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Technical Results Summary. The project DE-SC0006518 resulted in 32 publications and one
patent. We developed and studied the coordination chemistry of rare earth metal (RE = La—Lu, Sc
and Y) cations with redox active hydroxylamine ligands, expanded the chemistry of cerium with
variable ligands and studied its complexes using experiment and computational chemistry. We
disclosed the development of the tripodal hydroxylamine ligand, [((2-'BuNO)C¢H4CH,);NT>
(TriNOx”").[1] The essential feature of the TriNOx’~ ligand was its three hydroxylaminato arms
that provided an open, but restricted, coordination site. In addition to primary coordination of RE
cations, this ligand system induced a self-association equilibrium between monomeric
RE(TriNOx)THF/dimeric [RE(TriNOx)], species for RE = La-Sm. An estimated 10''-fold
decrease in Kgimer Was observed across the series, which showed the sensitivity of the self-
association process to small changes in RE*" radius. The organic solubilities of the [RE(TriNOx)],
complexes were larger than the RE(TriNOx)THF ones. Washing solutions of mixed RE complexes
with the appropriate solvents afforded purification of individual RE complexes through leaching.
On the basis of these observations, a separations method for early/late RE mixtures based on the
TriNOx” system was developed. Nd/Dy (S = 359) and Eu/Y (S = 28.2) were achieved. These
mixtures were targeted because of their critical components of permanent magnets and phosphor
materials in fluorescent light bulbs. Subsequently, we demonstrated that other pairs of early and
late RE cations can be separated, with Sggirp2 approaching 2000.[2] Overall, new coordination
and redox chemistry was demonstrated and applied to the development of a new method for
targeted separations of pairs of RE cation, particularly those used widely in technology. The new
separations method was patented and is expected to contribute to recycling of RE containing
consumer materials.

Synthesis and Characterization of Hydroxylamine Ligands and Rare Earth-Hydroxylamine
Complexes. Our hypothesis for this Objective was that hydroxylamines (RR'NOH) and other
chalcogenide donor ligands would function as strong, multi-haptic donors for RE cations.[3, 4]
And that the resulting complex properties: redox and solution equilibria, could be leveraged for
separations chemistry. In this context we discovered new syntheses of pyridyl-appended
hydroxylamine ligands.[5] For example, ligands 1-4 are now reliably prepared in 35-56 % yields
(Scheme 1). The preparation of compound 1 has been simplified and rendered safer by eliminating
the need for alkyllithium reagents. We have also shown that this ligand framework can be
modulated; methyl-, dimethyl-amino-, and trifluoromethyl- analogs have been prepared (Scheme
1). We have characterized 14 electrochemically to determine their electron affinities.
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Scheme 1. Synthesis of pyridyl-hydroxylamine ligands 1-4.

Metal Hydroxylamine Complex Syntheses and Characterization. Ligands 1-3 were used to
prepare metal complexes with La, Ce, Pr and Tb (5-8, Scheme 2). The resulting complexes are
dimeric and have been fully characterized using X-ray crystallography.[6] These data show that
hydroxyl-amine ligands are favorable donors for the formation of complexes with trivalent rare
earth ions.

Following the synthesis of the dimeric RE™ metal complexes, the oxidation chemistry of the

Ce'"' complex 6 was explored. Complex 6 is trivially oxidized in the presence of an equivalent of
N
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Scheme 2. Synthesis of trivalent rare earth complexes using the pyridyl-hydroxylamine ligand 1.
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Figure 1. A 30 % probability thermal ellipsoid plot for the crystal structure of complex 9 (left)
and results of the hybrid DFT calculations on 9 (HOMO, center and LUMO (right). The HOMO-
LUMO gap of 9, DE =2.65 eV.

the radical nitroxide form of ligand 1 to form the formally Ce" complex Ce[2-('BuNO)py)ls (9),
(Figure 1, left). Consistent with its ease of chemical oxidation, the electrochemical data for 9
collect in THF indicate a reduction feature at £,, =—1.9 V versus ferrocene; complex 9 is the most
stable Ce'"” complex known.[6]

B3LYP hybrid DFT calculations were performed on 9 and determined the closed shell Ce'”
configuration is the most stable. It should be noted that intermediate valence cannot be detected
using DFT, but the DFT results provide an initial assessment of the molecular orbitals responsible
for possible intermediate valence effects in these complexes. In fact, good agreement was found



between the LMCT band, ~19,000 cm’l, and the calculated HOMO-LUMO gap, which spans
about ~20,000 cm! for 9.
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while the oxidized con gener 9is Scheme 4. Proposed separations protocol for REs.

soluble (Scheme 4) which
potentially enables simplified separations tied to redox chemistry.

Based on the chemistry developed for the hydroxylamine ligand syntheses (Scheme 1), the
synthesis, and characterization of six pyridyl-nitroxide Ce"' complexes and six Ce'" complexes
has been achieved.[7] Characterization of the full series of complexes was made using solution
electrochemistry experiments, L;; edge X-ray absorption spectroscopy, and density functional
theory. In particular, electron donating groups appended to the pyridyl groups have been found to
shift the Ce(I1I/IV) redox wave to more than —2.0 V versus ferrocene (Figure 2).
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Figure 2. Left: solution electrochemistry of the parent pyridyl appended hydroxylamine ligand (blue trace) and
Ce(IV) complex recorded in CH,Cl,. Right: cerium L;; edge X-ray absorption spectra for the parent cerium(IIl) and
cerium(IV) pyridyl-appended hydroxylamine complexes.

Furthermore, the XAS data confirmed the compounds are bona fide Ce'” complexes. The
physicochemical data suggest they are the most strongly thermodynamically stabilized Ce'"
compounds that have been reported. In order to understand the origin of this unprecedented
stabilization, DFT calculations were performed on the compounds (Figure 3).
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Figure 3. Fragment molecular orbital correlation diagrams for Ce[2-('BuNO)py]4 (right) and its anion
(left). A small but important covalent 4f orbital contribution to bonding is found in Ce[2-(‘BuNO)py]4
but not in its anion.

The DFT results revealed a critical, partial covalent contribution from the nitroxide ligand field to the
Ce'"" cation that serves to strongly stabilize the high oxidation state metal cation.

Multi-dentate nitroxide ligands and their coordination chemistry with the Rare Earth
Elements.[8, 9] We hypothesized that tethering three nitroxide arms to a central amine ligand
would similarly stabilize the tetravalent oxidation state of a cerium (or other lanthanides) ion but
reduce the tendency for ligand redistribution upon oxidation. A tripodal ligand framework was
expected to provide a binding pocket for controlled coordination chemistry within an open
coordination site.[10] We achieved the synthesis of a tripodal nitroxide ligand: ((2-
tBuNOH)C6H4CH2)3N (H3TriNOx), its coordination to a central cerium cation to form the
complex: Ce(THF)(TriNOx) (Figure 4). The Ce(THF)(TriNOx) complex has a strongly stabilized
Ce oxidation at —0.93 V versus ferrocene. We have chemically oxidized the complex to form the
stable cerium(IV) compound: CeCI(TriNOx). These results set the stage for the study of other
lanthanides in this strongly stabilizing, multi-dentate framework (see below).
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Figure 4. Crystal structure of Ce(THF)(TriNOx) (left) and cyclic voltammogram of
Ce(THF)(TriNOx) in CH,Cl; (right).

Isolation and characterization of a cerium(IV) hydroxamate complex. In the context of froth
filtration beneficiation of rare earths ores, beneficiation by froth floatation is the first separations unit
operation for claiming rare earth metals from ores. Crushed rare earth mineral (e.g. baestnesite) solids
are separated from gangue materials through surface chemistry of organic chemical ‘collectors,” such
as hydroxamates, with bound rare earth cations. Our characterization of a cerium hydroxamate
complex showed a strong thermodynamic preference for the cerium(IV) state.[11] These results
indicated that engineering models of froth floatation must include redox chemistry, which we expect
will contribute to increased efficiency in this critical minerals treatment process.
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14] we leveraged our knowledge to isolate new

examples of cerium complexes with unprecedented

bonds[ 15] and unusual (electronic) structures,[ 16, 17] expanded the literature of strongly stabilized
Ce(1V) complexes,[18-20] supported related DOE projects on f-element electronic structure,[21-
23] and new information on the interaction of Lewis acids with redox active ligands.[24-26] With




the first successful application of DFT to predict lanthanide redox properties, we expect this
approach will find broad application in separations, including the design of chemical systems for
lanthanide/actinide separations.

Organo-Fluorine and their Applications in Shaping F-element Coordination Spheres. An
offshoot of our work with cerium redox chemistry was the development of methods in controlling
metal coordination sphere structures and geometries,[27] and reactivities,[28] namely through
leveraging organo-fluorophilic interactions. These results afforded isolation of complexes in new
and unusual coordination geometries,[29] and evaluation
Nd(OTf); + Dy(OTf)s . . .

2 6, HiTHNOX of the solution thermodynamic and electronic parameters
THF jeeq KIN(SiMes):] of such fluorine-metal interactions and  their
Nd(TriNOX)THF + Dy(TANOX)THF ensembles.[30, 31] These results provide new methods to
control the structure of metal complexes, and potentially

their redox properties and separations.
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neodymium and dysprosium from magnetic materials.
Recycling of consumer materials is a promising new source
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The new separations method was patented and
is expected to contribute to recycling of RE
containing consumer materials (Figure 7).



An Expanded Knowledge of the Physicochemical Characteristics of Expanding the
Chemistry of Cerium(IV) Complexes. The trivalent cerium compound K[Ce[N(SiHMe,),]4] was
synthesized and oxidized, providing a convenient route to the cerium(IV) compound
Ce[N(SiHMe;),]s.  Ce[N(SiHMe;),]s underwent protonolysis with alcohols to yield
Ce(O'Bu)4(py)2, Ce(Odpp), and Ce,(OCH,C4R5)s(THF), (R = Me, F).[17] Characterization of the
monomeric cerium(IV) compounds was explored. Electronic absorption spectroscopy of the
amide, alkoxide, and aryloxide complexes showed highly tunable LMCT transitions depending on
the ligand environment of the cerium ion. Electrochemical analysis showed that the alkoxide
complex was most strongly stabilized in the cerium(IV) oxidation state and that the aryloxide
complex was the least stabilized member of the series. DFT assessment of the electronic structures
showed minimal metal-ligand overlap and no correlation between the degree of ionicity of the
metal-ligand bonds and the cerium(IV/III) redox potential. This work provides a basis for the
future design of molecular complexes with purposefully tuned cerium(I1I/IV) redox potentials and
charge transfer transitions.

Exploration of Cerium Redox Chemistry in Aryloxide Complexes with the Use of Pendant
Amines has been explored. We have prepared a series of lanthanum and cerium aryl oxide
complexes with the formula K[Ce(OAr)(bdmmp);] (Ar = —C¢Hs (—Ph), —CoH7 (-Naph), — 2.,4-
‘Bu-CgH; (—dtbp) and —2,6-Ph-C¢H3 (—dpp)) and K[Ce(OAr)>(bdmmp),] (Ar = —2,6-iPr-CsH; (-
dipp)) (bdmmp = (bis(dimethylamino)methyl-4-phenolate) through either metathesis or
protonolysis reactions. Cyclic voltammetry was measured for the complexes and found that
tetravalent cerium cation was stabilized due to the coordination of electron rich aryloxide
ligands.[32] Within the series of complexes, a correlation of electron transfer rates with solid state
structures and aryloxide steric encumbrances, qualitatively judged by the peak to peak cathodic
and anodic wave separations, was not evident in the series of complexes. We conclude that further
work with subtler axial ligand steric variations will be required to elucidate the impact on cerium
electron transfer rates.
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