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Introduction rih) et

= Re-Introduce the Modal Model using Real Mode Shapes in Time Domain
= Basic instrumentation insights from rigid body and elastic shapes

= Basic insights from FE models for response and force instrumentation

= The power of the rigid body mode shape in force reconstruction

= The power of the modal model for understanding the frequency domain
» The power of the modal force in multi-shaker simulation/control

=  Boundary conditions unmasked - or - The power of the modal model for
understanding test articles mounted on a fixture

= The power of the modal model to simulate our most typical random vibration
nonlinearities




Re-introduce the modal model rh) s
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Rigid body modes —instrumentation .
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insight

=  Where would you instrument to observe the rigid body modes
the best? (We will use bi-axial gages in plane of page)

=  Where would you instrument to excite the rigid body modes
the best?
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Elastic mode shapes —instrumentation ..
insight
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= Putinstrumentation across every node

=  Qver instrument by a factor of 1.5 or better
= Across important joints

=  Triaxes for visualization

= |f triaxes are not logistically possible, extend the mode shape to
triaxes through:
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= Force inputs to excite every mode to at least 0.5 of max shape
= To separate closely space modes=s force inputs across node line
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Power of rigid body modes —force o
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reconstruction

= Response measurements can give insight to force inputs
=  Determining force inputs directly from FRFs is an ill-conditioned

inverse problem

= One way to remove ill-conditioning uses rigid body modes
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Modal Model in Frequency Domain ) .
O'MOq+ D' COq+ D' Kdq =D'f
[— 0’1+ jo2l o  + cofn](j =@'f
q= -0’1+ jo2g,0, + o Fq)Tf
X = q)[— o1 + szg (I)Tf Hf

Matrix shape at each
— frequency line
|/ ¥~ Modal Force




Power of modal model in multi-shaker
simulation and control
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Consider just 6 modal responses
at one frequency




Power of modal model in multi-shaker
simulation and control
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X=0-0l+ 02,0, +o.| ®FT=Hf

i S———— Modal Forces reduced down

to 6 for system with
hundreds of modes!




Boundary conditions unmasked! by the
power of the modal model

= A modified modal model with the modal dof attached to the
fixture was reported in 1972 (Wada, Bamford, Garba at JPL)

= |t shows the relation between the free fixture rigid body modes
(s dof) and the fixed based test article modes (p dof)
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= Taking the first row and moving the fixture motion to the —
right hand side yields S \
S 2 — _ 2
Ip+o,p=—-M_s
= Now the response p can be calculated directly from input s. I
For example the first p calculated in frequency domain is [ p
2 2 2 x=|D CDS _
pi(@) = (mys, +my,s, +m;s,) (o] —07) P S

The p generalized dof contain the damage potential to the test article since they

contain all the energy absorbed by the test article. This appears directly
applicable to energy methods.




The power of the modal model to simulate O e
most typical random vibration nonlinearities
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= The pictured hardware has a
= Nonlinear bolted joint
= Nonlinear foam supporting an instrumented internal component
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The power of the modal model to s

most typical nonl
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Conclusions — Our time has come ) i

Modal parameters have traditionally provided

= Great physical insight

= Great instrumentation insight

= Great forcing insight

= Great insight into the frequency domain
= Sandia forefathers developed robust force reconstruction approaches based on
rigid body modes

= The power of the modal force is now at our disposal for multi-shaker simulation
and control

= Slightly modified modal models provide tremendous understanding of boundary
conditions, provide untapped insight into qualification testing, a hand-in-glove
approach to energy methods

= We no longer have to shrug our shoulders at typical nonlinearity

= The time is upon us to advance our qualification and model validation approaches
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