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Semiconductors for Power Electronics ) fesma

Power electronics are necessary
for energy modulation and
introduction of storage on the
electrical grid

Leading technology today is Si-
based IGBTs

= Si-based devices are limited in operating
temperature and electric field

Costs and low mobility associated

Toax (C)  300°C  600°C  700°C with SiC technology makes GaN
i devices attractive
M°t;'/"\t/y 1500 260 1500 .
(cm=/Vs) = Particularly useful for 600 V applications
Breakdown
Field 0.3 3.5 2.0
(MV/cm)
Data adapted from: R.S. Pengelly, et al. IEEE Trans. M.T.T., 60 (6) (2012) 3
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GaN Devices ) faer
Source HEMT Drain

Electrode Electrode

GaN Device Metal
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= “Idea

= Voltage Controlled Undoped

"""""""""" 2 AlGaN
Undoped GaN Doped

= Smart Grid compatible

= Film Embodiment

AlGaN
= |[nexpensive compared to SiC 2D gggtron
= Enhancement Mode (hominally off) MOSFET Gate
= Existing HEMTSs are typically Source Dielectric 5 i
always on Electrode I\(/BIZE;I Electrode

= Safety issue

= MOSFETs (or MOSHEMTS) would be e Gl BHEEREEIN (772 S
advantageous Undoped GaN
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Ga N DEVICES '11 Laboratories

= Oxide requirements for MOSFETSs:

= Large bandgap
= Band offsets > 1 eV with semiconductor

= Chemically compatible

= Grows as a smooth film on GaN

= Low interface defect density

= Qur strategy:

= |dentify chemically compatible wide bandgap oxides that may have
acceptable offsets with WBG and UWBG semiconductors

= Utilize epitaxy to form well-controlled interfaces




Oxides Thermodynamically Stable in Contact with Gallium

::% = Radioactive

¢33, = Not a Solid at 1000 K
IA Noble

(1) = Failed Reaction 1: Ga + MO, = M + Ga,O,
D TTA - (@) = Failed Reaction 2: Ga + MO, — MGa, + Ga,0, IIA 1‘\-’&\

Li | Be | @ =Failed Reaction 3: Ga+MO,—>GaM,0, + M

@) =Failed Reaction 4: Ga + MO, — MO, + Ga,0;
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Insufficient Thermodynamic Data to Complete Calculations Experimentally Demonstrated




Lanthanide Oxides: Candidate Materials rh) i

0% Strain ~< 10% Strain ~>10% Strain
Coherent Interface Pseudomorphic Incoherent
Satisfied Bonds With Dislocations With Dislocations
—\I W “l “I =

Data from: G-Y. Adachi and N. Imanaka, Chem. Rev. (1998)
J-P. Maria in High Dielectric Constant Materials (2005). 7
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Oxide Molecular-Beam Epitaxy ) e,

Reactive MBE

= Metallic La and Gd
sources

e

= E-beam evaporation
= O, oxidant
= |n situ RHEED

= Growth rates 0.5-
1 A/minute

= 5x107Torr O,

| Ulra-High Vacum 1 = 550-600° Csubstrate
tem pe rature




La,0; Growth Characteristics ) i,
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RHEED
X-ray Diffraction
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= Hexagonal growth observed for
thicknesses of £ 6nm

= Transitions to rough cubic

J.F. Inlefeld, M. Brumbach, and S. Atcitty, Applied Physics Letters, 1
102, 162903 (3013) phase for thicknesses > 6nm




XPS Determination of Band Offsets

Intensity (cps)
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La,0,/GaN Band Alignments ) S,

GaN a0 = Valence band offset of 0.63 eV
a et T measured at the La,0,-GaN
E a,Y,

S .
|AEC = 1.47 aV interface (La 4p & Ga 3s)

gSaN = 0.64 = 0.04 eV (La 4p & Ga2p)

¢ = 0.60 eV (O 1s & Ga 3s)

= 0.68eV (0 1s & Ga 2p)

= |deally want band offsets >1 eV
aN — +
EZ AE, 0'6:::_[3223'04 eV to maximize performance and
\

GaN reliability

E
o I = Conduction band offset of
| 1.47 eV
ELazos

Ladp = [Low valence band offset may
limit applications

J.F. Inlefeld, M. Brumbach, and S. Atcitty, Applied Physics Letters,
102, 162903 (2013) 11




Gd,0, as Gate Dielectric ) s,

ADVANCED
MATER Al-s www.advmat.de

Nanometer-Thick Single-Crystal Hexagonal Gd,O; on .
GaN for Advanced Complementary = High temperature
Metal-Oxide-Semiconductor Technology stable oxide gate

By Wen Hsin Chang, Chih Hsun Lee, Yao Chung Chang, Pen Chang, . L .
Mao Lin Huang, Yi Jun Lee, Chia-Hung Hsu,* J. Minghuang Hong, u H |gh pe rrm |tt|V|ty N

Chiung Chi Tsai, J. Raynien Kwo,* and Minghwei Hong*
hexagonal phase (24)

phys. stat. sol. (a) 188, No. 1, 239-242 (2001)

= QOtherreportsofaleV
Gadolinium Oxide and Scandium Oxide:
Gate Dielectrics for GaN MOSFETs valence band offset

B.P. GiAl) (a), JW. J b), R. Mexanoru (b), B. Luo (b), AH. O , :
KK. AﬂiU)M(saza), V. I(()RHI:IS-I(;:DEOLRTHY (c), E‘EREA(TE?S (a), [éolg J)QBERNATII:XS’TE:)E, ® = POte nt Ia I fo r IOW

F. ReN (b), and S.J. PEARTON (a)

interface trap density

(a) Department of Materials Science and Engineering, University of Florida,
Gainesville, FLL 32611, USA
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(¢) Uniroyal Optoelectronics, Tampa, FL 33619, USA
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Gd,0; on AlGaN Growth

RHEED

J.F. Ihlefeld, M. Brumbach, A.A. Allerman, D.R. Wheeler, and S.
Atcitty, Applied Physics Letters, 105, 012102 (2014)
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Films grown at 600° C
5x 107 Torr O, atmosphere
7 A/minute growth rate

All films grow smoothly on
different AlIGaN composition
substrates

In-plane lattice spacing identical
for each Gd,O; film consistent
with same phase independent
of substrate

13
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Gd,0; on AlGaN Growth ) e
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‘; 106?28%AIG3NMW/ J\ N/ \W ? J.67% AIGaN Ll
‘» ] 1 S W _
-9:3 10k 6nm Gd,0, \J\J fk : g i 12(:3:: G;;(l)\,l3
£ 102 GaN \J\.mw o é‘ dha I‘ W ‘ |
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20 (degrees) 10nm Gd; O,
= All Gd,O; films are cubic (bixbyite)
regardless of thickness or | | v .
substrate O% 20 40 60 80 100 120
] @ (degrees)
" In-plane twins are present 400 reflection of cubic Gd,O;
J.F. Ihlefeld, M. Brumbach, A.A. Allerman, D.R. Wheeler, and S. (20=133.2°, ¥ =54.7°) 14

Atcitty, Applied Physics Letters, 105, 012102 (2014)



Gd,O, on AlGaN Band Offsets ) s,

GaN gy /
o I I AEc =166V = Band offsets are
C strongly semiconductor

YLt aE,=041ev x  bandgap dependent

28% EGd203
AlGaN E_l_ VAE.=12eV

= All valence band offsets

are < 0.5 eV
NSt AE,=0.17eV X ® Lanthanides may not
67% ey pumeesy AE =026V X work for UWBG devices
AlGaN

67%AIGaN
E)”

s [~ 59203 =
% AE,=0.06eV X .




Gd,O, on AlGaN Band Offsets ) s,

= 05— . . . = Band offsets are

043 strongly semiconductor

o : bandgap dependent

% 0.3} :

T 4ol 1 = All valence band offsets

@ | ¢ I are<0.5eV

8 01¢ :

c i * ] .

L ot b 1 = Lanthanides may not

= L. ... 1  workfor UWBG devices
0.0 0.2 0.4 0.6 0.8

AIN content, x, in AIxGa1_xN

16
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Lanthanide Summary ) e,

= Lanthanide oxides possess some favorable attributes
for use as a gate dielectric with GaN

= Chemical compatibility
= |Large bandgaps

= High dielectric constants

= Low band offsets, interfacial defects, difficult to
control polymorphs may make lanthanide oxides poor
choices for GaN and AlGaN gate dielectric applications
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Dielectrics for GaN Devices i) ttors

= Oxide requirements for MOSFETs and MOSHEMTSs:

= Large bandgap

= Band offsets > 1 eV with semiconductor

= Chemically compatible

= Grows as a smooth film on GaN

= Low interface defect density

= Qur strategy:

= |dentify chemically compatible wide bandgap oxides that may have
acceptable offsets with WBG and UWBG semiconductors

= Utilize epitaxy to form well-controlled interfaces




Oxides Thermodynamically Stable in Contact with Gallium

::% = Radioactive

¢33, = Not a Solid at 1000 K
1A Noble
(1) = Failed Reaction 1: Ga + MO, = M + Ga,O,

DA TTA (@) = Failed Reaction 2: Ga + MO, — MGa, + Ga,0, L[E[ﬁh 1‘\-’&\

Li | Be | @ =Failed Reaction 3: Ga+MO,—>GaM,0, + M

@) =Failed Reaction 4: Ga + MO, — MO, + Ga,0;

IB IVB VB VIB VIIB I—VHIE—I_\ IB__IIB
K

N T ;
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Insufficient Thermodynamic Data to Complete Calculations Experimentally Demonstrated




MgO-CaO/AIN-GaN growth compatibility ) e
We can lattice-match to GaN through AIN...

* MCO/GaN: Mg, .Ca, O

= MCO/67% AlGaN:
Mg .63Ca03,0




MgO/Al Ga, N band offsets ) e,

e Band offsets measured on:

3.0 ——
— GaN:3.4eV Il @ Valence band
25| Il Conduction band ;
— 28% AlGaN: 4.0 eV ' B .
— 67% AlGaN: 5.2eV > 0l
. Banql offsets are strongly .,3’_’ 15. o
semiconductorbandgap & 7| ® .
dependent 2 :
e ®. ... i
* Both AE.and AE,,>1 eV -
: 0.5
 MgO/CaO are viable as
AlGaN gate dielectrics on oo b ]

the basis of band offsets 0 02 04 06 08 1
AIN content (x) AIxGa 1_XN
XPS by Michael Brumbach at SNL




The problem: Band offsets are wildly

iInconsistent

2.0

1.8

1.6

-
o

0.80

0.60

0.40

Measured valence band offset to GaN (eV)

Sandia
’11 National
Laboratories

14 }

1.2 }

: # : @ raisiey et al APL 2015

: B craft et al. APL 2007

: A\ Chen et al. APL 2006

. Lay et al. J. Cryst. Growth 2005

] . Chang et al. Adv. Mater 2009

A 'hiefeld et al. APL 2014

— .— —_———— — — — —| @ V- Wheeler Ph.D. Dissertation 2009

: : + Bl ihiefeld et al. APL 2013

‘ V. Wheeler Ph.D. Dissertation 2009

B : : I Chen et al. APL 2006
A : - A Liuetal Phys. Status Solidi C 2007

MgO

Gate oxide

We want < 0.1 eV differences...




The problem: Band offsets are wildly

iInconsistent
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La,O; Sc,0;,

Gate oxide

We want < 0.1 eV differences...
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@ raisicy ot al. APL 2015

B craft et al. APL 2007

A\ Chen et al. APL 2006

‘ Lay et al. J. Cryst. Growth 2005
. Chang et al. Adv. Mater 2009

A 'hiefeld et al. APL 2014

@ \ Wheeler Ph.D. Dissertation 2009
BB iniefeld et al. APL 2013

@ V. Wheeler Ph.D. Dissertation 2009

. Chen et al. APL 2006

A\ Liuetal. Phys. Status Solidi C 2007




The problem: Band offsets are wildly
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Inconsistent

2.0 -
S ot
< s : @ raisicy ot al. APL 2015
=z 18} :
& i BB cCraft et al. APL 2007
e 16} A Chen et al. APL 2006
- n .
2 ’ : A1.27 eV L
7 . . ay et al. J. Cryst. Growth 2005
£ M |1 ]Aa059eV : . ®

What role does the substrate play’?

g 10} f;"—- — .—- - —— ‘— — — — —| @ V. Wheeler Ph.D. Dissertation 2009
c s

2 080 : B hiefeld et al. APL 2013

.; E A 0.56 eV : @ V. Wheeler Ph.D. Dissertation 2009
© 0.0 | : N S

5 N 1 I Chen et al. APL 2006

7 3 E :

‘é 0.40 | Y - - 5 - A Liuet al. Phys. Status Solidi C 2007

MgO Gd,0, La,0, Sc,0,
Gate oxide

We want < 0.1 eV differences...




Band offset inconsistency experiment: rh) i
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1. Acquire 5 GaN substrates: Lumilog, MTI, Sandia, and
two from Maria group at NCSU

2. Clean substrates identically: acetone, methanol, UV-0O,,
and HF dip

3. Grow MgO on top identically

4. Measure band offsets of MgO|GaN with XPS
= M. Brumbach at SNL

AE,, = (Gazq-GaNygy)ean— (C3¢-Mzp)mgorcan — (M32,-MgOygmvgo




Band offset inconsistency experiment:

h
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Test what role the substrate plays in determining oxide/nitride band

offsets:

1. Dislocation density of GaN

2. Surface stoichiometry of GaN




1. Dislocation density of GaN: ) i

. 1.8 -

% 'NCSU 1 ' = Large changesin

< 47/ W Sﬁd'a _ valence band offset
2 Lumi across sample series
5 | umilog -

T 15] NCSU 2 = l = No clear trend with
9 N - dislocation density
) | ' across the 5

O 141} 1 MTI 4

< * _ substrates.

§ 121, = Dislocations may

100 100 ,  Mmatter, but the trend
GaN dislocation density (cm )  isn’t obvious
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2. Surface stoichiometry of GaN: i) fans

= When we epitaxially grow MgO on GaN along [111],.0:




2. Surface stoichiometry of GaN:

= When we epitaxially grow MgO on GaN along [111] .0

"1 Sandia

i
National
Laboratories



2. Surface stoichiometry of GaN: )

Sandia
ratories

* When we epitaxially grow MgO on GaN along [111] y40:

MgQO NPI\?I\?NPNPNPNP

%N%??Zﬁi?

We expect abrupt MgO/GaN interfaces.




2. Surface stoichiometry of GaN: rh) it

= When we epitaxially grow MgO on GaN along [111] .0

MgQO NP NP NP NP NP NP NP
....... 9999999

N 9 i Subsurface

o R X 309 59

We expect abrupt MgO/GaN interfaces.
But, what about subsurface oxygen?

Baldereschi et al., PRB 1991: “Tuning band offsets in GaAs/AlAs with
Si intralayers”




Band offsets with (sub)surface oxygen: ) .,

18— — e
; ; = |arge change in band
v NCSU 1 & &
- - rmeevmeeemeensennsenn ‘ offsets has a clear
171 — 8= _ |
8 T trend with oxygen
= . Sandia . . ..
umilog concentration in GaN
O | A 0.44 eV
© 151 T ) .
g NCSU 2 = Differences are
o | (] - similar to the
8 14} | MTI| magnitude of
5 . inconsistencies seen
G | * . in the literature
> 1_2 PRI T T SR T N S T T R T S S
0 1 2 3 4

at. % oxygen concentration
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Oxides for GaN Devices ) Yo

= Oxide requirements for MOSFETs and MOSHEMTSs:

= Qur strategy:

Large bandgap v/
Band offsets > 1 eV with semiconductor v/

Chemically compatible v/

Grows as a smooth film on GaN

Low interface defect density

Identify chemically compatible wide bandgap oxides that may have
acceptable offsets with WBG and UWBG semiconductors

= Utilize epitaxy to form well-controlled interfaces




D., measurements for oxides on GaN i
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= We can extract D, from Capacitance-Voltage analysis.
= Several techniques are used to do this in literature.
= Most techniques developed for silicon technology.

= These are not generally appropriate for wide bandgap
devices:

= Low minority carrier generation rate
= Require interface states with short emission times

= Pyroelectric (temperature change results in surface
charge)

= Many traditional techniques underestimate D,,.
= We will use Photo-assisted CV




Photo-assisted CV analysis: MgO|GaN ) i,

30 nm MgO / GaN in O, at 1Mhz

2.0
== Dark

== Post UV

-
o

Capacitance (nF)
o
S

Capacitance (nF)
o
3

300 350 400 450 500 550 600 650 700

0.25 Electric Field (kV/cm)
Wpost UV Average D, across band gap:
:Dark /
0.13 L2 . D = Coe| AV
-100 -500 0 500 1000 it q A\ E

Electric Field (kV/cm) g

J. Tan et al., APL 70 (1997) Swenson and Mishra, J. Appl. Phys., 106 (2009)




Photo-assisted CV analysis: MgO|GaN i) et

30 nm MgO / GaN in O, at 1Mhz

2.0

-
o

Capacitance (nF)
o
3

0.25

0.13

== Dark
== Post UV

Capacitance (nF)
o
S

300 350 400 450 500 550 600 650 700
Electric Field (kV/cm)

Post UV

?Dark / —

1000  -500 0 500 1000 [CaO Dy 3 x 10" eV cm ]

Electric Field (kV/cm)

J. Tan et al., APL 70 (1997) Swenson and Mishra, J. Appl. Phys., 106 (2009




High quality interfaces with GaN:

0 05 1
E-E_(eV)

Average D,: 9 x 10! cm~2eV-!

1.5 2 25 3 3.5

e E".""I|

Dit [c
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Al,O,; |GaN

——:‘_‘_—‘-_—-_

0.0

Hossain et al. 2015 JVSTB |

0.5

10 15 20 25 30
E-E, (eV)

~

%
%

i
o
+

+
+
+

“Si,N,|GaN

+
I

" Mishra et al. 2009 JAP
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Comparison of dielectrics / GaN

= All measured with photo-assisted CV:

Dielectric / GaN D, (eV-1 cm2) Reference

La,0, 1x 10" SNL

MgO 9 x 10*° SNL

Ca0 3 x 10" SNL

Ga,0, 4.2 x 10" 1

Si,N, 5 x 10" 2

AlO, 3 x 10" 3

AlO, 5x 10" 4]
!Chiou, Y., Semicond. Sci. Technol. 25, 2010. 30stermaier, C., Phys. Status Solidi C, 5, 2008
2Mishra, U., J. Appl. Phys., 106, 2009 “Wu, Y., Appl. Phys. Lett., 90, 2007
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= Enhancement mode GaN semiconductor devices are desirable
for electric grid power management applications

= One candidate embodiment to achieve a normally off device is a
MOSFET or MOSHEMT structure

= Lanthanides are probably not great candidates

= MgO/CaO0 epitaxial alloys may be excellent candidates
= Chemical compatibility
= Large bandgaps
= Large band offsets
= Low interface state densities

= Care must be taken to understand substrate growth and
properties to reliably and repeatably prepare oxides on GaN

39




La,0,/GaN Electrical Characterization @.

La,0, on GaN

400 [~ 1 T — T r 1 r 1
: —1 MHz |
350 | ——800 kHz | 1
[ —500 kHz | ]
T 300t ——200 kHz |
o i — 100 kHz |
T 250¢ —50 kHz |
o ; —20 kHz
& 200} — 15 kHz
= [ —10 kHz
8 150}
S :
O 100¢[
50 |
O: ! ! I 1 L

Gate Voltage (V)

C-V curves enable identification of
interface defects

= Low frequency peak (red arrow)
indicates presence of interface trap
states
I-V curves allow for measurement of

leakage through gate insulator

La, O, looks great on paper, but does
not work

Interface trap presence indicates
performance limitation for this system
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= Few well characterized reports on gate oxides for WBG and

UWBG semiconductors:

= Most work is either poorly conducted (band offset characterization)
or vague (interface trap density characterization)

= |mportant parameters:
= Chemical compatibility

= Band offsets

= Available materials become increasingly limited as semiconductor band
gap increases

= |nterface state density

= Qur strategy:

= |dentify wide bandgap oxides that may have acceptable offsets with
WBG and UWBG semiconductors

= Utilize epitaxy to form well-controlled interfaces a1




