

OSTI
INV
89

UNCLASSIFIED

CLASSIFICATION LEVEL
(S, C, OR U)

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

9891 E006SW

Do not remove
this sheet

NAA-SR-MEMO 9030

This document contains 36 pages

This is copy 32 of 44 series A

CLASSIFICATION TYPE
(RD OR DI)

This document is
PUBLICLY RELEASABLE

Henry Keyes
Authorizing Official

Date: 5-5-09

This report may not be published without the approval of the Patent Branch, AEC.

DEPARTMENT OF ENERGY DECLASSIFICATION REVIEW	
DETERMINATION (CIRCLE NUMBER(S))	
1. CLASSIFICATION RETAINED	2. CLASSIFICATION CHANGED TO:
3. CONTAINS NO DOE CLASSIFIED INFO.	4. COORDINATE WITH:
5. CLASSIFICATION CANCELLED	6. CLASSIFIED INFO BACKED
7. OTHER (SPECIFY)	

1st REVIEW DATE: 6-12-97
AUTHORITY: AOC DADC (AEC)
NAME: *James G. Keyes*
2nd REVIEW DATE: 6-12-97
AUTHORITY: ADD (AEC)
NAME: *Jed Davis*

1 3942

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

UNCLASSIFIED

55960

RECEIVED

JAN - 9 1964

USAEC HEADQUARTERS
LIBRARY

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

UNCLASSIFIED

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NO. NAIA-SR-MEMO-9030
DATE September 23, 1963
PAGE 2 OF 34

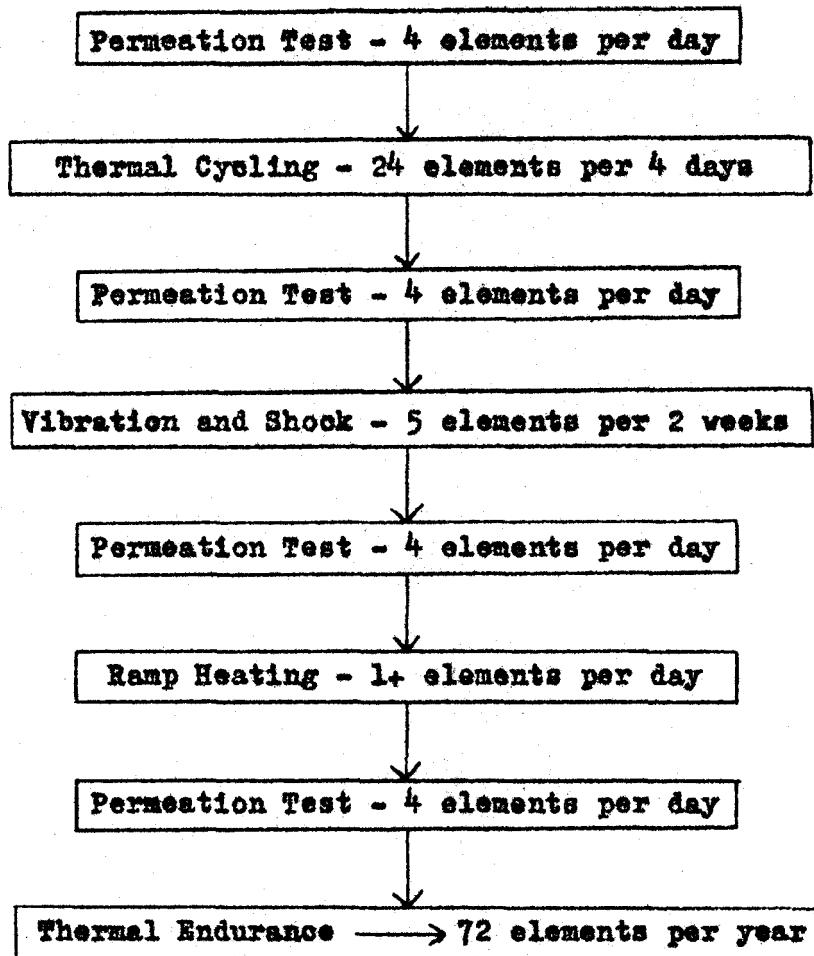
I. INTRODUCTION

The purpose of environmental testing is to establish the reliability of fuel elements by subjecting them to vibration and shock inputs and ramp heating rates in excess of those required for qualification.¹ These inputs simulate launch conditions and reactor start-up. The pre-launch check out and reactor life conditions are also simulated by subjecting the elements to thermal cycling and thermal endurance. The effects of these inputs are evaluated by measuring the hydrogen permeation before and after each of the above inputs, and by chemical and metallographic analysis after endurance testing. The sequence of testing and equipment capability are shown in Figure 1.

II. PROGRAM

A. Test Equipment Status and Operation

1. **Permeation Testing:** SNAP 10A fuel elements are tested in an eight furnace permeation system capable of testing four elements per day. The elements are tested at 1200°F as per specification.² An additional test at 1100°F is also made to allow correlation of environmental and qualification test results. The system is adequate to handle the permeation test needs of the environmental test program.
2. **Thermal Cycling:** A three furnace system capable of simultaneously testing twenty-four elements is used for thermal cycling. Four days are required for thermal cycling the fuel elements in the environmental test program.
3. **Vibration and Shock:** The elements are loaded five at a time in a simulated core tank. The tank is filled with water and pressurized to 25 ± 2 psig after loading. The elements are arranged in the core tank in the configuration shown in Figure 2. Inputs are made using a Ling 7500 shaker-slip table system.
4. **Ramp Heating:** Two induction heating systems are available for ramp heating. Each system can accommodate approximately two elements every three days. The systems require periodic adjustment to insure acceptable temperature profiles and temperature peaks. These two characteristics may cause delays in the program from time to time.


¹NA0422-006, "SNAP 10A Fuel Element Qualification Test Specification," T. G. Parker, Jr., Rev. 5/7/63.

²NA0212-007, "Isothermal Hydrogen Permeation Testing of Production SNAP Fuel Elements," J. G. Spraul, Rev. 2/19/63.

UNCLASSIFIED

UNCLASSIFIED

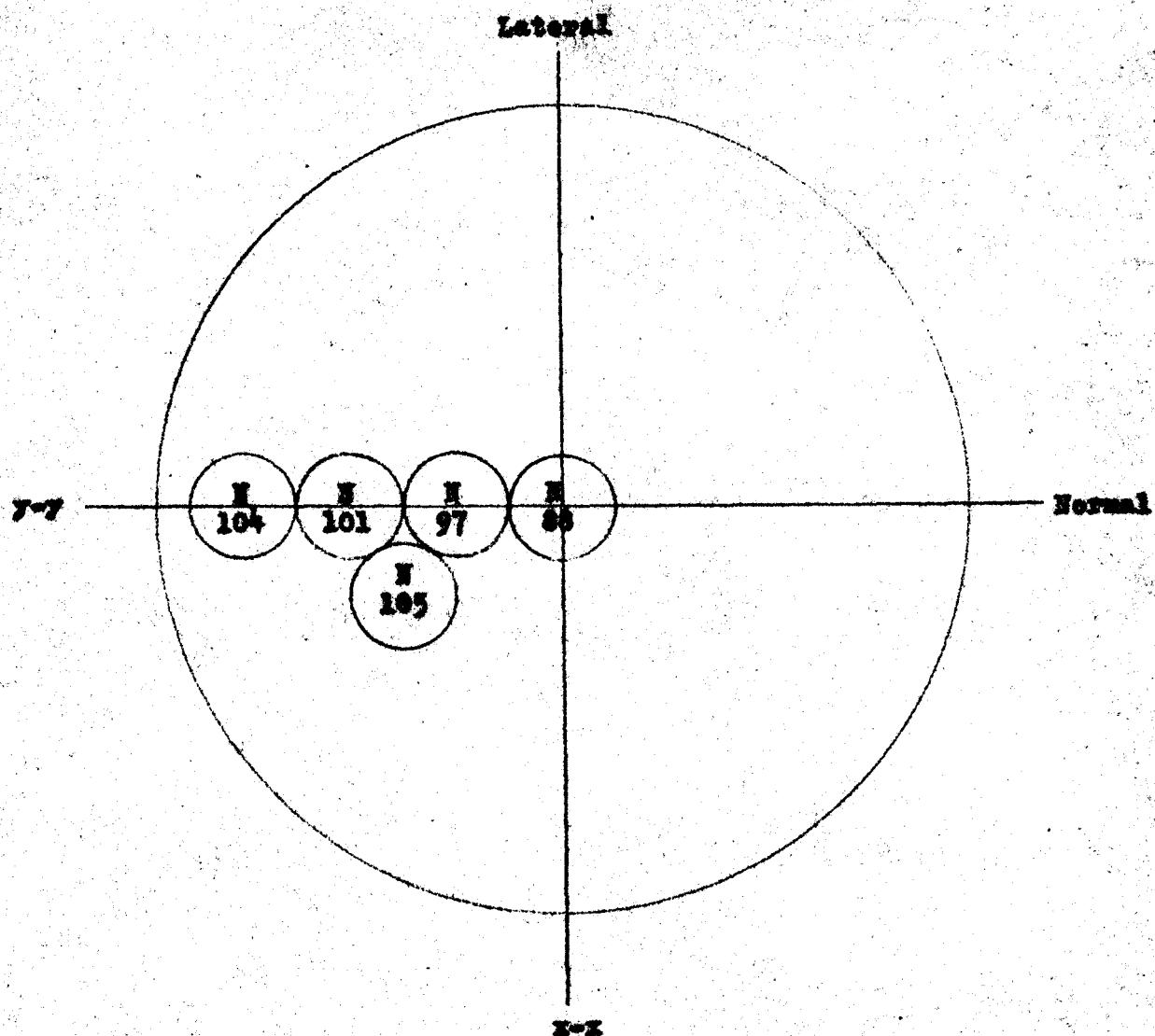
Figure 1

UNCLASSIFIED

ATOMICS INTERNATIONAL

A Division of North American Aviation, Inc.

NO. 1A-55000-2020


DATE 10/10/65

PAGE 6 OF 54

UNCLASSIFIED

Figure 2

Location of SNAP 10A Fuel Elements
During Vibration and Shock

UNCLASSIFIED

~~UNCLASSIFIED~~

5. Thermal Endurance: The new system will be able to accommodate up to seventy-two elements. The temperatures of the furnaces are presently being profiled for operation of this system.

The test equipment described above is used for qualification, environmental, and developmental testing of all SNAP 10A and SNAP 2 fuel elements.

III. PROGRAM STATUS

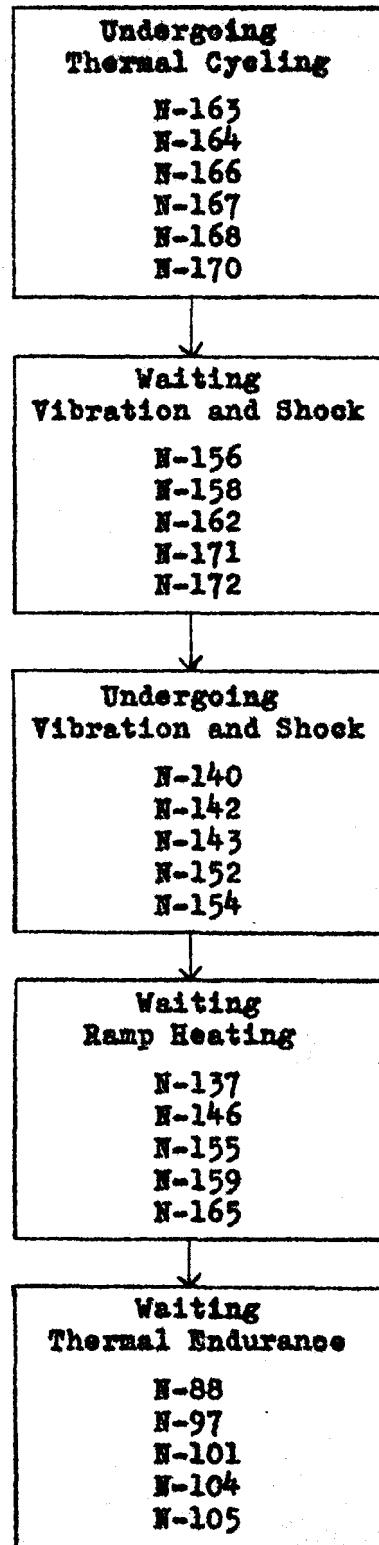
Fifteen fuel elements have been received during August, bringing the total number of environmental test elements to twenty-seven. These fifteen elements had undergone vibration and shock in the LOFSI core tank before receipt for environmental testing. The present status of these 27 elements is shown in Figure 3. The results of the tests and inputs to date may be seen in Tables I - XXVII. In these tables, β is the measured hydrogen permeation rate reported in units of cc(STP)/hr.

IV. DISCUSSION

A. Inputs

Each element receives three thermal cycles from 400°F to 1200°F with a heating rate of 300°F/hour and a cooling rate of less than 50°F/hr. The element remains at 1200°F for ten hours per cycle.

Elements N-88, N-97, N-101, N-104, and N-105 have undergone vibration and shock inputs of 200 percent of the normal qualification input level. Elements N-137, N-146, N-155, N-159, and N-165 have had inputs of 250 percent of the qualification level. Elements N-140, N-142, N-143, N-152, N-154, N-156, N-158, N-162, N-171, and N-172 will receive qualification level vibration and shock inputs prior to high level ramp heating rates. Elements N-88, N-97, N-101, N-104 and N-105 have undergone ramp heating at 150°F/minute to 1250°F. This is the minimum ramp heating rate for an environmental test element.


B. Significance of Acceptance Test Data

Element N-169 exceeded the specified failure leak rate of 3.0 cc(STP)/hr. at 1200°F in its pre thermal cycle permeation test. Review of the acceptance test data showed that the leak rate of the element increased from 0.23 cc(STP)/hr. to 0.50 cc(STP)/hr. at 1200°F because of low level acceptance

~~UNCLASSIFIED~~

UNCLASSIFIED

Figure 3

UNCLASSIFIED

Element N-169 was rejected (cf. Section IV B).

UNCLASSIFIED

vibration. Review of the test data for seventy-two other elements (both normal and enriched uranium) which received similar tests showed that only one other element, N-158, had a larger increase of permeation. The seventy-two elements have a mean increase of 0.01 cc(STP)/hr. due to the low level acceptance vibration. The change in the leak rate of element N-169 is approximately equal to three times the standard deviation of the seventy-two elements. The change in permeation of element N-158 is well above this three-sigma band, but the permeation rate of N-158 did not continue to increase (cf. Table XV). Both these elements were vibrated and shocked in the 10F81 core tank after the acceptance tests. It is recommended that any element which shows an increase in permeation greater than 0.25 cc(STP)/hr. due to low level acceptance vibration be rejected. This is expected to cause no more than 5 elements per 1000 to be rejected.

V. CONCLUSIONS

- A. SNAP 10A fuel elements are undamaged by 250% of the vibration and shock required for qualification.
- B. Fuel elements which show an increase of more than 0.25 cc(STP)/hr. at 1200°F due to low level acceptance vibration should be rejected.

UNCLASSIFIED

TABLE I

UNCLASSIFIED

UNCLASSIFIED

TABLE XI.

UNCLASSIFIED

FUEL ELEMENT NUMBER		N-97		ENDURANCE TEST DATA			
✓ CARBON		0.24		DATE STARTED			
✓ <u>MR - INITIAL</u>		6.44		PRETEST TOTAL ϕ =			
✓ TEST TEMPERATURE	1100	1200		HOURS	ϕ	HOURS	ϕ
✓ ACCEPTANCE TEST	0.04	0.21					
✓ BEFORE THERMAL CYCLING	0.05	0.23					
✓ AFTER THERMAL CYCLING	0.05	0.27					
✓ AFTER VIBRATION & SHOCK	0.04	0.16					
✓ AFTER RAMP HEATING	0.03	0.13					

ENDURANCE TEST DATA

SYSTEM

FURNACE

RETORT

NOTES

**INPUTS: 200% of design vibration
& shock**

Design ramp heat

DATE FINISHED

UNCLASSIFIED

TABLE II

UNCLASSIFIED

FUEL ELEMENT NUMBER		N-101	ENDURANCE TEST DATA			
% CARBON		0.24	DATE STARTED			
$\phi_{\text{H}} - \text{INITIAL}$		6.56	PRETEST TOTAL ϕ =			
# TEST TEMPERATURE	1100	1200	HOURS	ϕ	HOURS	ϕ
# ACCEPTANCE TEST TEMP.	0.11	0.54				
# BEFORE THERMAL CYCLING	0.06	0.40				
# AFTER THERMAL CYCLING	0.05	0.42				
# AFTER VIBRATION & SHOCK	0.04	0.30				
# AFTER RAMP HEATING	0.03	0.23				

ENDURANCE TEST DATA

SYSTEM

FURNACE

RETORT

NOTES

INPUTS: 200% of design vibration
& shock

3 Design ramp heat

DATE FINISHED

UNCLASSIFIED

TABLE IV

UNCLASSIFIED

UNCLASSIFIED

TABLE V

UNCLASSIFIED

FUEL ELEMENT NUMBER		N-105		ENDURANCE TEST DATA			
% CARBON		0.21		DATE STARTED			
NH - INITIAL		6.64		PRETEST TOTAL ϕ =			
TEST TEMPERATURE	1100	1200		HOURS	ϕ	HOURS	ϕ
ACCEPTANCE TEST	0.06	0.28					
BEFORE THERMAL CYCLING	0.04	0.27					
AFTER THERMAL CYCLING	0.04	0.23					
AFTER VIBRATION & SHOCK	0.08	0.24					
AFTER RAMP HEATING	0.06	0.18					

ENDURANCE TEST DATA

SYSTEM

FURNACE

RETORT

NOTES

INPUTS: 200% of design vibration
& shock

Design ramp heat

DATE FINISHED

UNCLASSIFIED

TABLE VI

UNCLASSIFIED

DATE FINISHED

UNCLASSIFIED

TABLE VIII

UNCLASSIFIED

UNCLASSIFIED

SNAP 10A FUEL ELEMENT ENVIRONMENTAL TEST RESULTS

82-14000-9050
September 2, 1963
Page 16 of 31

TABLE VIII

UNCLASSIFIED

UNCLASSIFIED

SNAP 16A FUEL ELEMENT ENVIRONMENTAL TEST RESULTS

TABLE IX

UNCLASSIFIED

UNCLASSIFIED

TABLE X.

UNCLASSIFIED

DATE FINISHED

UNCLASSIFIED

TABLE XI

UNCLASSIFIED

FUEL ELEMENT NUMBER		N-152		ENDURANCE TEST DATA			
% CARBON		0.16		DATE STARTED			
E_{γ} - INITIAL		6.41		PRETEST TOTAL ϕ =			
TEST TEMPERATURE °F	1100	1200		HOURS	ϕ	HOURS	ϕ
% ACCEPTANCE TEST		0.14					
% BEFORE THERMAL CYCLING	0.03	0.13					
% AFTER THERMAL CYCLING	0.02	0.13					

ENDURANCE TEST DATA

SYSTEM

FURNACE

RE TORT

NOTES

10F81 Core Element

INPUTS: 100% of design vibration
& shock

DATE FINISHED

UNCLASSIFIED

TABLE XIII

UNCLASSIFIED

UNCLASSIFIED

TABLE XI

UNCLASSIFIED

ENDURANCE TEST DATA

SYSTEM

FURNACE

RE TORT

NOTES

INPUTS: 250% of design vibration
& shock

DATE FINISHED

UNCLASSIFIED

TABLE XIV

UNCLASSIFIED

UNCLASSIFIED

TABLE XV

UNCLASSIFIED

UNCLASSIFIED

SNAP 10A FUEL ELEMENT ENVIRONMENTAL TEST RESULTS

TABLE XX

UNCLASSIFIED

ENDURANCE TEST DATA

SYSTEM

FURNACE

RETORT

NOTES

INPUTS: 250% of design vibration
& shock

DATE FINISHED

UNCLASSIFIED

TABLE XVII

UNCLASSIFIED

UNCLASSIFIED

TABLE XVIII

UNCLASSIFIED

ENDURANCE TEST DATA

SYSTEM

FURNACE

RETORT

NOTES

19781 Core Element

INPUTS: 100% of design vibration
& shock

DATE FINISHED

UNCLASSIFIED

TABLE XXX

UNCLASSIFIED

DATE FINISHED

UNCLASSIFIED

TABLE XI

~~UNCLASSIFIED~~

UNCLASSIFIED

TABLE XXX

UNCLASSIFIED

DATE FINISHED

UNCLASSIFIED

TABLE XXXI

UNCLASSIFIED

UNCLASSIFIED

TABLE XXXII

UNCLASSIFIED

UNCLASSIFIED

TABLE XXIV

UNCLASSIFIED

UNCLASSIFIED

SNAP 10A FUEL ELEMENT ENVIRONMENTAL TEST RESULTS

841-1-25 C-9030
Captured 24. 1963
Rare sp. 34

TABLE XXV

UNCLASSIFIED

DATE FINISHED

UNCLASSIFIED

TABLE OF MATTER

UNCLASSIFIED

DATE FINISHED

UNCLASSIFIED

TABLE VIII

UNCLASSIFIED

DATE FINISHED

UNCLASSIFIED