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INTRODUCTION

Strongly heterogeneous media arise in several applica-
tions that include radiation shields, nuclear fuel, BWR mod-
erators, clouds, planetary and stellar atmospheres, turbulent
gases and plasmas. Neutral and charged particle transport
computations in such media have relied heavily on formu-
lating transport equations with spatially random coefficients
(physical data) and developing solution methods to deal with
the additional stochastic dimensions. Attempts at developing
approximate closures that yield only low order statistical infor-
mation (e.g., mean and variance of the flux) have proved to be
highly restrictive under real physics conditions [1, 2] or rely
on techniques that require fluctuation amplitudes to be small
for robustness [3]. Recently, stochastic spectral methods such
as polynomial chaos and stochastic collocation [4] have been
developed for aleatoric uncertainty quantification and sensi-
tivity analysis, and successfully applied in radiation transport
work [5, 6]. Advances in UQ techniques have tended to focus
on efficiently handling large numbers of uncertain variables
but the rigorous stochastic basis of the approach also promotes
its use in situations where stochasticity is due to spatial hetero-
geneity and the associated uncertainty is large. Here we apply
these techniques to radiation transport in media with spatially
randomly varying cross sections without restriction on fluctua-
tion amplitudes. Specifically, we represent the cross sections
as a lognormal spatial random process with specified mean,
variance and covariance function and use a Karhunen-Loéve
(KL) decomposition to generate cross section realizations that
are strictly positive. Woodcock Monte Carlo (WMC) [7, 8, 9]
is then used to simulate transport using random sampling of
cross sections and deterministic sampling based on a stochas-
tic collocation technique. Numerical results for the mean and
variance in the scalar flux and leakage currents are obtained for
weak and strong random variations. We focus in this work on
demonstrating the approach and defer application to specific
problems to a future investigation.

RANDOM TRANSPORT PROBLEM FORMULATION

The random transport equation of interest is given by
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where the label w denotes a particular realization of the spa-

tially random scattering o s(x, w) and absorption o, (x, w) cross
sections but otherwise standard notation has been used. The
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successful solution of this problem depends upon (i) the ability
to efficiently construct individual realizations of the random
physical data, (ii) the existence of efficient numerical methods
of solution for the transport equation, and (iii) postprocess-
ing of the resulting random output to extract the quantities
of physical interest. A random process that yields nonneg-
ative spatial realizations of the cross sections and is widely
employed in representing random physical properties charac-
terized by large variances is the lognormal random process. In
this representation, cross sections are expressed as
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where w,(x, w) is a Gaussian process with parameters chosen
such that the correct mean, variance and covariance of the
random cross sections are preserved. It is not difficult to
show that the mean (w,) and variance v,, of the Gaussian
distribution are related to the mean (o) and variance v, of
the cross sections according to
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It is also readily shown that the relative covariance of the
Gaussian process p,(x,x") = C,(x, x")/v,, can be explicitly
obtained from the relative covariance of the cross section
P (X, X') = Co(x, X') [V
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The mean, variance and covariance completely character-
ize a Gaussian random process and realizations of Gaussian
random processes can be easily generated from a stochastic
spectral representation given by the Karhunen-Logve expan-
sion:
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Here, y; and ¢;(x) are eigenvalues and eigenfunctions of a
homogeneous Fredholm integral equation of the second kind
with kernel given by the covariance function and & (w) are
i.i.d. standard normal random variables [10]. The eigenval-
ues are all positive and ordered with decreasing magnitude,
which makes computation feasible by truncation of the KL
expansion at an order that captures most of the variability,
depending on the strength of correlation [5, 10]. Also, the
eigenspectrum can be obtained analytically for an exponential
covariance (characterized by a correlation length A.), which
is convenient for numerical work. If the covariance for the



cross sections is exponential then it readily follows from Eq.(4)
that the covariance for the Gaussian random process is nearly
exponential for small correlation lengths A.,/L. For large
Aco/ L, the covariance approaches a linear (or triangular [10])
function. For the illustrative purposes of this work, we assume
the Gaussian process covariance is exponential but obtain the
associated correlation length by a least squares fit to the true
Gaussian covariance that would be consistent with an expo-
nential covariance for the cross sections. Figure 1 plots the
actual covariance and for two values of v, the true Gaussian
process covariance, and best fit exponential ansatz.
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Fig. 1. Covariance Functions: Process p,, True Gaussian
process p,,(A. ), Analytic Gaussian process p,,(Ac,)

With the Gaussian process completely characterized and
realizations of independent standard normal random variables
readily sampled, realizations of cross sections are obtained
from the truncated KL expression:
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where we note that the number of eigenmodes K, retained for
the scattering and absorption cross sections need not be the
same.

In Figure 2, fifty realizations of the lognormal cross sec-
tion along with the mean and one and two standard deviation
values are shown for a problem in which half of the ensemble
average and variance is given to each constituent cross section.
It is noted that the reconstructed cross sections are always
positive and that many of the cross section values are clustered
between zero and the mean but less frequently contain much
higher values.

STOCHASTIC SAMPLING METHODS

In this work we are primarily interested in statistical aver-
ages of the flux (as well as leakage currents) which are defined
with respect to the joint probability density P(£, .. .,&n) over
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Fig. 2.

Fifty Lognormal Realizations ({o5) = (o,) =
0.75, V¢, = Vg, = 2.25)

all random variables retained in the KL expansion as
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and similarly for the leakage currents. In our case, the random
variables are independent and the probability density factorizes
into a product of standard normals for each random variable,
ie., P&,....&n) = [1L, P(&), ¥ & € N(O,1). We now
describe two approaches to numerically evaluate Eq.(7).

In the first method, random sampling, or Monte Carlo
(MC), is used to express the ensemble average as
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where R is the total number of realizations and & are val-
ues sampled from a standard normal distribution. We solve
the transport equation in each realization, tallying moments
of the flux and leakage values, then find the ensemble av-
erage expected value of the moments as the mean of these
tallies. Random sampling in this manner converges the ensem-
ble values as R™%. This approach is dimensionally agnostic,
meaning convergence is not affected by the number of random
dimensions. We use random sampling with 10,000 realizations
to generate a benchmark solution.

In the second method, Eq.(7) is numerically integrated by
applying Gauss-Hermite quadrature over each variable. This
so-called stochastic collocation (SC), or deterministic sam-
pling, approach has the potential to produce accurate results
with far fewer realizations than random sampling. KL random
variable values &," are dictated by cubature node values, and
averages are computed as
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where w,, are the cubature weights. A direct approach uses
an isotropic, full tensor product collocation grid over the ran-
dom variables but requires Q%s*X« realizations, where Q is the



quadrature order. Since the eigenvalues of the KL expansion
monotonically decrease, it is straightforward to implement
an anisotropic collocation grid, allocating a higher quadra-
ture order to earlier and more weighty eigenmodes [11]. An
anisotropic, full tensor product collocation grid requires solu-

tion of Hf‘ Ok, - Hf" Oy, realizations, where Oy represents
s a

the quadrature order for eigenmode k, for cross section r.
Sparse collocation grids using Smolyak sparse grids would
further allow dimensional reduction [5, 6, 11]. A more general
approach would use sensitivity analysis [6] or adaptive collo-
cation grids [6, 11] to choose optimal values for the number
of KL eigenmodes kept and the quadrature order used in each
dimension.

TRANSPORT RESULTS

Transport through each realization of the cross sections
was effected using Woodcock Monte Carlo. This approach
samples distance to collision according to the ceiling cross
section in a particle flight path, then either accepts or rejects
the collision, allowing transport calculations without cross
section discretization in spatially continuously varying cross
sections [7, 8]. Well chosen particle flight path domains, and
thus ceiling cross sections, may serve to improve the efficiency
of this method as a whole, and are a topic of future work.
The underlying WMC transport solver has been benchmarked
and utilized previously [9], and the new methods were bench-
marked against uncollided flux calculations using a high order
Gauss-Legendre quadrature to compute the optical depth of
lognormal random processes.

Figures 3 and 4 show results for the mean, standard de-
viation, and relative standard deviation of the scalar flux in
the medium for a very large relative variance problem with
parameters (05) = (04) = 0.75, vy, = Vo, = 2.25, Ay = 1.5,
and L = 5.0. Results are shown for the following models:
(i) zero variance or atomic mix (AM), (ii) random sampling
Monte Carlo, (iii) isotropic stochastic collocation (iSC) grid,
and (iv) anisotropic stochastic collocation (aSC) grid. In all
cases the exponential ansatz with a best-fit 4., for the Gaus-
sian covariance function was used. The random sampling
Monte Carlo simulation used 10,000 realizations and KL trun-
cation parameters K; = K, = 4. The isotropic SC approach
uses quadrature order Q = 3 and K; = K, = 4, for a total
of 6561 realizations. The anisotropic SC approach uses KL
truncation K = 4 with quadrature orders Q. = {4,3, 3,2} and
KL truncation K, = 3 with quadrature orders Oy, = {4, 3,2},
for a total of 1728 realizations. In all cases, 100,000 particle
histories were simulated in each realization using Woodcock
Monte Carlo. In Figure 5 these results are contrasted against a
low variance medium, with v, = v,, = 0.075.

The results show that cross section fluctuations cause
deeper penetration of particles, an effect that is strongly cor-
related with the fluctuation amplitude or variance. With in-
creasing variance, realizations with cross section values signifi-
cantly less than the mean apparently increasingly dominate the
transport, although the effect undoubtedly depends on other
parameters held fixed in the present simulations. The atomic
mix result is only reasonable for very small amplitude fluc-
tuations and, in the problem investigated here, near the left

boundary where the influence of the deterministic source is
significant. These plots and the results for the transmittance
and reflectance shown in Tables I and II confirm that high
accuracy is possible with the stochastic collocation method
at significantly reduced cost compared to random sampling.
Further refinement of the anisotropic grid formulation, such as
incorporating sparse grids with adaptivity, will yield greater
efficiency and make feasible the solution of large variance
problems with high stochastic dimensionality.
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Fig. 3. Mean Scalar Flux in Slab
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Fig. 4. Standard Deviation (std) and Relative Standard Devia-
tion (rstd) of Scalar Flux in Slab

CONCLUSIONS

We have demonstrated that a combination of stochastic
spectral representation and Woodcock Monte Carlo simulation
allows efficient computation of radiation transport in strongly
random media. The use of a lognormal distribution to rep-
resent the fluctuations in medium properties facilitates en-
forcement of strict positivity of cross section realizations, a
condition that has challenged standard approaches that assume
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Fig. 5. AM and Anisotropic SC Flux Average and Standard
Deviation Profiles

TABLE I. Transmittance Values

average | deviation SEM
AM 0.00131
MC, vy, = vy, =2.25 0.06221 | 0.09862 | 0.00099
iSC, vy, = vy, =2.25 0.06074 | 0.09844
aSC, vy, = vy, =225 | 0.06640 | 0.10438
aSC, vy, = vy, = 0.075 | 0.00262 | 0.00294
TABLE II. Reflectance Values
average | deviation SEM
AM 0.11442
MC, vy, = vy, =2.25 0.16254 | 0.14528 | 0.00145
iSC, vy, = vy, =2.25 0.16228 | 0.14471
aSC, vy, = vy, =225 | 0.16474 | 0.14665
aSC, vy, = vy, = 0.075 | 0.12007 | 0.03840

Gaussian fluctuations. The fact that the lognormal random pro-
cess is a memoryless nonlinear transformation of a Gaussian
process further enables efficient and accurate reconstruction of
the random cross section realizations using a Karhunen-Lo¢ve
representation of the cross section. Finally, the robustness of
this model enables fluctuations of arbitrarily large amplitude
to be studied, using both random sampling Monte Carlo and
more efficient stochastic collocation techniques. The present
work is being extended to allow reconstruction of probability
density functions of output variables using polynomial chaos
representation, and to accommodate general cross section co-
variance functions. Also, techniques are being explored to
more judiciously select ceiling cross sections to enhance the
efficiency of Woodcock Monte Carlo for transport in random
media.
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