

 Low interface defect density 

 Our strategy:

 Identify chemically compatible wide bandgap oxides that may have 
acceptable offsets with WBG and UWBG semiconductors

 Utilize epitaxy to form well-controlled interfaces
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 We can extract Dit from Capacitance-Voltage analysis.

 Several techniques are used to do this in literature.

 Most techniques developed for silicon technology.

 These are not generally appropriate for wide bandgap
devices:

 Low minority carrier generation rate

 Require interface states with short emission times

 Pyroelectric (temperature change results in surface 
charge)

 Many traditional techniques underestimate Dit.

 We will use Photo-assisted CV 

Dit measurements for oxides on GaN
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Photo-assisted CV analysis: MgO|GaN

Dark

Post UV

V

Dit 
Cox

qA

V

Eg











Average Dit across band gap:

Dark

Post UV

Dark

Post UV

30 nm MgO / GaN in O2 at 1Mhz

J. Tan et al., APL 70 (1997) Swenson and Mishra, J. Appl. Phys., 106 (2009)
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Dark

Post UV

V

MgO Dit: 4 x 1011 eV-1 cm-2

Dark

Post UV

Dark

Post UV

30 nm MgO / GaN in O2 at 1Mhz

Photo-assisted CV analysis: MgO|GaN

J. Tan et al., APL 70 (1997) Swenson and Mishra, J. Appl. Phys., 106 (2009)

CaO Dit: 3 x 1011 eV-1 cm-2
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High quality interfaces with GaN:

Average Dit: 9 x 1010 cm-2 eV-1

Hossain et al. 2015 JVSTB

Mishra et al. 2009 JAP

Si3N4 |GaN

Al2O3 |GaN
MgO |GaN
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Comparison of dielectrics / GaN

 All measured with photo-assisted CV:

Dielectric / GaN Dit (eV-1 cm-2) Reference
La2O3 1 x 1012 SNL
MgO 9 x 1010 SNL
CaO 3 x 1011 SNL
Ga2O3 4.2 x 1011 [1]
Si3N4 5 x 1012 [2]
Al2O3 3 x 1012 [3]
Al2O3 5 x 1011 [4]

1Chiou, Y., Semicond. Sci. Technol. 25, 2010.
2Mishra, U., J. Appl. Phys., 106, 2009

3Ostermaier, C., Phys. Status Solidi C, 5, 2008
4Wu, Y., Appl. Phys. Lett., 90, 2007
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Summary

 Enhancement mode GaN semiconductor devices are desirable 
for electric grid power management applications

 One candidate embodiment to achieve a normally off device is a 
MOSFET or MOSHEMT structure

 Lanthanides are probably not great candidates

 MgO/CaO epitaxial alloys may be excellent candidates
 Chemical compatibility

 Large bandgaps

 Large band offsets

 Low interface state densities 

 Care must be taken to understand substrate growth and 
properties to reliably and repeatably prepare oxides on GaN
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La2O3/GaN Electrical Characterization

40

Jon Ihlefeld, Sandia National Laboratories 2013 DOE ESS Peer Review

 C-V curves enable identification of 
interface defects
 Low frequency peak (red arrow) 

indicates presence of interface trap 
states

 I-V curves allow for measurement of 
leakage through gate insulator

 La2O3 looks great on paper, but does 
not work 

La2O3 on GaN

Interface trap presence indicates 
performance limitation for this system
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Background

41

 Few well characterized reports on gate oxides for WBG and 
UWBG semiconductors:

 Most work is either poorly conducted (band offset characterization) 
or vague (interface trap density characterization)

 Important parameters:

 Chemical compatibility

 Band offsets

 Available materials become increasingly limited as semiconductor band 
gap increases

 Interface state density

 Our strategy:

 Identify wide bandgap oxides that may have acceptable offsets with 
WBG and UWBG semiconductors

 Utilize epitaxy to form well-controlled interfaces

Jon Ihlefeld, Sandia National Laboratories


