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Outline

e Goal: Triatomic Opacity

 Modern Opacity Methods
— Discrete Variable Representation
— Time Dependent Density Functional Theory

e Results
 Plans

UNCLASSIFIED



UNCLASSIFIED

* Develop triatomic opacity calculation capability

— Two methods
* High-resolution spectrum
* Interspecies effects

— Immediate needs:
 Visible/near-visible
* T € [3000K,8000K]
* p/py <10

— First case: NO,
 Two electronic states

 Significant molecule
— Large cross-section
— Smog
— Some experimental data
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Modern methods for calculating opacity are available

 Two techniques for calculating opacities that are
being implemented at SNL:

— High-resolution single-species opacity
 Discrete Variable Representation (DVR)
— Interspecies (density) effects
* Time-dependent Density Functional Theory (TDDFT)
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Discrete Variable Representation (DVR) has been used
to generate high resolution single-species linelists

* 1998: Transitions
between two electronic
states of NO,

— Goal was to locate

energies and not to
calculate intensities

— Up to 1.98 eV with an
error ~.01 eV
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Discrete Variable Representation

(DVR) calculation of NO, absorption
spectra
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* 2006: DVR3D research code used for H,0O

— 506 million transitions (>60% more lines than previous) @ 7.42
processor years

— Within .00025eV to ~15,000 experimental transitions
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e SE H® = (V2+V(r))® = E®

— wavefunctions -> represented by y
infinite basis o= et (0,(6)

— Truncate -> VBR ‘
e -> new Hamiltonian

— Diagonalize Hamiltonian/Operators -
> solves SE for E

* (localized) Transformation
— DVR

» Basis functions and quadrature
points are chosen

H® = E® —» H = E¢C
U~LHU = ()
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Localization: Basis Function < grid points
— Aids in diagonalization

sinc function, Vx = 1/100
Example c ‘ ‘
. x—nlAx
— fr(x) = sinc ( — )
e fu(x) =sin (x_AT;Ax) /(x — nAx)

« ne€ef{1,210} - x, ={0.01,0.03,0.1}
Representation

— Matrices labelled by quadrature, n

Displacement
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DVR

* DVR inputs
— Potential Energy Surface

* Evaluated at quadrature points
— Dipole Moment Surface

* Calculating intensity of spectra
* Highly-resolved
— Vibrational and rotational spectra
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Time Dependent Density Functional Theory can model
density effects on opacity

e Codes are available .
TDDFT spectra in the Far-UV (2010)

— Gaussian 09 L

(commercial) L 10 NO,

— Octopus (research)

 Comparatively Fast

— generate large statistics due
to run times on the order of
hours

Intensity (arb. units)

 Electronic and vibronic
transitions
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Wavelength (nm)
H,0: 0.1% error NO,: 6.3% error
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n(r,t) — observables

® is function of 3N spatial

variables
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Non-interacting e-
Effective potential

n(r, t) function of 3
spatial variables
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TDDFT

Verr(r) = Vsg(r) + Vppr(r)

— Last term is the only approx in DFT: energy functional
* DFT

— Ground-states

TDDFT

— Excited states

 Benefit
— Density is a function of 3+1 variables and not 3N+1
— Much easier to solve
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Data source:
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Molecular excitations and molecular lines give rise to
the opacity

NO2 Opacity

Below: The imaginary portion
of the polarizability (related

calculated by Gaussian TD-DFT.
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Plans

* High-resolution spectra: DVR
— Simulate temperatures up to 2000K
— Generate and validate cross-section data
* Intermolecular effects: TDDFT
— Generate higher temperature opacity curves for NO,

— Introduce interspecies effects by simulating NO, in the
presence of other air molecules
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