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Forward propagation of parametric uncertainty

Forward model: y = f(x)

Local sensitivity analysis (SA) and error propagation

∆y =
df
dx

∣∣∣∣
x0

∆x

This is ok for:
– small uncertainty
– low degree of non-linearity in f(x)

Non-probabilistic methods
Fuzzy logic
Evidence theory – Dempster-Shafer theory
Interval math

Probabilistic methods – this is our focus

SNL Najm UQ in Computations 5 / 42



Introduction ForwardPC Bayes Closure

Probabilistic Forward UQ – y = f(x)

Represent uncertain quantities using probability theory

Random sampling, MC, QMC
Generate random samples {xi}Ni=1 from the PDF of x, p(x)
Bin the corresponding {yi} to construct p(y)
Not feasible for computationally expensive f(x)

– slow convergence of MC/QMC methods
⇒ very largeN required for reliable estimates

Build a cheap surrogate for f(x), then use MC
Collocation – interpolants
Regression – fitting

Galerkin methods
– Polynomial Chaos (PC)
– Intrusive and non-intrusive PC methods
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Probabilistic Forward UQ & Polynomial Chaos
Representation of Random Variables

With y = f(x), x a random variable, estimate the RV y

Can describe a RV in terms of its
density, moments, characteristic function, or
as a function on a probability space

Constraining the analysis to RVs with finite variance
⇒ Represent RV as a spectral expansion in terms of orthogonal

functions of standard RVs
– Polynomial Chaos Expansion

Enables the use of available functional analysis methods for
forward UQ
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Polynomial Chaos Expansion (PCE)

Model uncertain quantities as random variables (RVs)
Given a germ ξ(ω) = {ξ1, · · · , ξn} – a set of i.i.d. RVs

– where p(ξ) is uniquely determined by its moments

Any RV in L2(Ω,S(ξ), P ) can be written as a PCE:

u(x, t, ω) = f(x, t, ξ) '
P∑

k=0

uk(x, t)Ψk(ξ(ω))

– uk(x, t) are mode strengths
– Ψk() are multivariate functions orthogonal w.r.t. p(ξ)
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Orthogonality

By construction, the functions Ψk() are orthogonal with respect to
the density of ξ

uk(x, t) =
〈uΨk〉
〈Ψ2

k〉
=

1

〈Ψ2
k〉

∫
u(x, t;λ(ξ))Ψk(ξ) pξ(ξ) dξ

Examples:

Hermite polynomials with Gaussian basis
Legendre polynomials with Uniform basis, ...
Global versus Local PC methods

Adaptive domain decomposition of the support of ξ
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PC Illustration: WH PCE for a Lognormal RV

Wiener-Hermite PCE
constructed for a
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Random Fields

A random variable is a function on an event space Ω

No dependence on other coordinates –e.g. space or time

A random field is a function on a product space Ω×D

e.g. sea surface temperature TSS(z, ω), z ≡ (x, t)

It is a more complex object than a random variable
A combination of an infinite number of random variables

In many physical systems, uncertain field quantities, described
by random fields:

are smooth, i.e.
they have an underlying low dimensional structure

due to large correlation length-scales
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Random Fields – KLE

Smooth random fields can be represented with a small no. of
stochastic degrees of freedom

A random fieldM(x, ω) with
– a mean function: µ(x)
– a continuous covariance function:
C(x1, x2) = 〈[M(x1, ω)−µ(x1)][M(x2, ω)−µ(x2)]〉

can be represented with the Karhunen-Loeve Expansion (KLE)

M(x, ω) = µ(x) +

∞∑
i=1

√
λiηi(ω)φi(x)

where
λi and φi(x) are the eigenvalues and eigenfunctions of the
covariance function C(·, ·)
ηi are uncorrelated zero-mean unit-variance RVs

KLE ⇒ representation of random fields using PC
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RF Illustration: KL of 2D Gaussian Process
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2D Gaussian Process with covariance:
C(x1, x2) = exp(−||x1 − x2||2/δ2)

Realizations smoother as covariance length δ increases
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RF Illustration: 2D KL - Modes for δ = 0.1− 0.5
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RF Illustration: 2D KL - eigenvalue spectrum
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Essential Use of PC in UQ

Strategy:
Represent model parameters/solution as random variables
Construct PCEs for uncertain parameters
Evaluate PCEs for model outputs

Advantages:
Computational efficiency
Utility

Moments: E(u) = u0, var(u) =
∑P

k=1 u
2
k〈Ψ2

k〉, . . .
Global Sensitivities – fractional variances, Sobol’ indices
Surrogate for forward model

Requirement:
RVs in L2, i.e. with finite variance, on (Ω,S(ξ), P )
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Intrusive PC UQ: A direct non-sampling method

Given model equations: M(u(x, t);λ) = 0

Express uncertain parameters/variables using PCEs

u =

P∑
k=0

ukΨk; λ =

P∑
k=0

λkΨk

Substitute in model equations; apply Galerkin projection

New set of equations: G(U(x, t),Λ) = 0

– with U = [u0, . . . , uP ]
T , Λ = [λ0, . . . , λP ]

T

Solving this deterministic system once provides the full
specification of uncertain model ouputs
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Laminar 2D Channel Flow with Uncertain Viscosity

Incompressible flow
Viscosity PCE

– ν = ν0 + ν1ξ

Streamwise velocity

– v =

P∑
i=0

viΨi

– v0: mean
– vi: i-th order mode

– σ2 =

P∑
i=1

v2i
〈
Ψ2

i

〉 v0 v1 v2 v3 sd

v0 v1 v2 v3 σ

(Le Maître et al., J. Comput. Phys., 2001)
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Intrusive PC UQ Pros/Cons

Cons:
Reformulation of governing equations
New discretizations
New numerical solution method

– Consistency, Convergence, Stability
– Global vs. multi-element local PC constructions

New solvers and model codes
– Opportunities for automated code transformation

New preconditioners

Pros:
Tailored solvers can deliver superior performance
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Non-intrusive PC UQ

Sampling-based
Relies on black-box utilization of the computational model
Evaluate projection integrals numerically
For any quantity of interest φ(x, t;λ) =

∑P
k=0 φk(x, t)Ψk(ξ)

φk(x, t) =
1〈
Ψ2

k

〉 ∫ φ(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . , P

Integrals can be evaluated using

A variety of (Quasi) Monte Carlo methods
– Slow convergence; ∼ indep. of dimensionality

Quadrature/Sparse-Quadrature methods
– Fast convergence; depends on dimensionality
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PC and High-Dimensionality

Dimensionality n of the PC basis: ξ = {ξ1, . . . , ξn}
n ≈ number of uncertain parameters
P + 1 = (n+ p)!/n!p! grows fast with n

Impacts:
Size of intrusive PC system
Hi-D projection integrals ⇒ large # non-intrusive samples

Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level = 3 Clenshaw-Curtis sparse grid, Level = 5
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UQ in LES computations: turbulent bluff-body flame
with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

CH4-H2 jet, air coflow, 3D flow
Re=9500, LES subgrid modeling
12× 106 mesh cells, 1024 cores
3 days run time, 2× 105 time steps
3 uncertain parameters (Cs, Prt, Sct)
2nd-order PC, 25 sparse-quad. pts
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J. Oefelein & G. Lacaze, SNL
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UQ in Ocean Modeling – Gulf of Mexico
A. Alexanderian, J. Winokur, I. Sraj, O.M. Knio, Duke Univ.
A. Srinivasan, M. Iskandarani, Univ. Miami; W.C. Thacker, NOAA

Hurricane Ivan, Sep. 2004
HYCOM ocean model (hycom.org)
Predicted Mixed Layer Depth (MLD)
Four uncertain parameters, i.i.d. U

– subgrid mixing & wind drag params

385 sparse quadrature samples
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Inverse UQ – Estimation of Uncertain Parameters

Forward UQ requires specification of uncertain inputs

Probabilistic setting

Require joint PDF on input space
Statistical inference – an inverse problem

Bayesian setting

Given Data: PDF on uncertain inputs can be estimated using
Bayes formula

– Bayesian Inference
Given Constraints: PDF on uncertain inputs can be estimated
using the Maximum Entropy principle

– MaxEnt Methods
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Bayes formula for Parameter Inference

Data Model (fit model + noise model): y = f(λ) ∗ g(ε)
Bayes Formula:

p(λ, y) = p(λ|y)p(y) = p(y|λ)p(λ)

p(λ|y)
Posterior

=

Likelihood

p(y|λ)
Prior

p(λ)

p(y)

Evidence

Prior: knowledge of λ prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context
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The Prior

Prior p(λ) comes from
Physical constraints
Prior data
Prior knowledge

The prior can be uninformative

It can be chosen to impose regularization

Unknown aspects of the prior can be added to the rest of the
parameters as hyperparameters
The choice of prior can be crucial when there is little
information in the data relative to the number of degrees of
freedom in the inference problem
When there is sufficient information in the data, the data can
overrule the prior
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Construction of the Likelihood p(y|λ)

Where does probability enter the mapping λ→ y in p(y|λ)?
Through a presumed error model:
Example:

Model:
ym = g(λ)

Data: y
Error between data and model prediction: ε

y = g(λ) + ε

Model this error as a random variable
Example

Error is due to instrument measurement noise
Instrument has Gaussian errors, with no bias

ε ∼ N(0, σ2)
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Construction of the Likelihood p(y|λ) – cont’d

For any given λ, this implies

y|λ, σ ∼ N(g(λ), σ2)

or

p(y|λ, σ) = 1√
2π σ

exp
(
−(y − g(λ))2

2σ2

)
GivenN measurements (y1, . . . , yN ), and presuming independent
identically distributed (iid) noise

yi = g(λ) + εi

εi ∼ N(0, σ2)

L(λ) = p(y1, . . . , yN |λ, σ) =

N∏
i=1

p(yi|λ, σ)
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Likelihood Modeling

This is frequently the core modeling challenge
Error model: a statistical model for the discrepancy between
the forward model and the data
composition of the error model with the forward model

Error model composed of discrepancy between
– data and the truth – (data error)
– model prediction and the truth – (model error)

Mean bias and correlated/uncorrelated noise structure
Hierarchical Bayes modeling, and dependence trees

p(φ, θ|D) = p(φ|θ,D)p(θ|D)

Choice of observable – constraint on Quantity of Interest?
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Exploring the Posterior

Given any sample λ, the un-normalized posterior probability
can be easily computed

p(λ|y) ∝ p(y|λ)p(λ)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules

– Computationally intensive, O(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Bayesian inference illustration: noise↑⇒ uncertainty↑

data: y = 2x2 − 3x+ 5 + ε

ε ∼ N (0, σ2), σ = {0.1, 0.5, 1.0}
Fit model y = ax2 + bx+ c

Marginal posterior density p(a, c):
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Bayesian inference – High Dimensionality Challenge

Judgement on local/global posterior peaks is difficult
Multiple chains; Tempering

Choosing a good starting point is very important
An initial optimization strategy is useful, albeit not trivial

Choosing good MCMC proposals, and attaining good mixing
Likelihood-informed

– Markov jump in those dimensions informed by data
– Sample from prior in complement of dimensions
– Adaptive proposal learning from MCMC samples
– Log-Posterior Hessian ⇒ local Gaussian approx.
– Adaptive, Geometric, Langevin MCMC

Dimension independent
– Proposal design: good MCMC performance in hiD

Literature: A. Stuart, M. Girolami, K. Law, T. Cui, Y. Marzouk
(Law 2014; Cui et al., 2014,2015; Cotter et al., 2013)
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Bayesian inference – Model Error Challenge

Quantifying model error, as distinct from data noise, is
important for assessing confidence in model validity

Conventional statistical methods for representation of model
error have shortcomings when applied to physical models

New methods are under-development for model error:
– physical constraints are satisfied
– feasible disambiguation of model-error/data-noise
– calibrated model error terms adequately impact all

model outputs of interest
– uncertainties in predictions from calibrated model

reflect the range of discrepancy from the truth

Embed model error in submodel components where
approximations exist

(K. Sargsyan et al., 2015)
SNL Najm UQ in Computations 35 / 42



Introduction ForwardPC Bayes Closure

Quadratic-fit – Classical Bayesian likelihood
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With additional data,
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around the wrong model is
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Quadratic-fit – ModErr – MargGauss
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Quadratic-fit – ModErr – MargGauss
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Calibrating a quadratic f(x) w.r.t. g(x) = 6 + x2 + 0.5(x+ 1)3.5
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Model Evidence and Complexity

Let M = {M1,M2, . . .} be a set of models of interest
Parameter estimation from data is conditioned on the model

p(θ|D,Mk) =
p(D|θ,Mk)π(θ|Mk)

p(D|Mk)

Evidence (marginal likelihood) forMk :

p(D|Mk) =

∫
p(D|θ,Mk)π(θ|Mk)dθ

Model evidence is useful for model selection
Choose model with maximum evidence
Compromise between fitting data and model complexity

Optimal complexity – Occam’s razor principle
Avoid overfitting
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Too much model complexity leads to overfitting

Data model: i = 1, . . . , N

yi = x3i + x2i − 6 + εi

εi ∼ N(0, s)

Bayesian regression with Legendre
PCE fit models, order 1-10

ym =

P∑
k=0

ckψk(x)

Uniform priors π(ck), k = 0, . . . , P

Order = 1
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Too much model complexity leads to overfitting

Data model: i = 1, . . . , N

yi = x3i + x2i − 6 + εi

εi ∼ N(0, s)

Bayesian regression with Legendre
PCE fit models, order 1-10

ym =

P∑
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Uniform priors π(ck), k = 0, . . . , P
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Too much model complexity leads to overfitting

Data model: i = 1, . . . , N

yi = x3i + x2i − 6 + εi

εi ∼ N(0, s)

Bayesian regression with Legendre
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ym =
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Uniform priors π(ck), k = 0, . . . , P
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Too much model complexity leads to overfitting

Data model: i = 1, . . . , N

yi = x3i + x2i − 6 + εi

εi ∼ N(0, s)

Bayesian regression with Legendre
PCE fit models, order 1-10

ym =
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k=0

ckψk(x)
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Too much model complexity leads to overfitting

Data model: i = 1, . . . , N

yi = x3i + x2i − 6 + εi

εi ∼ N(0, s)

Bayesian regression with Legendre
PCE fit models, order 1-10

ym =

P∑
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ckψk(x)

Uniform priors π(ck), k = 0, . . . , P

Order = 6
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Too much model complexity leads to overfitting

Data model: i = 1, . . . , N

yi = x3i + x2i − 6 + εi

εi ∼ N(0, s)

Bayesian regression with Legendre
PCE fit models, order 1-10

ym =

P∑
k=0

ckψk(x)

Uniform priors π(ck), k = 0, . . . , P

Order = 7
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Too much model complexity leads to overfitting

Data model: i = 1, . . . , N
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Too much model complexity leads to overfitting

Data model: i = 1, . . . , N

yi = x3i + x2i − 6 + εi
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Bayesian regression with Legendre
PCE fit models, order 1-10

ym =
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Too much model complexity leads to overfitting

Data model: i = 1, . . . , N

yi = x3i + x2i − 6 + εi

εi ∼ N(0, s)

Bayesian regression with Legendre
PCE fit models, order 1-10

ym =

P∑
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ckψk(x)

Uniform priors π(ck), k = 0, . . . , P
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Evidence and Cross-Validation Error

Model evidence peaks at the
true polynomial order of 3

Cross validation error is
equally minimal at order 3

Models with optimal
complexity are robust to
cross validation
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Closure

Probabilistic UQ framework
Polynomial Chaos representation of random variables

Forward UQ
Intrusive and non-intrusive forward PC UQ methods

Inverse UQ
Parameter estimation via Bayesian inference
Model error
Model complexity

Challenges
High dimensionality
Intrusive Galerkin stability
Nonlinearity
Time dynamics
Model error
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