

OSTI
INV
89

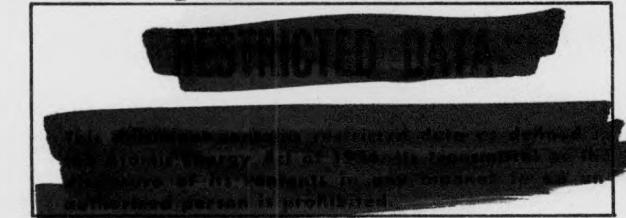
UNCLASSIFIED

CLASSIFICATION LEVEL

(S, C, OR U)

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

Do not remove
this sheet


NAA-SR-
AA-SR-MEMO

9255

This document contains 22 pages

This is copy 37 of 40 series A

FILE COPY

CLASSIFICATION TYPE
(RD OR DI)

NAA-SR-MEMOs are working papers and may be expanded,
modified, or withdrawn at any time,
and are intended for internal use only.

DEPARTMENT OF ENERGY DECLASSIFICATION REVIEW	
DETERMINATION (CIRCLE NUMBER(S))	
1. CLASSIFICATION RETAINED	<input type="checkbox"/>
2. CLASSIFICATION CHANGED TO:	<input type="checkbox"/>
3. CONTAINS NO DOE CLASSIFIED INFO.	<input type="checkbox"/>
4. COORDINATE WITH:	<input type="checkbox"/>
5. CLASSIFICATION CANCELED	<input type="checkbox"/>
6. CLASSIFICATION INFO. BRANCHED	<input type="checkbox"/>
7. OTHER (SPECIFY):	<input type="checkbox"/>

1st REVIEW DATE: 6-12-97
AUTHORITY: DOE OADC (PADD)
NAME: Jerry E. Keyes

2ND REVIEW DATE: 6-12-97
AUTHORITY: ADD
NAME: Jed Davis

1 3942

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

This document is
PUBLICLY RELEASEABLE
Jerry Keyes
Authorizing Official
Date: 5-2-02

55960

RECEIVED

JAN - 9 1964

USAEC HEADQUARTERS
LIBRARY

CLASSIFICATION LEVEL

(S, C, OR U)

93031692
M93031692

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

UNCLASSIFIED

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

TECHNICAL DATA RECORD

NAA-SR-MEMO-
9255

APPROVALS

AUTHOR

J. D. Whitlock JDW

DEPT & GROUP NO.

735-51

PAGE 1 OF 22

DATE 11/23/63

GO NO 7568

S/A NO 2020

TWR 54933

SECURITY CLASSIFICATION

(CHECK ONE BOX ONLY)

(CHECK ONE BOX ONLY)

AEC DOD UNCL. CONF. DATA DEFENSE INFO.

AUTHORIZED CLASSIFIER SIGNATURE

DATE

TITLE

SNAP 8 DRM-1 Fuel Element Test Monthly
Report, October 1963

JD Spraul

11-25-63

PROGRAM

SNAP 8

SUBACCOUNT TITLE

Fuel Element Performance
Testing

DISTRIBUTION

- * D.F. Atkins
- * H.R. Brager
- * G.D. Calkins
- * E.M. Chandler
- * D.J. Cockeram
- * D.C. Campbell
- * R.M. Dunlop
- * A.J. Fitzgerald
- * W.D. Fuller
- * D.L. Henry
- * R.B. Hinze
- * M.F. Huntsinger
- * C.E. Johnson
- * J.R. Lewis
- * L.M. Maki
- * D.Q. Mason
- * G.W. Mayara
- * L.S. Mima
- * W.E. Nagel
- * T.S. Nakae
- * M.E. Nathan
- * T.G. Parker, Jr.
- * G.W. Rivenbark
- * J.H. Roseker
- * V.L. Rooney
- * M.H. Slater
- * S.J. Yeack
- * K.B. Weiser
- * E.F. Weisner
- * Library (10)

STATEMENT OF PROBLEM

To determine the performance of S8DRM-1 fuel elements under simulated flight reactor operating conditions.

ABSTRACT

The initial hydrogen loss rates of S8DRM-1 elements undergoing test are lower than corresponding rates of earlier SNAP 8 elements. The 1300°F pre thermal cycle permeation rates are lower than the rates predicted from the 1400°F acceptance permeation rates.

REFERENCE

1. Parker, T. G., Jr., "Developmental Tests on S8DRM-1 Fuel Elements", NR7568-06, July 7, 1963.

UNCLASSIFIED

UNCLASSIFIED

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO-9255
DATE November 23, 1963
PAGE 2 OF 22

I. INTRODUCTION

The purpose of this developmental testing is to determine the performance of the S8DRM-1 fuel elements (normal uranium) under simulated flight reactor operating conditions. The elements are subjected to inputs simulating pre-launch check-out, launch, start-up, and operation. The effects of these tests are evaluated by measuring the hydrogen loss rate (permeation) before and after each input and during the endurance test. Testing is done in accordance with the referenced specification.

II. EQUIPMENT STATUS AND OPERATION

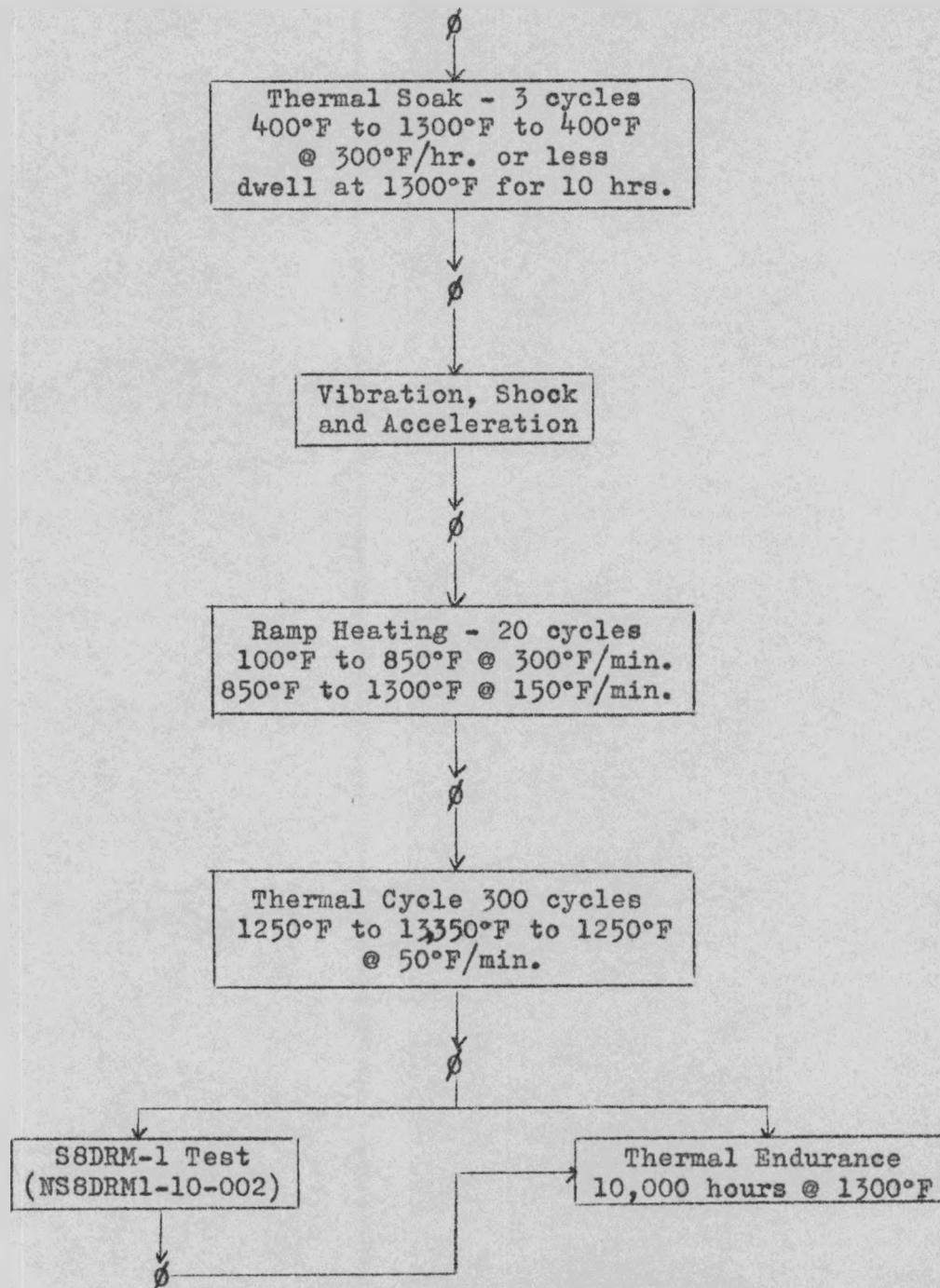
The same equipment used for SNAP 8 fuel element environmental* and qualification** testing will be used for testing the S8DRM-1 fuel elements.

III. TEST DESCRIPTION AND SEQUENCE

All fuel elements will be subjected to the following test inputs (cf. Figure 1):

1. Permeation Tests: All fuel elements will be subjected to permeation tests at 1300°F before and after each test input.
2. Thermal Soak: The fuel elements shall be heated at a rate 300°F/hr. to 1300°F. The elements will dwell for 10 hours at 1300°F and then be cooled to at least 400°F at a rate of 300°F/hr. The elements will receive three cycles of this input.

* Parker, T. G., Jr., "SNAP 8 Fuel Element Environmental Testing Status Report - October, 1963", NAA-SR-MEMO-9210, 11/12/63.


** Veeck, S. J., "SNAP 8 Fuel Element Qualification Program Status Report - September, 1963", NAA-SR-MEMO-9085, 10/14/63.

UNCLASSIFIED

UNCLASSIFIED

NO. NAA-SR-MEMO-9255
DATE November 23, 1963
PAGE 3 OF 28

FIGURE 1

Developmental Testing Sequence

UNCLASSIFIED

UNCLASSIFIED

NO. NAA-SR-MEMO-9255
DATE November 23, 1963
PAGE 4 OF 22

3. Vibration, Shock, and Acceleration: The fuel elements will be sent to Santa Susana for vibration, shock, and acceleration inputs shown in Table I.
4. Ramp Heating: The fuel elements will be heated from ambient temperature to 850°F at a rate of 300°F/min., and from 850°F to 1300°F at a rate of 150°F/min. The elements will be cooled at a rate not to exceed 50°F/min. The fuel elements will receive 20 cycles of this input.
5. Thermal Cycling: The fuel elements will be heated at a rate of 50°F/min. to 1350°F at which time the elements will be cycled from 1350°F to 1250°F three hundred times. The fuel elements will be cooled at a rate not to exceed 50°F/min.
6. S8DRM-1 Vibration, Shock, and Start-up Reliability: Twelve fuel elements which have been subjected to the test described above will be sent to D/727-72 for testing per NS8DRM-1-10-002. The twelve elements will be comprised of six of the -3* and six of the -4* design configuration. In the event that failures occur during the previous test, fuel elements will be supplied on the basis of availability.
7. Thermal Endurance Testing: The fuel elements which do not undergo test 6, and which have not failed**, will be subjected to endurance testing at 1300°F. The elements which undergo test 6 will be subjected to endurance testing at 1300°F after completion of test 6, provided that the elements have not failed.

UNCLASSIFIED

* Fuel elements of the -3 design have "collar-button" type hold-down devices to keep the fuel stationary in the cladding. Fuel elements of the -4 design do not have any hold-down device.

** Failure is defined as 2.5 times the acceptance rate at 1300°F.

ATOMICS INTERNATIONAL

A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO-9255
DATE November 23, 1963
PAGE 5 OF 22**UNCLASSIFIED**TABLE ILaunch Vibration, Shock and Acceleration Input LevelsVIBRATION

<u>Axis</u>	<u>Magnitude</u>	<u>Frequency</u>	<u>Duration</u>
Longitudinal	$\frac{1}{2}$ - inch double amplitude	5 - 12 cps	8 min.
Longitudinal	3.5 g	12 - 400 cps	8 min.
Longitudinal	7.5 g	400 - 3000 cps	8 min.
Lateral	$\frac{1}{2}$ - inch double amplitude	5 - 10 cps	8 min.
Lateral	2.5 g	10 - 250 cps	8 min.
Lateral	5.0 g	250 - 400 cps	8 min.
Lateral	7.5 g	400 - 3000 cps	8 min.

SHOCK

<u>Axis</u>	<u>Magnitude</u>	<u>Description</u>	<u>Duration</u>
Longitudinal	10 g	1 cycle $\frac{1}{2}$ sine wave	6 milliseconds
Lateral	6 g	1 cycle $\frac{1}{2}$ sine wave	12 milliseconds

ACCELERATION

<u>Axis</u>	<u>Magnitude</u>	<u>Duration</u>
Longitudinal	14 g	5 min.
Longitudinal (reverse)	4 g	5 min.
Lateral	6 g	5 min.

UNCLASSIFIED

ATOMICS INTERNATIONAL

A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO-9255
DATE November 23, 1963
PAGE 6 OF 22**UNCLASSIFIED**

8. Destructive Analysis: After completion of endurance testing, the elements will be subjected to destructive analysis.

IV. PROGRAM STATUS

There are to be approximately twenty-five fuel elements in this program. The twenty-five elements will consist of twelve of the -3 design and thirteen of the -4 design. Presently only twelve of the -4 design have been received for this program. These elements are now undergoing thermal soak.

V. RESULTS AND DISCUSSION

The data to date from testing the fuel elements currently in the program are shown in the Appendix. Average values are shown below:

	Average Hydrogen Permeation Rate, Ø _{average} , cc(STP)/hr.	Range of Ø cc(STP)/hr.	Number of Elements
Acceptance at 1400°F	0.22	0.12 - 0.52	12
Pre-thermal soak at 1300°F	0.04	0.01 - 0.12	12

Corresponding values for S8ER type elements (normal uranium) undergoing environmental testing* are:

	Average Hydrogen Permeation Rate, Ø _{average} , cc(STP)/hr.	Range of Ø cc(STP)/hr.	Number of Elements
Acceptance at 1400°F	0.58	0.07 - 1.18	20
Pre-thermal soak at 1300°F	0.28	0.01 - 0.62	20

* Parker, T. G., Jr., "SNAP 8 Fuel Element Environmental Testing Status Report - October, 1963", NAA-SR-MEMO-9210, 11/12/63.

UNCLASSIFIED

ATOMICS INTERNATIONAL

A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO-9255
DATE November 23, 1963
PAGE 7 OF 22**UNCLASSIFIED**

Corresponding values which are available for the fuel elements for the S8ER (enriched uranium) are:

	Average Hydrogen Permeation Rate, $\phi_{average}$, cc(STP)/hr.	Range of ϕ cc(STP)/hr.	Number of Elements
Acceptance at 1400°F	0.52	0.03 - 1.71	218

There are currently two methods for predicting the permeation rate of an element at one temperature when the rate is known at another temperature. The first method* is based on a statistical analysis of permeation tests of fuel elements numbered 1 - 77 of the S8ER design. The primary advantage of this approach is the ease of calculation. The second method** is an analytical approach, with the constants in the theoretical equations calculated from test data of all fuel elements in the S8ER core. The primary advantage of the analytical approach is that permeation rates can be logically predicted for nonisothermal conditions.

Using the 1400°F acceptance permeation rates, the corresponding 1300°F rates were calculated using both methods. The predicted rates and measured rates are compared in Table II. The agreement between the hydrogen permeation rates calculated by the two methods is good. However, the calculated values are biased when compared to the measured rates. The calculated rates are higher than the measured rates. The bias is attributed to one or more of the following causes:

1. The carbon, hydrogen, and uranium contents of the fuel in the DRM-1 fuel elements are different than in the S8ER fuel elements.

* Fitch, S. H., "Analysis of Permeation Data", NAA-SR-MEMO-7407, 5/21/62.

** Nathan, M. E., "Fuel Element Parametric Study Advanced SNAP 2 Reactor", NAA-SR-MEMO-8520, 5/27/63.

UNCLASSIFIED

ATOMICS INTERNATIONAL

A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO-9255
DATE November 23, 1963
PAGE 8 OF 22**UNCLASSIFIED****TABLE II****Permeation Rates of S8DRM-1 Fuel Elements**

<u>Element No.</u>	<u>Acceptance ϕ_{1400} cc(STP)/hr.</u>	<u>Pre Thermal Soak ϕ_{1300} cc(STP)/hr.</u>	<u>Calculated ϕ_{1300} cc(STP)/hr.</u>	
			<u>Fitch</u>	<u>Nathan</u>
E-1023N-4	0.24	0.03	0.08	0.09
1028N	0.27	0.05	0.09	0.10
1041N	0.16	0.02	0.05	0.06
1044N	0.14	0.02	0.05	0.05
1063N	0.52	0.12	0.18	0.19
1064N	0.30	0.04	0.10	0.11
1066N	0.16	0.01	0.05	0.06
1070N	0.14	0.02	0.05	0.05
1089N	0.17	0.02	0.06	0.06
1119N	0.21	0.03	0.07	0.07
1129N	0.22	0.04	0.08	0.09
1133N	0.12	0.02	0.04	0.04

UNCLASSIFIED

ATOMICS INTERNATIONAL

A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO-9255
DATE November 23, 1963
PAGE 9 OF 22

UNCLASSIFIED

2. The acceptance permeation rates of the DRM-1 fuel elements at 1400°F are significantly lower than the corresponding rates of the S8ER fuel elements. For example, the data used by Fitch showed no permeation rates lower than 0.5 cc(STP)/hr. at 1400°F, while only one DRM-1 element had a rate greater than 0.5 cc(STP)/hr. at 1400°F.
3. A new design of the final closure was incorporated into the DRM-1 fuel elements.

VI. CONCLUSIONS

The initial hydrogen loss rates of the S8DRM-1 elements undergoing test are lower than corresponding rates of earlier SNAP 8 elements.

The predicted 1300°F permeation rates based on 1400°F data, obtained using the correlations of Fitch and Nathan, are larger than the measured 1300°F permeation rates.

It appears that the change in the design between the DRM-1 and S8ER elements improved the elements such that the temperature-permeation relationships for S8ER fuel elements no longer hold. This will be checked further as additional data become available.

UNCLASSIFIED

UNCLASSIFIED

APPENDIX

Test Data of S8DRM-1 Fuel Elements

NOTES: 1. N_H = Number of hydrogen atoms
 $\times 10^{-22}/\text{cc}$ of fuel.

v/o A = Weight percent of carbon
additive in the fuel.

ϕ_{1400} = Fuel element hydrogen
permeation $\text{cc(STP)}/\text{hr.}$ @
 1400°F.

ϕ_{1300} = Fuel element hydrogen
permeation $\text{cc(STP)}/\text{hr.}$ @
 1300°F.

UNCLASSIFIED

TABLE I

UNCLASSIFIED

S8DRM-1 Developmental Test

ENDURANCE TEST DATA

SYSTEM

FURNACE

RETORT

NOTES

DATE FINISHED

UNCLASSIFIED

TABLE II

UNCLASSIFIED

S8DRM-1 Developmental Test

DATE FINISHED

UNCLASSIFIED

TABLE III

UNCLASSIFIED

S8DRM-1 Developmental Test

UNCLASSIFIED

TABLE IV

UNCLASSIFIED

S8DRM-1 Developmental Test

DATE FINISHED

UNCLASSIFIED

TABLE V
UNCLASSIFIED

S8DRM-1 Developmental Test

UNCLASSIFIED

TABLE VI

UNCLASSIFIED

S8DRM-1 Developmental Test

DATE FINISHED

UNCLASSIFIED

TABLE VII

UNCLASSIFIED

S8DRM-1 Developmental Test

ENDURANCE TEST DATA

SYSTEM

FURNACE

RETORT

NOTES

DATE FINISHED

UNCLASSIFIED

TABLE VIII

UNCLASSIFIED

S8DRM-1 Developmental Test

UNCLASSIFIED

TABLE IX

UNCLASSIFIED

S8DRM-1 Developmental Test

DATE FINISHED

UNCLASSIFIED

TABLE X

UNCLASSIFIED

S8DRM-1 Developmental Test

DATE FINISHED

UNCLASSIFIED

TABLE XI

UNCLASSIFIED

S8DRM-1 Developmental Test

ENDURANCE TEST DATA

SYSTEM

FURNACE

RETORT

NOTES

DATE FINISHED

UNCLASSIFIED

TABLE XII
UNCLASSIFIED

S8DRM-1 Developmental Test

UNCLASSIFIED