

Exceptional service in the national interest

Down-Posting an Airborne Radioactivity Area Using CAMs and Math

Todd Culp

Topics to be Covered

- CAM Set-Point Determination
- Down-Posting of an Airborne Radioactivity Area (ARA) using CAMs and Math

CAM Set-Point Determination

- CAM Use
- Alpha-7
- Practical CAM Set-Point Considerations
- Definition of Airborne Radioactivity Area (10CFR835.2)
- Set-Point Example

CAM Use

- CAMs used primarily for worker protection (PPE control), posting of an ARA is more compliance (administrative control).

Alpha-7 CAM

- User options
 - Concentration in DAC
 - Dose in DAC-hr
 - Release rate in pCi/min
- Each user option can have two alarm settings based on the time window:
 - Fast (acute)
 - Slow (chronic)

Alpha-7 CAM

- The SNL Radioactive and Mixed Waste Management Facility (RMWMF) uses Concentration in DAC and the two alarm set points primarily for worker protection and secondarily for compliance.
- All other options are disabled

Set-Point Considerations

- Background MDC/MDA relative to alarm levels
- DAC vs. time window considerations
 - Room flow-rate
- Radiological controls
 - Respirator type and protection factor

More CAM Practical Considerations

- Perception considerations to internal dose
 - Is the Line willing to accept the idea of internal dose
- ALARA

Even More CAM Considerations

- 10CFR835 ARA posting considerations
 - Must be conceptually aware of the ARA posting requirements if you intend for CAMs to assist in the down-post
- Not an exact science, iterative approach

Definition of Airborne Radioactivity Area (10CFR835.2)

- Airborne Radioactivity Area (ARA) 10CFR835.2:
 - 1) concentration of airborne is or is likely to exceed 1DAC
OR
 - 2) An individual present without respiratory protection could receive an intake exceeding 12DAC*hrs per week

Airborne Radioactivity Area

- ARA posted based on a long-term (chronic) OR short-term (acute) condition

$$1) 1DACP * \frac{2000hr}{work\ year} = \frac{5rem}{work\ year}$$

$$2) \frac{12DACP*hr}{week} * \frac{2.5mrem}{DAC-hr} = \frac{30mrem}{week}$$

Respirator Required? (primary question)

- CAM settings are related to respirator requirements.
 - DAC concentration Fast (acute) set-point
 - Respirator
 - DAC concentration Slow (chronic) set-point
 - No respirator

Example

- Fast Set-Point (DAC-hr), Acute Exposure, Respirator Required

Fast Set-Point (respirator required)

- Fast Concentration Alarm set to 2000 DAC in a 2 minute window
- $2000 \text{DAC} * 2\text{min} * \frac{1\text{hr}}{60\text{min}} = 66.7 \text{DAC-hr}$
- $66.7 \text{ DAC-hr} * \frac{2.5\text{mrem}}{\text{DAC-hr}} = 167\text{mrem}$

Fast Set-Point (respirator required) con't

- $$\frac{167 \text{ mrem}}{\text{respirator PF}} = \frac{167 \text{ mrem}}{50 \text{ (APR)}} = 3.3 \text{ mrem}$$

If exposed to 2000DAC for 2minutes while wearing an APR with a PF of 50, the resulting calculated dose would be 3.3 mrem.

Down-Posting of an ARA Using CAMs and Math

- Practice
- Why Use CAMs and Math to Down-Post
- Basic Equations
- Example

Practice

- Up-post based on potential
- Up-Posting and down-posting is based around “concentration of airborne is or is likely to exceed 1DAC”
- A posted ARA requires a respirator for entry, respirator requires lapel air sampler, lapel air sampler requires bioassay evaluation.
- It is in our best interest to down post an ARA as early as possible.

Post

- Math remains unbiased
- Take advantage high flow-rate in rooms
- Eliminate air sampler placement issues
- More time efficient
 - H810 takes ~8.5 min. to collect a 1000L sample
 - Eliminate sampling, analysis, and data review

And Now the

MATH

Room Ventilation

- Room airborne contaminants decrease as an exponential :

$$I = I_0 e^{-\lambda t}$$

- Where:
 - I_0 = *initial fast CAM set-point DAC-hr*
 - I = *desired DAC-hr for ARA posting*
 - λ = *air removal rate constant (minute⁻¹)*
 - t = time (minute)

Air Removal Rate Constant Determination

- λ = room ventilation rate(s) (ft³/minute)/ room volume (ft³)
- $\lambda = \frac{\text{ft}^3/\text{minute}}{\text{ft}^3} = \text{minute}^{-1}$
 - Room volume from engineer diagrams
 - Room ventilation rate(s) from all sources as measured by Kirk Air

Solve for Time (t)

- $I = I_0 e^{-\lambda t}$

- $\frac{I}{I_0} = e^{-\lambda t}$

- $\ln\left[\frac{I}{I_0}\right] = -\lambda t$

Solution

$$\frac{\ln\left[\frac{I}{I_0}\right]}{-\lambda} = t$$

Example

- Determine the time required to down-post Building 6920, room 119 if posted as an Airborne Radioactivity Area

Room 119

- $\lambda =$
 - Room ventilation, three sources:
 - Room vent = 44 ft³/min.
 - Glove Box and secondary room vent = 1,105 ft³/min.
 - Total ventilation rate = 1,149 ft³/min.
 - Empty room volume 2,280 ft³
- $\lambda = \frac{1,149 \text{ ft}^3/\text{min}}{2,280 \text{ ft}^3} = 0.50 \text{ min}^{-1}$

Populate Variables

- I_0 = fast CAM set-point $66.7 DAC\text{-}hr$
- I = desired for down-posting an ARA $1 DAC\text{-}hr$
- λ = air removal rate constant $0.50 min^{-1}$

Solve for time

- $$\frac{\ln\left[\frac{I}{I_0}\right]}{-\lambda} = t$$
- $$\frac{\ln\left[\frac{1 \text{ DAC-hr}}{66.7 \text{ DAC-hr}}\right]}{-0.50} = 8.4 \text{ minutes}$$
 - 66.7 DAC-hr would decrease to 1 DAC-hr in 8.4 minutes in 6920, room 119

Conservative

- Assumes:
 - room volume is empty
 - initial air is at the maximum that would not alarm the CAM, fast CAM set-point
 - Round up the time to the next highest 'convenient' value, 8.4 minutes becomes 10 minutes

Controls

- Not applicable if CAM alarms
 - Don't know the maximum DAC-hr value
- Time starts when the source for airborne has been removed
 - Containerization of the material, the container does not need to be removed

Compliance with 10CFR835.2 ARA

- Post an ARA when: “1) concentration of airborne is or is likely to exceed 1DAC”
 - Conservatively up-post based on potential
 - Down-post based on solving the exponential
 - Conservative assumptions

