

Flow and reactive transport at pore to continuum scales:

Application to a natural analogue for leakage

Kirsten Chojnicki¹, Hongkyu Yoon¹, Mario Martinez¹

¹Sandia National Laboratories, Albuquerque, NM

SAND2016-1628C

We expect pore-scale geochemical processes to be important in many of the proposed US storage sites for carbon dioxide.

We combine laboratory micro-scale experimental and modeling efforts to examine:

What are the relevant physics of dissolved CO₂ transport in a reactive environment?

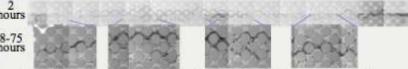
- How do precipitation and dissolution alter 3D pore structure?
- How do the 3D structural changes affect the flow?
- How do the changing flow conditions impact later stage precipitation and dissolution?

1) Experimental and Numerical Pore Scale

Reactive Transport

- Well-controlled transverse mixing induced calcium carbonate (CaCO₃) precipitation followed by dissolution in micromodel laboratory experiments

2D Analysis of Micromodel Laboratory Experiments


Micromodel Schematic

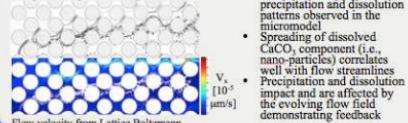
Experiment Conditions

Flow	Phase	Rate	Duration
inlet A	1. Precipitation: Na ₂ CO ₃ , pH=11, CaCl ₂ , pH=6	10 mL/hour	75 hours
inlet B	2. Dissolution: H ₂ O, pH=4	10 mL/hour	150 hours

- Solutes are injected with a syringe pump set at a steady rate of 50 μ L/hour

Microscopic images of CaCO₃ precipitation (1 μ m resolution)

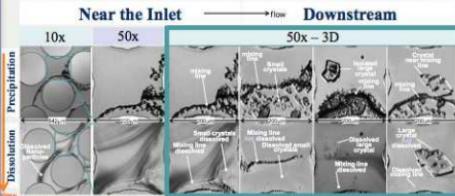
- Precipitation occurs within 2 pore bodies of central reactive mixing line
- Pattern depends on location and time


Microscopic images of CaCO₃ dissolution (1 μ m resolution)

- Dissolution spreads precipitates from 2 to 10 pore bodies

Flow Simulation

Observed precipitates and dissolved CaCO₃ transport during dissolution phase


- Simulations capture precipitation and dissolution patterns observed in the micromodel
- Spreading of dissolved CaCO₃ (centimeters to nanometers) correlates well with flow streamlines
- Precipitation and dissolution impact and are affected by the evolving flow field, demonstrating feedback

2) Characterizing structural evolution in pores

3D Analysis of Micromodel Laboratory Experiments

3D images of CaCO₃ in individual pores using laser scanning confocal microscope

Microscopic images of CaCO₃ precipitation and dissolution in same pore

- Single pore bodies contain a range of crystal sizes and distributions
- with non-uniform geometries over depth
- Small crystals formed near inlet were extensively dissolved along with some isolated larger crystals downstream
- Dissolution processes preferentially remove small or isolated crystals

CaCO₃ Polymorphs with Raman Spectroscopy

Microscopic images of regions analyzed with Raman spectroscopy

Raman Spectrographs

Inlet

Polymorph

Calcite

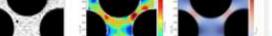
Calcite

Downstream

3) Summary

- Dissolution and precipitation induce 3D structural changes within pores
- CaCO₃ pattern depends on space and time suggesting tools relying on bulk spatial and temporal averages (i.e. velocity distribution, reaction rate) may not capture the observed behavior

4) Characterizing 3D flow effects in pores


3D pore structure from confocal microscope → Mesh generated from structure image → Simulated flow in pore using Lattice Boltzmann method

Observations and Simulations

2D field from confocal particle image velocimetry → Particle Images → Measured 2D Velocity Field → Simulated 3D Velocity Field

No Precipitation

Slow flow in pore body

Single Precipitate

Fast flow in pore body

Multiple Precipitates

5) SUMMARY

• Simple precipitation patterns significantly alter laboratory and simulated flow fields from the case without precipitation suggesting the flow field is sensitive to small changes in the structural configuration

6) Summary, Implications, and Future Work

- Evolving pore configurations in a micromodel due to calcium carbonate (CaCO₃) precipitation and dissolution induce 3D flow effects that influence later precipitation and dissolution
- 3D heterogeneous structures and flow fields may significantly impact bulk reaction rates (i.e., reactive surface area and concentration gradient)
- Future work will include validation of 3D velocity fields, estimates of reactive surface area, experiments at reservoir pressure/temperature conditions and with multiphase flow, continuum-scale reaction models for precipitation/dissolution

Natural Analogue for Carbonate Sealing of CO₂ Leakage Pathways

- Reaction rate models for precipitation and dissolution will be developed as a function of system parameters using the pore scale model and micromodel experiments based on field observations at the Crystal Geyser natural analogue