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QINT i
local ESR device

* Timed P implant with
PMMA window, self-aligned
with polysilicon gates

* 45 keV implant, range ~15
nm below SiO,/Si interface

e 4-8x10'/cm= dose
— ~40-80 P donorsin 100
x 100 nm? window

* Nearby microwave antenna

for local ESR polysilicon

* Dry dilution refrigerator
Tpase = 10 - 20 mK

T, =200 - 300 mK

electron

SiO,
SET island

Si substrat donor
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OINlI Single spin readout
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* Spin selective tunneling from donor

to reservoir in magnetic field \l:

* Used to initialize and read spin R g
I

« B=13T—>E,~1.7K T 1

J. M. Elzermann et al., Nature 430, 431 (2004) >
A. Morello et al., Nature 467, 687 (2010) i
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OI\-I ... Read-out circuit with amplification at sample

HEMT circuit

e Commercial InGaAs
enhancement mode HEMTs

- \— DCout

T~ 20 mK
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OISl Gain and bandwidth

60 00 . * DUT = 100k resistor
O
S s « Meas BW ~ 1.3 MHz
% < o 1tHEMT: 3 pWw, 2nd
3 Q HEMT 10 uW
5 1 %, - !
- 13 uW total
. * tradeoff gain for power?
%001 01 1 5 P
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f (MHz) f (MHz)

e ~70fAHzY2above 0.3 MHz
* 1/f noise (~ f93)
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HEMT ~ 300 mK

h

e SET temperature ~ 240 mK at 13 pW

e ~220 mK at 3 uW suggests not
dominated by HEMT

* Slope of noise vs. T,,c greater than
expected for simple Johnson noise

* Knee of noise vs. T,,. suggests 1%
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transitions

tunnel time estimate

4k 4l . 5 4k
€hi (A6) (Vx2)

Rapid search for donor charge

Response rate of offset gives

Live SET tuning

O L
I A I

2 () (4x2)

53 'J.Lzs 5 h 3 ;t-
Chl (AG) (Vx2)

h

100 x 100 scan, ~3 Hz refresh rate
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‘load | read —»

SNR ~ 10x at
V=70V rms

i

16 18
4.4 Vys (V) 4.5 time (ms)

* Single shot event SNR ~ 10x for Vsd = 70 uV rms

* Effect of dry fridge triboelectric noise reduced by gain before coax
and by working at higher frequencies
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28Sj epilayer
e 2.5 um thick
* 500 ppm 2Si (ToF SIMS) &
O
©
P Implant g
* 45 keV implant a
* range ~15 nm below SiO,/Si
interface
* Fluence: 4x10% cm™
low power linewidth
© g %
S i %
S 0.05] FA
= # 31 kHz
38.5097 38.5098
f (GHz)

Enriched 28Si: P donor ESR line

f, = 38.39909 GHz

spin up fraction

0.1

0.0 ‘
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f,=38.51443 GHz
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P hyperfine: Af,=115.3 MHz

e Similar lines seen in two 28Si ESR
devices (115 — 116 MHz hyperfine
w/ ~30 kHz linewidth)

* FWHM=31kHz - T,*=10us

i
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Rabi oscillations

QIS

Quantum Information ScT

100 kHz BW

10 kHz BW
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Long lived Rabi oscillations

Visibility reduced because readout BW was not optimized (~ 10 kHz)

For example, fast spin-up tunneling events can be missed.

Visibility ~ 96% (readout & initialization)
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/2

Ramsey fringes

310 ns /2 pulse, f = 38.514 GHz

0.8

delay (us)

Fit envelope: f = P,exp[—(t/T,*)?]+P,,
- T,*~ 18 us

delay

e ~0.5 MHz detuning from resonance

* T,* value in same ballpark as linewidth estimate,
but slightly longer (~18 us vs. 10 us)

* T,* =18 us shorter than meas T,* =270 us of J. T.

Muhonen et al., Nat. Nano (2014) in 800 ppm

28Si.

h

Sandia National Laboratories



OINT

Quantum Information ScT

0.5 ../i,,?f.’f—r%nt.
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delay (ms)

Fit: f = P,exp[—(t/T,)"|+P,
- T1,=031ms,n=24

Hahn Echo

Echo T, in ballpark of previous meas of
0.95ms, n=3.5(J. T. Muhonen et al,,

Nature Nano (2012))

Exponent n = 2.4, for 1/f noise n =2
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* 100 kHz BW, 10x SNR spin 2 Wttt
readout with HEMT amplifier g ,‘,,-‘/'
* Rabi Visibility 96% S5
cC
 Coherence: a f /2 n m/2
* T,"=18 us 00 &l
* T,=0.3 ms (Hahn Echo) 0.0 0.4 0.8
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Auxiliary slides
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Lower power NMR sweep

32 traces avg., 128 shots per point per each trace
NMR: -50 dBm, 5 ms pulse, 1 kHz step and sweep

[fup_HF - fup_LF]|

o
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ESR: -10 dBm, 10 MHz sweep, 100 us pulse
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High power ESR sweeps

repeats of single sweep

-20 dBm, 500 Ise, 10 kHz st d
-10 dBm, 500 us pulse, 10 kHz step and sweep M, us pulse, Z step and sweep

08 T T T 0-8 T T T
single sweep
0.6 4 0.6 i
o o 04+ -
S 04+ 2
0.2 1 -
0.2r 4 0 ‘J‘x“““‘\
of G4 |
38.5150 38.5155 38.5160 38.5165 38.5150 38.5155 38.5160 38.5165
f (GHz) f (GHz)

~10 min per trace

jump ~ 60 kHz
similar to jump in slide 12

Ramsey beat frequency was ~ 200 kHz



Nuclear Rabi Osc. (electron down spin loaded on donor)

repeats of Rabi osc., nuclear spin w/ down electron spin
NMR: 0 dBm, 80.9324 MHz, 128 shots/pt.
ESR: -10 dBm, 10 MHz sweep, 100 us pulse

10—~ "]
/,/\/\,,,,, /\/,,/J\\,,,

N

16 trace avg. of Rabi osc., nuclear spin w/ down electron spin
NMR: 0 dBm, 80.9324 MHz, 128 shots per pt.
ESR: -10 dBm, 10 MHz sweep, 100 us pulse
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0.2

40 60

80

100
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more power reaching sample than | expected

ESR adiabatic flip and readout should be ~ 0 to 0.9,
not sure why Pflip contrast for nuclear flip is low
(oscillations noisy)

Info about charge noise?



High power ESR sweep to flip neighboring P electron spins

average of traces with split peak
average of traces with single peak

ESR: -10 dBm, 500 us pulses, 10 kHz step and sweep
128 shots per pt.
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Could this be this neighbor P
nuclear spin up vs. down?



fup

0.6

0.4

0.2

ESR sweep with P NMR pulse

No NMR

20 trace avg. FWHM = 534 kHz

38.5145 38.5150 38.5155 38.5160 38.5165
f (GHz)

0.20

o
<2 0.15

0.10

P NMR & ESR sweep
ESR: -10 dBm, 20 kHz step and sweep, 500 us pulse

NMR: -3 dBm, 5 ms pulse,

79 to 83 MHz

35 trace avg.

el
o

FWHM = 1.08 MHz

38.514 38.515

38.516 38.517

f (GHz)

ESR peak width increase with 4 MHz P nuclear sweep?
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O Hyperfine shifts from 29Si? W. Witzel
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Inhomogenous broadening from 500 ppm *' Si

1.0
IIII!II"“ F Polarized Si
] . .
I — sStandard deviation «  Every sample will have
T 08} different 2°Si constellation.
3
0 . .
- * 30 kHz linewidth seems
= 0.6} . .
3 Wayne Witzel reasc.)r?able, but. itis
= suspicious that is occurred
% .
> 04l in two samples.
.-E
fg" ¢ Dynamics? How are
a 02| background spins changing
during measurement?
00 | Ems Seety
10 10 10°

Hyperfine from #* Si (MHz)
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d\-l' B W. Witzel

Quantom Information SeT Ca I C u | a te d E S R | I n e S h a p e S
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Spectral line shifts due to 500 ppm %’ Si (MHz) Spectral line shifts due to 6.0e+16 cm~* P donor concentration (kHz)

e Each row: different possible spectra for a given
constellation of neighboring spins

* From experiment: P density 6x10'%/cm3, 500 ppm 2°Si
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Ol Beating in Rabi oscillations
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rabi oscillation repeats, 0 dBm
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Complex line structure

-50 dBm -40 dBm -30 dBm
"\\O | - |
/< 0.5 <> ~ 200 kHz > ~200 kHz
0.26- f 05 Ny
3 “> 30kHz .3 3
/ \
/ \
0.24- rPoos
O
T T OO' : : ' 00_ T 7 | v e
f (GHz) f (GHz) f (GHz)
Jumps in line position

Additional transitions apparent at higher
microwave power

Discrete jumps in position of line over hour
long time scales
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ISET

ISET

a) 1.176

Average

Tuning read level

00 05 1.0
time (ms)

[y = 15.1%0.7 kHz

Iy, = 6.8+ 0.2 kHz

BW for high fidelity single shot readout?

averaged readout
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O pilution refrigerator acoustic noise (pulse tube)

Voltage from pickup coil at sample position

Rough estimate: ~ 10 um of vibration, ~100 kHz linewidth
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Si donor qubit fabrication — SNL Si foundry

MOS Stack from Si fab
Many electron QDs possible with 0.18 pm litho
Structures fabricated for external community
(NIST, LBNL, CQC22T, U. Princeton)

7,500 — 15,000 4K mobility

T. Pluym, G. A. Ten Eyck, N. Bishop,



OISl Nanostructure fabrication

EBL and poly etch to define
nanostructure gates

Sio,
field l l l ;

o J SiO, gate oxide Lo

G. A. Ten Eyck, J. R. Wendt, J. Dominguez, B. Silva, N. Bishop,

h
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Spectral line shifts due to 6.0e+16 cm~* P donor concentration (kHz)

Calculated ESR line shapes
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W. Witzel

Each row: different possible spectra for a given constellation of neighboring spins

Dynamics?

h
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W P R. Blume-Kohout, E. Nielsen
OINl

Gate Set Tomography

Operator | Hilbert-Schmidt vector (Pauli basis) Matrix
0.7206
—0.0168 0.9862 0.0177e23
—0.0185 (0.01776‘”-3 0.0328 )
0.6741
0.6929
E 0.0328 ( 0.0292 0.02336i{}'1'>
0 —0.0029 0.0233e~01  0.9507

—0.6516

Po

Table 5: The GST estimate of the SPAM operations. Compare to Table 1.

Gate Superoperator (Pauli basis)

0.9992 —0.0007  0.006 0.004
Gi —0.002 0.953 0.0227  0.0008

0.0114 -0.0115 0.9361 0.0065
0.0027 —0.0009 —0.0061 1.0047
( 1.0003 0.0087 —0.0354 —0.0027 )

—0.0048  0.9352 0.1054 0.0869
0.0089 0.1197 —0.0091 —0.9284
0.0051 —0.1363 0.9467 —0.0346

0.999 0.0496 —0.008 —-0.0219
Gy 0.0014 —-0.0115 0.099 0.9425

Gx

—0.0072  0.1273 0.929 —0.1308
0.0145 —0.9091 0.0914 —0.0356

Table 6: The GST estimate of the logic gate operations. Compare to Table 2.

* Gate set tomography (GST) was used to characterize qubit. Maximum length base
sequence L = 8.

e State preparation and measurement error (SPAM) is ~6%
* Idle gate erroris ~2.5%.

« XandY rotation errors “5%. Looks like phase error between X and Y. Possibly
instrumental error which can be improved. i
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