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Dentate Sparse Coding Basics
Input I ‘ Associative Memory

(Entorhinal Cortex) To CAl

D

entate Gyrus

e Sparsity increase
e Decorrelation

e Pattern separation

e Critical for CA3 formation
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Goals

o F=1fA:{0,1}" — {0,1}%, where A is a weight matrix and f is a
threshold (indicator) function

o Theoretically rigorous, combinatorially simple

@ Formal Dentate Gyrus properties

o Decorrelation of input (measured by normalized dot product)
o Error-correcting information and redundancy
o Pattern separation

o The fidelity of F is a controlled parameter

o Refinements matching biological constraints
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A General Approach

@ Suppose n is determined at the outset and let

A ={n} CP{1,...,n}).

o A will control the fidelity of our coding.
o Define Ax = [a;] where a;j = 1/|n;| if j € n; and 0 otherwise.
o With f(a) =0 for a <1, f(a) = 1 for o > 1, the map

F = fAa

is a sparse coding of {0,1}" into {0,1}X, where k = |A| .
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Let n =4, A ={{1,2},{2,3},{2,3,4}}. Then,

1/2 1/2 0 0
Ax=| 0 1/2 1/2 0
0 1/3 1/3 1/3

Effectively F(x); =1 if and only if x; =1 for all j € 7;, and F(x); =0
otherwise.

First simplification: Assume A is composed of all p-sized subsets for some
l<p<n
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Some Basic Results

Proposition

If ||xi||1 = gi, then ||yi|1 = ("’)"), and that F maps E = {||x||1 > p}
injectively into a subset F(E) of {0,1} where k = (Z)

The action of F on E non-trivially decreases normalized dot produdcts. l

XNi=q,01=q—r,00=4q —r.

Denote n— ||x — X||1 = r,
We have

x||1 = q,

d(F(x), F(x')) = b1 (Z ) 1) 6 (‘;’;__ 11)
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Biology Inspires Constraints

@ General framework has been established
o Look to biology for plausible extensions

o More realistic behavior
o Generalize from assumption that A comprises p-sized subsets
o Model’s reaction to these constraints measure suitability

@ Two types of generalization:

Concept Method Biology
Mimic Input Structure Prune A Grid Cells
Adaptive Fidelity Mixed Coding Adult Neurogenesis
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If the distribution of the input data is
known, we can remove entries from A
and still maintain good fidelity.

If we remove i from A and 7 is never
observed, previous results still hold.

Example

Grid cells in EC encode spatial
information using modular code. For
Ao, - - -, AT relatively prime,

x — (x mod Ag,...,x mod A1)

Chinese Remainder Theorem gives
uniquely represented position.

A
Giocomo, Moser and Moser



Take input space group isomorphic to grid cell input
Remove inadmissible n; from A

Dramatically reduces target dimension k

e 6 o6 o

Size and activity within literature expectations
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Mixed Coding

Overly differentiating
Example Uncoded
novel input p ../

@ The brain experiences adult
neurogenesis—the development of
new neurons throughout life.

Single-value coding,

@ Young neurons = broadly tuned large p
o Old neurons = tightly tuned Undiferentiated .
novel input ° °
@ Mixed coding increases information \f. * e
. e ~o L]
capacity. A, -;./
Choose n; € A, p' < p. Sinevale <o
Expand A to A’ by
Adaptive resolution
‘.
A" = (A\{n;})U{p’-sized subsets of n;}. . ®es iferntiated

L novelinput
e o

Conditions exist to guarantee sparsity
and decorrelation. Mixed Coding
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