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Outline

 Overview of Sandia’s Pulsed Power Facility
 The Z-Machine (very brief)

 Z-Backlighter Facility

 The Magnetized Liner Inertial Fusion (MagLIF) concept

 Recent Z-Beamlet and Z-Petawatt upgrades
 Increase Z-Beamlet energy

 Modify ZPW to operate in long pulse mode

 Optimize laser energy delivery MagLIF gas cell by:
 Adding an appropriate pre-pulse

 Employing beam smoothing via: phase-plates and adaptive optics

 Conclusion
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Z-Pulsed Power Facility Overview



▪ 36 modules 

▪ 11-27 MA, 22 MJ electrical energy

▪ 100-300 ns pulse lengths

▪ Staff: ≈250

▪ ≈150 shots per year

▪ Large array of diagnostics for power & 

energy, spectroscopy, imaging, shock, 

neutrons + high-energy laser

*http://www.sandia.gov/z-machine

33 m

Z-Backlighter
laser beam tube

≈3.2 m

Z-Machine



 (nm) 527 1054 1064  (532)

 0.3-8 ns,  typ. 2 ns 500 fs – 10 ps  300 ps – 10 ns

typ. Spot size

(µm FWHM) 75 6 20

Emax (J) 4000 100 (200TW) / 500 (ZPW) 50 (25)

I (W/cm²)  1017 1020  1016

Shot Intervals
(minutes) 180 180 20

‘Special feature’
2 pulse MFB (two frame/2 color) CPA probe beam ( < 20 mJ) 8-10 ns option: 1 and >100J (pending)

Z-Backlighter Facility Overview





■ 1992 – 1998: LLNL NIF prototype (Beamlet)
■ Since 2001: Z-Beamlet at Sandia

■ Main uses:
■ Create x-ray source for backlighting
■ Preheat MagLIF fuel

■ Parameters:
■ Up to 6 kJ @ 1053 nm, , 30 x 30 cm2 beam
■ Up to 4 kJ @ 527 nm, 30 x 30 cm2 beam

■ 3 shots per day
■ I ≈ 1017 W/cm2

■ 4 target chambers + Z
■ Adaptive optics & phase modulation systems
■ Lens & phase plates for focusing
■ Arbitrary temporal shape, typ. 0.5 ns prepulse +  

1-4 ns main

Z-Beamlet Laser (ZBL) Basics
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large X-ray source with bandwidth 

spherically bent crystal

1:1 image of X-ray source

sample rays for 
min, ctr and max

object plane

image plane

(distance d1 
to crystal)

(distance d2 to crystal ; mag.=d2/d1)
Shielding

Direct 
Object 
X-rays

X-Ray Bent Crystal Imaging

 Bent crystal imaging improves monochromaticity, resolution, 
and field of view 



ICF Implosion Studies

Rad-hydro Jet Studies

X-Ray Bent Crystal Imaging



Foils

Shielded
Film

Imaging 
Crystals

t=8ns

2-Frame Imaging
■ Using time delayed pulses and angular multiplexing, one can 

generate two radiographs for the same Z-shot with time delays 
up to 20ns.





■ Short-pulse, 1ω operation
■ High-field physics (particle acceleration/γ-rays)
■ Above-10 keV x-ray generation

■ Long-pulse co-injection into ZBL and 2ω operation 
(pending)

■ Additional energy for ZBL pulse
■ Flexible prepulse for MagLIF/radiography

■ Parameters:
■ Up to 500 J @ 1053nm, 500 fs, 43cm dia.
■ Up to 100 J @ 1053nm, 500 fs, 200 TW, 15cm dia.
■ Up to 400 J @ 527nm, 2 ns, 15cm dia.

■ 3 shots per day
■ Pulse length: 0.5 - 100 ps @ 1ω,  2 ns @ 2ω
■ I = 2 × 1020 W/cm2 @ 1ω short pulse

■ 2 target chambers + Z
■ Off-axis parabola or lens focusing
■ Full-aperture upgrade on-going: 2 kJ, 27 x 31 cm2

Z-Petawatt Laser (ZPW) Basics
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Z-Petawatt Basic Architecture



Interior of 200TW Vacuum 
Compressor Vessel with 
MLD’s

200TW Target Chamber 
Exterior

25keV Sn K radiography

200TW Target Chamber 
Interior

200TW Operation

■ A smaller beam can be used to operate at 
the 200TW level using MLD gratings for 
temporal compression. 

■ A dedicated target chamber is used for 
stand alone experiments such as:

■ Proton beam generation
■ Bent crystal imaging development
■ Laser beam characterization
■ Novel high energy x-ray sources

■ Diagnostics include:
■ X-ray pinhole camera
■ X-ray and optical streak camera
■ X-ray and optical spectrometers
■ Thomson parabola
■ Image Plate, RCF, and CR39 detectors
■ Single photon counting CCD’s





■ Versatile, nanosecond laser system: 
■ Synchronized to ZBL and ZPW
■ Laser compression of samples
■ Multi-frame probe for shadowgraphy, 

interferometry 
■ 8-pulse capability with 1 ns inter-pulse 

intervals

■ Parameters:
■ Up to 100 J @ 1064nm, 10 ns, 50 mm diameter
■ Up to 10 J @ 532nm, 0.3 ns, 50 mm diameter

■ 10-minute repetition rate
■ Pulse length: 0.3 - 10 ns
■ I = 1016 W/cm2

■ 3 target chambers + dedicated target chamber 
for development of ultrafast x-ray imager 
camera

■ Arbitrary temporal shape

Chaco Laser Basics
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Target BayTarget Bay



Z-Backlighter Facility Target Area

100TW area

Target Bay
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MagLIFMagLIF



~1 cm
‘Drive’ B-Field from

Z-Machine (azimuthal)

Polyimide Laser
Entrance Hole (‘LEH’)

Beryllium liner

4-12 atm. Deuterium

‘Seeded’ B-Field
(axial)

Magnetized Liner Inertial Fusion



 B-Field from Z machine drive 
current starts to compress the 
Be lines and fuel

 Z-Beamlet injects several kJ of 
energy at 527nm into fuel
 Magnetization of fuel

 Minimizes heat conduction losses

 B-Field compression

 Stagnation temperature is 
proportional to initial 
temperature

Magnetized Liner Inertial Fusion



 Fuel compresses to densities 
and temperatures enabling 
thermonuclear fusion

Magnetized Liner Inertial Fusion

0
-1s -1ms -1µs -1ns

B-field
laser
compression



Magnetized Liner Inertial Fusion

S. Slutz et al.: Physics of Plasmas 17, 056303 (2010)

Magnetization
Laser

Heating Compression

 Point Design:
 30 Tesla initial magnetic field

 Laser heating of ~3 mg/cm3 D2

fuel produces ~250 eV plasma

 Thick (AR=6) Be liner with R0=2.7 
mm, peak velocity ~100 km/s for 
a 27 MA peak current drive

 At stagnation the fuel absorbs 
120 kJ, reaches 8 keV and ~0.5 
g/cm3, and is highly magnetized 
at 13500 Tesla

 Yields >100 kJ predicted in 2D



Upgrades Prompted by MagLIFUpgrades Prompted by MagLIF



Backlighter Driver: SBS suppression

 High intensity laser beams generate acoustic waves in a large 
aperture medium so that the waves can amplify, leading to 
optical scattering, energy instability, and optical damage.
 Estimated SBS threshold for a desired 4ns FWHM pulse: 5.2kJ

 Adding spectral sidebands is needed for SBS suppression
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Design for PM and Heterodyne
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SBS suppression: Results

 Achieved FM->AM compensation in fiber transport and regen 
by installing a grating compressor and a BRF

 Tested PM failsafe system

 Demonstrated 5.6/4.2kJ at 1/2 with 3.6ns pulsewidth
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Adding Boosters for Z-Beamlet

 SBS suppression allows up to 5 booster amplifiers, each 
adding about 500J of stored energy (11+5)*500J=8kJ at 
1054nm
 Maximum extractable energy: 6 kJ at 527nm

 One booster was activated this last year using spare circuits

 Further booster activation would require a modification of 
the PW amplifiers in order to free up pulsed power circuits.



Z-Petawatt in long pulse mode

 Co-injecting and co-boring ZPW with ZBL is motivated by:
 The need for more energy for MagLIF experiments, either for:

 Overall energy increase for target pre-heating,

 Removal of the laser entry hole (LEH) window, or

 Possibly backlighting of MagLIF experiments.

 For LEH removal, ZPW would operate in long pulse mode and 
act as a ZBL pre-pulse with arbitrary time delays.
 This will allow enough time for hydrodynamic evolution in the ablated 

LEH window so that the ZBL main beam:

 “Sees” a low density beam and hence less beam distortion, and

 Transmits a larger fraction of the main pulse as a result.



ZPW-ZBL co-injection scheme

 Projected 2 energy:
 500 J at sub-aperture this CY

 3 kJ at Full aperture (years)

 Requires SLM laser due to gain 
narrowing constraints

 Additional rod amplifiers are needed for 
full aperture, kJ operation.



OPCPA changes required

 Old/New schematic for CPA operation
 Improved spectral bandwidth, energy and pointing stability

 Less laser damage, higher temporal/spectral control

Old New

BBO

BBO

BBO

LBO

LBO

BBO



 Using the new SLM seed source, early gain tests show a 
double pass main amplifier gain of 120x.

 Still working on spatio/temporal pulse shaping to pre-
compensate gain-distortions (see other talk).
 Spatial pre-compensation with

laser machined apodizers 

 Temporal pre-compensation

with Pockels cells

0 200 400 600 800

0.000

0.005

0.010

0.015

0.020  Large Calorimeter trace: 74.1 J

vo
lt
a
g
e

 (
V

)

time (s)

First long-pulse results



Beam Quality ImprovementsBeam Quality Improvements



 High gas fill pressures require ‘very thick’ windows (e.g. >3 µm 
for 180 psig). How can we facilitate burning through the foil?

 LPI such as SRS, SBS, TPD… are very complex and are heavily 
dependent on beam quality at the window.

Optimizing energy into gas cell

Schematic of basic LPI at capsule window Experiment to study LPI at capsule window



LEH transmission vs. pre-pulse 

 Laser: 1.5kJ main pulse, 300J pre-pulse
 Best results for pre-pulse>200J; minimal improvement >500J

 Pre-pulse delay limited by AWG, regen round-trip and pinhole 
closure time to < 5ns

 Co-injected Petawatt beam will allow for arbitrary delay!



 LLE phase-plate loaner optimized for 1.8mm diameter focus

Beam smoothing: Phase-plate



Adaptive Optics (AO) on Z-Beamlet

 We use a commercial adaptive optics package 
 SID4 wavefront sensor from Phasics in conjunction 

with NightN bi-morph mirror
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AO: Correcting static aberrations

 Static aberrations were previously significant due to a faulty 
large waveplate (since replaced):
 PV: 2.5 waves, RMS: 0.45 waves, Strehl: 0.09

 When closing the loop with a cw alignment beam, we 
achieve:
 PV: 1.1 wave, RMS: 0.1 wave, Strehl: 0.70



AO correction of regen beam

100 µm

with AO without AO

Radii for 50%, 80%, 95% contained energy:
19 µm
35 µm
53 µm

40 µm
64 µm
87 µm

 Using the same static correction from the previous slide, but 
looking at the target chamber focus, one can see a dramatic 
improvement of encircled energy.

 However, the highest order aberrations are not compensated 
yet as can be been in the log scale images below.



AO on full system shot

 First attempt to correct full system shot.

Full system shot without AOFull system shot with AO



Conclusion

 An overview of the current Z-Backlighter facility and its 
capabilities has been given

 The new MagLIF mission has prompted a variety of 
substantial upgrades to Z-Beamlet and Z-Petawatt.

 Z-Beamlet’s 2 energy has been doubled and it’s focal spot 
quality was greatly improved.

 Z-Petawatt can now operate in short- and long-pulse mode, 
making it a versatile tool for MagLIF, backlighting, and high 
intensity laser plasma interactions.



Backup Slides



• 4-pass angled design (like the rod amplifier)

• PEPC/ polarizer combination “locks” the beam in the 
cavity.

• Net single-pass gain: ~11 X  for the 11 BAU’s 
• Net four-pass gain: ~16,000  X 

• Extractable optical energy: < 6 kJ
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• The original On-axis FOA 
operates at atmospheric 
pressure and uses a 32 cm 
square vacuum window at the 
Center Section interface.
• The laser is point slightly off axis WRT to Z, 

allowing a few extras debris protection 
measures.

• Certain experiments require on-
axis laser light at the Z pinch, 
potentially exposing the vacuum 
window to high-energy axial 
debris.
• A catastrophic window failure could result 

from high-energy debris penetration, 
resulting in the rapid release of >5MJ of 
stored energy along with the large-scale 
dispersion of silica and post-shot dust.

• A newer FOA has been 
constructed and is in use on 
certain experiments.
• The new system is a pressure vessel which 

is evacuated  to avoid the stored energy 
risk.

Final Optics Assembly (FOA)


