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Overview
 Purpose: Validate assumptions in CFD 

calculations for spent fuel cask thermal design 
analyses

 Used to determine steady-state cladding 
temperatures in dry casks

 Needed to evaluate cladding integrity 
throughout storage cycle

 Measure temperature profiles for a wide range 
of decay power and helium cask pressures

 Mimic conditions for above and  below ground 
configurations of vertical, dry cask systems with 
canisters

 Simplified geometry with well-controlled 
boundary conditions

 Provide indirect measure of mass flow rates 
and convection heat transfer coefficients

 Use existing prototypic BWR Incoloy-clad test 
assembly
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Underground Storage

Source: ww.holtecinternational.com/productsandservices/
wasteandfuelmanagement/hi-storm/

Aboveground Storage

Source: www.nrc.gov/reading-rm/doc-
collections/fact-sheets/storage-spent-fuel-fs.html
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Project Structure

 Boiling Water Reactor Dry Cask Simulator (DCS)

 Partnership between USNRC and DOE
 Equal cost sharing

 Parallel reporting to PICS:NE and Monthly Letter Status Reports 
(MLSRs) to NRC

 NRC staff has technical review lead

 Mutual benefits
 Thermal-hydraulic data for validation exercises

 Complimentary data for High-Burnup Cask Demonstration Project

 Includes thermal lance comparisons to peak cladding temperature (PCT)
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Past Validation Efforts 
Full Scale

 Full scale, unconsolidated

 Castor-V/21 cast iron/graphite with polyethylene rod shielding

 1986: EPRI NP-4887, PNL-5917

 21 PWRs

 95 Thermocouples (TC’s) total

 Unventilated 

 Sub-atmospheric (air and He) and vacuum

 REA 2023 prototype steel-lead-steel cask with glycol water shield

 1986: PNL-5777 Vol. 1

 52 BWRs

 70 TC’s total

 Unventilated

 Sub-atmospheric (air & He) and vacuum

 Full scale, consolidated

 VSC-17 ventilated concrete cask

 1992: EPRI TR-100305, PNL-7839

 17 consolidated PWRs

 98 Thermocouples (TC’s) total

 Ventilated 

 Sub-atmospheric (air and He) and vacuum 4



Past Validation Efforts (cont.) 
Unconsolidated Fuel
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 Small scale, single assembly
 FTT (irradiated, vertical) and SAHTT (electric, vertical & horizontal)

 1986 PNL-5571

 Single 15x15 PWR    

 Thermocouples (TC’s)

– FTT:  187 TC’s total

– SAHTT:  98 TC’s total

 BC:  Controlled cask outer wall temperature

 Atmospheric (air & He) and vacuum

 Mitsubishi  test assembly (electric, vertical & horizontal)

 1986 IAEA-SM-286/139P

 Single 15x15 PWR 

 92 TC’s total, all distributed over 4 levels inside tube bundle

 BC:  Controlled outer wall temperature of fuel tube

 Atmospheric (air & He) and vacuum

 Not appropriate for elevated helium pressures or 
belowground configurations



Current Approach

 Focus on pressurized canister systems
 BCS capable of 24 bar internal pressure @ 400 ◦C

 Current commercial designs up to ~8 bar

 Ventilated designs
 Aboveground configuration

 Belowground configuration

 With crosswind conditions

 Thermocouple (TC) attachment allows better 
peak cladding temperature measurement
 0.030” diameter sheath

 Tip in direct contact with cladding 

 Provide validation quality data for CFD

 Complimentary to Cask Demo Project
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BCS Pressure Vessel Hardware

 Fabricated and pressure tested

 Coated with ultra high temperature paint
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Prototypic Hardware

 Most common 99 BWR in US

 Prototypic 99 BWR hardware
 Full length, prototypic 99 BWR 

components

 Electric heater rods with Incoloy
cladding

 74 fuel rods

 8 of these are partial length

 Partial length rods end 2/3  the 
length up assembly

 2 water rods

 7 spacers
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Nose piece and
debris catcher

BWR channel, water tubes
and spacers

Upper tie plate



Internal Thermocouple Layout

 97 total TC’s internal to assembly

 25 TC’s mounted to channel box

 28 TC’s mounted to basket
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Radial Array
24” spacing
11 TC’s each level
66 TC’s total (details below)

Axial array A1
6” spacing
20 TCs

Axial array A2
12” spacing – 7 TC’s
Water rods inlet and exit – 4 TC’s
Total of 97 TCs
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CYBL Test Facility

 Large stainless steel 
containment
 Repurposed from earlier 

CYLINDRICAL BOILING Testing 
sponsored by DOE

 Excellent general-use 
engineered barrier for isolation 
of high-energy tests

 3/8 in. stainless steel

 17 ft diam. by 28 ft cylindrical 
workspace

 Part of the Nuclear Energy 
Work Complex (NEWC)
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Aboveground Configuration

 BWR Cask Simulator (BCS) 
system capabilities
 Power: 0 – 2.5 kW (anticipated)

 Pressure vessel

 Vessel temperatures up to 400 C

 Pressures up to 24 bar

 ~200 thermocouples throughout 
system (internal and external)

 Air velocity measurements at 
inlets

 Calculate external mass flow rate

 Estimate external convection 
coefficient
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Pressure 
Boundary



Belowground Configuration

 Modification to aboveground 
ventilation configuration
 Additional annular flow path

 Final design complete
 Inlet and outlet based on prototypic 

configuration

 Reviewed by NRC staff

 Scaling analysis completed
 Favorable comparisons

 Modified, channel Rayleigh number 
(RaS

*)

 Reynolds (Re) number
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CFD Transient
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 Aboveground configuration 
at 500 W
 Axisymmetric with fuel 

represented as porous media

 Internal laminar flow

 External Low-Re k-ε

 Peak cladding temp. (PCT) 
and peak vessel temp. (PVT)
 100 and 700 kPa

 Increased helium pressure 
increased internal convection
 Decreased internal thermal 

gradient



CFD Summary

Parameter
DCS

Low Power
DCS

High Power Cask

Power (W) 500 5,000 36,900

ṁAir (kg/s) 0.039 0.083 0.350

ṁHe (kg/s) 1.3E-3 1.8E-3 2.1E-2

PCT (K) 364 647 663

PVT (K) 337 495 531

TAir, out (K) 306 332 371
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Aboveground

Parameter
DCS

Low Power
DCS

High Power Cask

Power (W) 500 5,000 36,900

ṁAir (kg/s) 0.038 0.083 0.452

ṁHe (kg/s) 1.3E-3 1.7E-3 2.2E-2

PCT (K) 365 653 646

PVT (K) 333 475 518

TAir, out (K) 309 349 350

Belowground

 All results for 700 kPa

 PCT, PVT, and TAir, out compare 
best with Cask at DCS power of 
5,000 W

 Dimensional analysis shows 
similarity for relevant 
dimensionless groups



Internal Dimensional Analyses

 Internal flow and convection near 
prototypic
 Prototypic geometry for fuel and basket

 Downcomer scaling insensitive to 
wide range of decay heats
 External cooling flows matched using 

elevated decay heat

 Downcomer dimensionless groups
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Parameter

Aboveground
DCS

Low Power
DCS

High Power
Cask

Power 500 5,000 36,900

ReDown 170 190 250

RaH
* 3.1E+11 5.9E+11 4.6E+11

NuH 200 230 200

Downcomer

“Canister”Channel
Box

“Basket”



External Dimensional Analyses
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Parameter

Aboveground

DCS
Low Power

DCS
High Power

Cask

Power 500 5,000 36,900

ReEx 3,700 7,100 5,700

RaDH
* 2.7E+08 2.7E+09 2.3E+08

(DH, Cooling / HPV) × RaDH
* 1.1E+07 1.1E+08 4.8E+06

NuDH 16 26 14

 External cooling flows evaluated 
against prototypic
 External dimensionless groups

External
cooling
flow path



Summary
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 Dry cask simulator capable of wide range of 
helium fill pressures and decay heats in final 
construction

 Mimic aboveground and belowground 
configurations

 Provide validation-quality data for CFD modeling

 Pre-test predictions show favorable scaling 
with prototypic cask designs

 PCT, PVT, and exit air temps. closely reproduced

 Suitable matching of dimensionless groups 
demonstrated


