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Dentate Sparse Coding Basics

Entorhinal Cortex CA3 To CA1

Dentate Gyrus

Input Associative Memory

• Sparsity increase

• Decorrelation

• Pattern separation

• Critical for CA3 formation
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Goals

F = fA : {0, 1}n → {0, 1}k , where A is a weight matrix and f is a
threshold (indicator) function

Theoretically rigorous, combinatorially simple

Formal Dentate Gyrus properties

Decorrelation of input (measured by normalized dot product)
Error-correcting information and redundancy
Pattern separation
The fidelity of F is a controlled parameter

Refinements matching biological constraints
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A General Approach

Suppose n is determined at the outset and let

∆ = {ηi} ⊂ P({1, . . . , n}).

∆ will control the fidelity of our coding.

Define A∆ = [ai ,j ] where ai ,j = 1/|ηi | if j ∈ ηi and 0 otherwise.

With f (α) = 0 for α < 1, f (α) = 1 for α ≥ 1, the map

F = fA∆

is a sparse coding of {0, 1}n into {0, 1}k , where k = |∆| .
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Example

Let n = 4, ∆ = {{1, 2}, {2, 3}, {2, 3, 4}}. Then,

A∆ =

 1/2 1/2 0 0
0 1/2 1/2 0
0 1/3 1/3 1/3

 .

Effectively F (x)i = 1 if and only if xj = 1 for all j ∈ ηi , and F (x)i = 0
otherwise.

First simplification: Assume ∆ is composed of all p-sized subsets for some
1 < p ≤ n.
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Some Basic Results

Proposition

If ||xi ||1 = qi , then ||yi ||1 =
(qi
p

)
, and that F maps E = {||x ||1 ≥ p}

injectively into a subset F (E ) of {0, 1}k where k =
(n
p

)
.

Theorem

The action of F on E non-trivially decreases normalized dot produdcts.

Theorem

Denote n− ||x − x ′||1 = r , ||x ||1 = q, ||x ′||1 = q′, δ1 = q − r , δ2 = q′ − r .
We have

d(F (x),F (x ′)) = δ1

(
q − 1

p − 1

)
+ δ2

(
q′ − 1

p − 1

)
.
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Biology Inspires Constraints

General framework has been established

Look to biology for plausible extensions

More realistic behavior
Generalize from assumption that ∆ comprises p-sized subsets
Model’s reaction to these constraints measure suitability

Two types of generalization:

Concept Method Biology

Mimic Input Structure Prune ∆ Grid Cells
Adaptive Fidelity Mixed Coding Adult Neurogenesis
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Pruning ∆

Giocomo, Moser and Moser

If the distribution of the input data is
known, we can remove entries from ∆
and still maintain good fidelity.

If we remove η from ∆ and η is never
observed, previous results still hold.

Example

Grid cells in EC encode spatial
information using modular code. For
λ0, . . . , λT relatively prime,

x 7→ (x mod λ0, . . . , x mod λT )

Chinese Remainder Theorem gives
uniquely represented position.
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Pruning ∆

Take input space group isomorphic to grid cell input

Remove inadmissible ηi from ∆

Dramatically reduces target dimension k

Size and activity within literature expectations
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Mixed Coding

Overly differentiating

Uncoded
novel input

Single-value coding,
large p

Uncoded
novel input

Undifferentiated
novel input

Single-value coding,
small p

Differentiated
novel input

Adaptive resolution

Mixed Coding

Example

The brain experiences adult
neurogenesis—the development of
new neurons throughout life.

Young neurons = broadly tuned

Old neurons = tightly tuned

Mixed coding increases information
capacity.

Choose ηi ∈ ∆, p′ < p.
Expand ∆ to ∆′ by

∆′ = (∆\{ηi})∪{p′-sized subsets of ηi}.

Conditions exist to guarantee sparsity
and decorrelation.
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Summary

F is a simple combinatorial code for Dentate Gyrus sparse coding and
pattern separation.

Theoretical tractability allows for formal properties.

Biological contexts inform refinement.

Two generalization methods give control over encoding fidelity.
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