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Our Plan:
• Perform pore-scale and meso-scale 

simulations to elucidate and quantify 
the physics governing flow regimes 
from compact flow to capillary channel 
flow

• Develop new experimental-informed, 
physics-based flow models, focused 
on representing cm-scale 
heterogeneity. 

• Apply hydrophobicity theory to assess 
the impact on permeability and CO2 
ganglion mobility.

• Model the migration of CO2 through 
reservoir rocks using moving contact 
line models

• Work closely with UT to experimentally 
validate computational models

Challenges Addressed:
• Sustaining large storage rates.
• Using pore space with unprecedented 

efficiency.
• Controlling undesired or unexpected 

emergent behavior.
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Theme 3: Buoyantly Driven 
Multiphase Flow of CO2

Motivation

Global consumption of fossil fuels has 
significantly increased levels of atmospheric 
CO2, a greenhouse gas. Carbon capture 
and storage (CCS) is a promising mitigation 
strategy.

Scientific Objective:
Understand and control emergent behavior 
arising from coupled physics in 
heterogeneous geomaterials associated 
with injection for GCS, especially at 
intermediate length scales (cm to m) where 
geologic variability plays a decisive role. 
Processes and strategies are based on 
mesoscale science from which non-
equilibrium and emergent behaviors arise 
over a large range of time and length scales.

Concluding Remarks
• Pore-scale surface roughness can impact long-term CO2  

migration, impacting permeability and CO2  ganglion mobility.
• Improvement in MCL models can be used to accurately predict 

CO2 migration in reservoir rocks

Figure:  Conceptual model and 
mechanistic processes in buoyancy-
driven ganglia dynamics (note vCO2, 
vbrine of “stringer”) which collectively 
correspond to capillary channeling.
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Examples of Natural and Reaction-Induced 
Roughness

• Natural roughness in reservoir rocks can impact the apparent
contact angle of CO2 (wettability).

• Roughness can induce positive or negative flow slip which can
increase or decrease permeability and CO2 ganglion mobility.

• Hydrophobic effects impact both short term (injection) and long-
term dynamics CO2 ganglion migration.
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Blake’s Moving Contact Line Model

Microscale Pore Flow Through Bead Pack

• Moving Contact Line (MCL) problems are 
important to model the migration of wetting/non-
wetting fluids through reservoir rocks

• Accurate modeling can improve IP and other 
methods

• Finite Element Method (FEM) used to model MCL
• CDFEM using the level-set method to model 

two-phase interface
• Blake’s model used to model MCL velocity

• Good agreement with canonical problems
• Capillary rise
• Dynamic angle dependence on flow velocity

Capillary Rise Problem

Finite Element Model

Experimental Measurements 
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Hydrophobicity Theory

Dynamic Wetting Angle
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