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Project Objective:  The objective of this project is to develop a new class of multifunctional concrete 

materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which 
combine ultra-high damage resistance through strain-hardening behavior with 
distributed multi-dimensional damage self-sensing capacity. The beauty of 
multifunctional concrete materials is two-fold: First, it serves as a major material 
component for the SNF pool, dry cask shielding and foundation pad with greatly 
improved resistance to cracking, reinforcement corrosion, and other common 
deterioration mechanisms under service conditions, and prevention from fracture 
failure under extreme events (e.g. impact, earthquake). This will be achieved by 
designing multiple levels of protection mechanisms into the material (i.e., ultra-
high ductility that provides thousands of times greater fracture energy than 
concrete and normal fiber reinforced concrete; intrinsic cracking control, 
electrochemical properties modification, reduced chemical and radionuclide 
transport properties, and crack-healing properties). Second, it offers capacity for 
distributed and direct sensing of cracking, strain, and corrosion wherever the 
material is located. This will be achieved by establishing the changes in electrical 
properties due to mechanical and electrochemical stimulus. The project will 
combine nano-, micro- and composite technologies, computational mechanics, 
durability characterization, and structural health monitoring methods, to realize 
new MSCs for very long-term (greater than 120 years) SNF storage systems. 
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EXECUTIVE SUMMARY 

 
A micromechanics-based framework and rheology design methodology was established in this 

project for developing ductile strain-hardening cementitious materials (SHCs) that feature strain-hardening 

behavior with optimized tensile ductility. The framework links measurable parameters at nano- and micro-

scales to composite strain-hardening behavior. The framework also took into account the random 

distribution of flaws and “effective volume” of polymeric fibers, in addition to the interface nanoscale 

tailoring and matrix microstructure manipulation. According to this analytical framework, we successfully 

designed and processed SHC materials with tensile ductility two orders higher than SNF concrete and fiber-

reinforced concrete, as well as intrinsic crack width control capacity. Through tuning the chemical and 

physical parameters of SHC at microstructure scales, the “spring law” (fiber bridging stress vs. crack 

opening relation) of each individual crack was modified to achieve a significant change in the crack width 

distribution during SHC strain-hardening stage. By this means, the mean crack width was further reduced 

to 12.5 μm while the tensile strain capacity was increased to above 5%.  

The new SHC materials offer great advantage over normal concrete materials, in terms of improved 

damage resistance and reduced transport properties for SNF storage. The large tensile ductility of SHC 

overcomes the inherent brittleness of cementitious materials, leading to extraordinary damage tolerance 

under service loading (e.g. cracking induced deterioration, corrosion-induced concrete spalling and 

fracture) and extreme loading conditions (e.g. impact, earthquake, accidental loading during transportation). 

The fracture energy of SHC is two orders higher than current concrete used in SNF storage systems, and 

one order higher than most FRCs. The intrinsically controlled micro-crack width (mean crack width of 30.0 

μm for SHC-1, mean crack width of 12.5 μm for SHC-2) during strain-hardening stage was independent of 

reinforcing ratio, structural member geometry, applied deformation and loading condition. The tight crack 

width provides high resistance to chloride diffusion and water permeation, compared to conventional 

concrete at the cracked stage. It is far below the maximum allowable crack width at the tensile face of 

reinforced concrete structures as 150 μm for exposure conditions of seawater, seawater spray, wetting, and 

drying, and 180 μm for deicing chemical exposure, specified by ACI 224R. This indicates that steel 

reinforcement is not required to control crack width in SHC even for the most stringent allowable crack 

width requirement.  

The newly developed SHCs were further encoded with a robust self-sensing capacity. The self-

sensing SHC is called multifunctional strain-hardening cementitious materials (MSC).  The fundamental 

understanding of the electrical, electro-chemical, and electro-mechanical behavior of cementitious was 

obtained. Electrical impedance spectroscopy and equivalent circuit analysis on various mixtures with 

different binder ingredients, water/binder ratios, hydration chemistry, incorporation of conductive nano-
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materials, age effects, and damage levels were conducted. The results shed light on the age-dependent 

material electrical properties at composite, component and ingredient levels, which laid the groundwork for 

the systematic development of MSCs for SNF storage applications. Furthermore, in order to correlate MSC 

material mechanical behavior (e.g. strain and damage) with electrical response, four-point probing 

piezoresistivity test method was established. The results revealed the effect of nanomaterials on the electro-

mechanical properties of MSC composite material systems. 

A new generation of multifunctional strain-hardening cementitious materials was successfully 

developed in this project. The beauty of MSC is two-fold: First, it serves as a major material component 

for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, 

reinforcement corrosion, and other common deterioration mechanisms under service conditions, and 

prevention from fracture failure under extreme events (e.g. impact, earthquake). This was achieved through 

multiple scales of protection mechanisms designed into the MSC material (i.e., ultra-high ductility that 

provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete, 

intrinsic cracking control, electrochemical properties modification, reduced transport properties, and 

extraordinary energy dissipation capacity). Second, it offers capacity for distributed and direct sensing of 

cracking, strain, and corrosion wherever the material is located. This was achieved by establishing the 

changes in electrical properties due to mechanical and electrochemical stimulus through experimental 

studies and analytical modeling. MSCs exhibit strong piezoresistive behavior at both elastic and inelastic 

stages. The elastic gage factors are 17, 62 and 56 for 2.5%, 5% and 10% MSCs, respectively, The inelastic 

gage factors are 6413, 4134 and 2236 in average for 2.5%, 5% and 10% MSC specimens, respectively. 

These gage factors are above the targets set in the proposal for the material development, and are far above 

the gage factor of 2 (elastic only) for commercial strain gages. Larger gage factors mean that a small change 

in strain can be reflected as large change in the measured impedance, indicating a higher sensing capacity. 

Robust strain self-sensing in MSCs can thus be achieved by their large gage factors and strong signal to 

noise ratios.  

In addition to strain self-sensing, damage self-sensing was also accomplished in this project by 

integrating material development and advanced impedance tomography methods. Algorithms were 

developed to autonomously measure strain and identify damage based on an analysis of the input-output 

voltages taken from MSC elements stimulated electrically. This study made it possible to visualize 

distributed damage (e.g. a defect, a large localized crack, distributed microcracks and embedded steel 

corrosion) in MSC based upon impedance measurements collected from MSC specimens in a multitude of 

probe locations. MSC can behave as a damage sensor itself, thus offering spatial data wherever the material 

is located. This eliminates the need for installing and maintaining a dense array of sensors; instead, 

inexpensive electrodes can be attached to structural component boundaries to apply electrical input and 
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measure output signals that collect spatial information throughout the material. This approach allows for 

spatial sensing inside the material although the electrodes are only required at boundaries.  

.  To complement MSC material development and characterization, a robust methodology for linear 

transient diffusion equations was developed. Non-negative methodologies for nonlinear (in particular, 

semi-linear and quasi-linear) diffusion-type equations were also developed. Mesh restrictions were derived 

to meet maximum principles and the non-negative constraint for advection-diffusion and linear reactions. 

Moreover, a state-of-the-art numerical methodology was developed to simultaneously meet the element-

wise species balance, the non-negative constraint and avoid node-to-node spurious oscillations. 

Furthermore, a hierarchy of mathematical models was developed to model various mechanisms of 

degradation. The models accounted for coupled chemo-thermal-deformation response, which was crucial 

for mathematical modeling of degradation of materials. This mathematical model was consistently derived 

using mechanics and thermodynamics principles. In particular, the model satisfies the second law of 

thermodynamics, which is not the case with some of the current models for degradation. Overall, a 

comprehensive mathematical model and stable and accurate computational framework that uniquely 

capture fully coupled deterioration processes were developed through this project.  

 The self-sensing capacity of MSC was validated both at material and structural element scales. 

Constitutive models of MSC were established for structural behavior prediction and future structural design. 

A benchmark problem (i.e. a wall structure under shear) was studied through finite element simulation that 

incorporates the new MSC constitutive models. The structural simulation results are compared with 

experimental data.  

 In addition to the mechanical, electrical and electromechanical behavior, the durability of MSC was 

characterized. Common deterioration mechanisms in spent nuclear fuel storage systems were studied, 

including restrained shrinkage cracking, chloride penetration, embedded steel corrosion, freeze and thaw, 

alkali-silica reaction and elevated temperature effects. The experimental results revealed that MSC had 

superior durability to conventional concrete, mainly due to its extraordinarily high damage tolerance, 

chemical stability and low transport properties even under large applied deformation. The improved 

durability leads to an extended service life for SNF systems when MSC is used in lieu of conventional 

concrete. Life-cycle analysis was conducted on dry cask systems to compare the newly developed MSCs 

with existing concrete. The results showed the life cycle cost of a representative dry cask system can be 

reduced by 30% when MSC is used. It should be noted that the life cycle analysis was based on simple 

assumption that corrosion is the dominant deterioration mode, and other types of deterioration or failure 

events will not occur during the structural life cycle. When other deterioration modes and possibilities of 

natural and man-made hazards are considered, the life cycle cost advantage of SNF systems using MSC 

will be even more predominant. 
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1. INTRODUCTION 

1.1 Research Significance 

The U.S. Department of Energy’s termination of the Yucca Mountain repository project means that 

spent nuclear fuel (SNF) will remain at non-permanent sites for decades longer than expected. As pools at 

many nuclear reactors began to be filled up with SNF, dry cask storage has become one of the most practical 

interim storage options. The 1,200+ loaded storage casks at 44 sites today could climb to more than 2,400 

casks at 73 sites by 2020 and 9,300 casks by 2055. Licensed for 20 years with possible renewal up to 40 

years, it is hoped the dry casks can be used for a greatly extended period, e.g. 300 years[1].  

Concrete is a major material component for spent nuclear fuel storage systems that provides 

radiation shielding in steel-lined concrete pools, concrete dry-storage casks, and foundation pads. The 

concrete in SNF storage systems is constantly subjected to aging and deterioration under combined thermo-

chemo-hygro-mechanical effects, which often causes chemical and physical alteration of the concrete and 

results in excessive cracking, spalling and loss of strength[2, 3]. SNF storage concrete is also susceptible 

to impact loads or severely elevated temperatures during accident conditions and extreme events, which 

can lead to catastrophic fracture failure[4, 5]. Obviously, the long-term durability and safety of concrete 

structures for spent fuel pools and dry casks are key factors for extended storage of SNF[1]. This goal of 

extended storage of SNF, however, is currently plagued by two fundamental limitations: quasi-brittle nature 

of concrete materials, and inadequacies of current health monitoring methods.  

Concrete is an inherently quasi-brittle material with low fracture energy on the order of 0.1 kJ/m2[6]. 

It is, therefore, highly susceptible to cracking and fracture failure under combined mechanical loads and 

environmental effects. Cracking causes reduction of concrete member load carrying capacity and greatly 

impairs the transport properties of concrete. This further leads to other common deterioration mechanisms 

such as chemical attack, chloride diffusion and corrosion of embedded steel, moisture penetration, 

radioactive water leakage, and increased radiation levels[7]. The deterioration process is further accelerated 

when concrete is exposed to neutron or gamma radiation and elevated temperature, which leads to strength 

loss and brittle fracture failure modes such as spalling. Furthermore, under impact loads during extreme 

events or accident conditions, the low fracture energy of concrete can result in concrete spalling and 

fragmentation, loss of bond with reinforcing steel, and catastrophic fracture failure[8]. While short 

discontinuous fibers (e.g., polymer, glass, carbon, steel) have been used to improve concrete fracture 

toughness and reduce the crack width, quasi-brittle fracture mode is still prevalent in fiber-reinforced 

cement or concrete (FRC). FRCs feature a tension-softening behavior, with fracture energy extending to 

several kJ/m2.  It is noteworthy that FRCs do not fundamentally address the quasi-brittleness of concrete 

materials; crack width within FRCs is still dependent on applied deformation, loading conditions, 
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reinforcement ratio and structural geometry, and thus is not an inherent material property. To radically 

extend concrete service life and improve safety in SNF storage systems, the quasi-brittleness of concrete 

and FRC must be eliminated. Therefore, a new class of cementitious materials with ductile strain-hardening 

behavior and fracture energy on the order of 10-100 kJ/m2 is proposed and developed in this project. 

Early detection of cracking and deterioration in SNF pools and dry cask concrete is critical to 

minimize maintenance costs, prolonging structural service life, ensuring safety and preventing failure. 

Current management practices rely on regular visual inspections that can be subjective and are limited to 

accessible locations. While great technological advances have been made in recent years on many fronts in 

the field of structural health monitoring (SHM), there still remain very few implementations of SHM 

systems in operational structures. Key flaws still remain[9, 10]: (1) Indirect damage sensing that requires 

physics-based models to correlate structural response measurements to damage state. Given the many 

complexities inherent to this inverse problem, robust algorithms that are generically applicable to the SNF 

storage concrete components do not yet exist. (2) Point-based sensors (e.g., strain gages, thermocouples) 

that cannot accurately identify spatially distributed damage such as cracking and corrosion. To identify 

spatially distributed damage, a dense network of point-based sensors is necessary for analytical models to 

extrapolate the point measurements to predicted component behavior, but highly costly. Engineers have 

begun to explore spatial or distributed sensing methods such as techniques based on ultrasonic acoustics[11]. 

While promising, ultrasonic inspection is difficult to apply to concrete structures, and requires expensive 

and power-hungry instrumentation. Distributed multi-dimensional sensing that provides the spatial 

resolution necessary to localize and quantify the severity of concrete deterioration and damage is direly 

needed.  Therefore, we developed a new approach to direct and distributed sensing that employs innovative 

multifunctional strain-hardening cementitious materials. 

This project aims to develop a new class of multifunctional strain-hardening cementitious materials 

(MSCs) that possess intrinsic damage tolerance and self-sensing capacity for extended SNF storage systems. 

The innovation of multifunctional concrete material is two-fold: First, it serves as a major material 

component for SNF storage systems with greatly improved resistance to cracking, reinforcement corrosion, 

spalling and other common deterioration mechanisms under service conditions, and prevents fracture failure 

under extreme events. This is achieved by designing multiple levels of protection mechanisms (e.g., ultra-

high fracture energy, ductile strain-hardening behavior, and intrinsically controlled crack width) into the 

material. Second, it offers capacity for distributed and direct sensing of cracking and straining wherever the 

material is located. This is achieved by establishing the changes in electrical properties due to mechanical 

and electrochemical stimuli. Using electrical stimulation and advanced modeling methods, multi-

dimensional spatial mapping offering a visual depiction of concrete damage and deterioration is gained.  
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1.2 Research Scope 

This final report is organized as follows. In section 2, a class of ductile strain-hardening 

cementitious materials (SHC) was developed with a set of desirable characteristics that provides ultra-high 

damage resistance under a SNF storage environment. The micromechanics-based material design theory of 

SHC was presented. The multi-scale (i.e. microscale, mesoscale, and macroscale) experimental studies on 

SHC for material development and properties characterization were described.  

In Section 3, the newly developed SHC was further tailored and encoded with self-sensing 

properties. The new self-sensing SHC was named MSC (multifunctional strain-hardening cementitious 

materials). The MSC material design methodology and the unique electromechanical properties were 

presented. The strain self-sensing capacity of MSC at elastic and inelastic stages was explored through 

experimental studies and analytical modeling.  

In Section 4, the distributed damage sensing capacity of MSC was explored by electrical impedance 

tomography. Distributed damage within MSC was successfully visualized through the innovation in 

material science, the development of advanced algorithms and modeling methods that solve nonlinear 

inverse problems.  

In Section 5, newly developed mathematical and computational models of the coupled deterioration 

process within MSC were introduced. The mathematical model was fully coupled accounting for 

deformation, temperature and diffusion while paying attention to the constitutive behavior of cementitious 

materials. The computational model was capable of simulating various degradation mechanisms.  

In Section 6, constitutive models of MSC were established for bridging material properties to 

structural behavior. Finite element simulation of a wall structure using the new constitutive models was 

conducted, and compared with experimental data.  

In Section 7, the MSC durability characterization results are presented. Life cycle analysis was 

performed on a representative dry cask system to compared MSC with conventional concrete.  
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2. DEVELOPMENT OF STRAIN-HARDENING CEMENTITIOUS MATERIALS FOR 

SPENT NUCLEAR FUEL STORAGE SYTEMS 

2.1 Micromechanics Based Design of Strain-Hardening Cementitious Composites 

2.1.1 Scale linking 

The tensile strain-hardening behavior of SHC was be realized by tailoring the synergistic 

interaction between the fibers, matrix, and fiber/matrix interface using micromechanics theory. Scale 

linking is a fundamental characteristic of the SHC design approach; the theory links the measurable 

constituent parameters to the cracking propagation mode, and then to conditions for composite tensile 

strain-hardening behavior. Understanding and tailoring of microscale constituent parameters are the keys 

to achieving target macroscale composite properties. The macroscale tensile stress-strain relation of SHC 

is shown in Figure 2.1. Compared with normal fiber reinforced concrete (FRC), SHC features a pseudo 

strain-hardening behavior after the initial elastic stage. During its strain-hardening stage, tensile stress 

increases with tensile strain in SHC, leading to incredible tensile ductility hundreds of times larger than 

normal FRC. Such tensile ductility indicates large fracture energy, and is thus crucial for achieving ultra-

high damage tolerance to extend service life (against cracking-induced deterioration) and improving safety 

(against extreme loads) of spent nuclear fuel storage systems.  

 

 

 

Figure 2.1 Comparison of energy dissipation capacity of shear walls using concrete and MSC under 
monotonic loading and cyclic loading. 
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As a composite material, a fiber reinforced cementitious material contains three main components: 

fibers, matrix (including pre-existing flaws), and fiber/matrix interface.  Each of these can be defined by a 

set of micro-parameters, as summarized in Table 2.1.  To achieve a ductile tensile strain-hardening behavior 

at the macroscale (10-2 ~ 10-1 m) under uniaxial tension, the multiple cracking process needs to be realized 

instead of localized fracture.  Steady-state crack propagation is a necessary condition to ensure multiple 

cracking, which is governed by the fiber bridging properties across cracks at the mesoscale (10-3 ~ 10-2 m).  

The fiber bridging spring law across a crack, quantified by the fiber bridging stress vs. crack opening 

relationship (), is the integration of the bridging force contributed by every fiber with different inclination 

and embedment lengths. For an individual fiber, its bridging force for a given crack opening is determined 

by its debonding and pullout behavior from the surrounding matrix, and governed by fiber and interface 

properties at the microscale (10-8 ~ 10-5 m), as well as by fiber embedment length and inclination angle 

between the fiber axis and the crack face normal.   

Table 2.1: Three components of fiber reinforced cementitious material microstructure and corresponding 

micro-parameters. 

Component  Micro-Parameters 

Fiber 

Length Lf, Diameter df, Volume Fraction Vf, 

Tensile Strength σf, Elastic Modulus Ef, Elongation Capacity 

εf,  

Matrix 
Fracture Toughness Km, Elastic Modulus Em, Initial Flaw 

Size a0 and Distribution, Tensile Strength σm 

Fiber/Matrix Interface 

Chemical Bond Gd , Frictional Bond τ0, Slip Hardening 

Coefficients β1 and β1, Snubbing Coefficient η, Fiber 

Strength Reduction factor f ’, Cook-Gorden Effect 

 

The micromechanics model links microscale constituent parameters to fiber bridging constitutive 

behavior on the mesoscale; steady-state crack analysis links fiber bridging properties to tensile strain-

hardening behavior on the composite macroscale. This provides a systematic framework for developing 

strain-hardening cementitious materials with the minimum amount of fibers by strategically tailoring the 

microstructure at different scales.  
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2.1.2. Conditions for tensile strain-hardening 

As a fiber reinforced brittle mortar matrix composite, its pseudo strain-hardening behavior can only 

be achieved through the sequential formation of matrix multiple cracking. The fundamental requirement 

for matrix multiple cracking is that steady-state flat crack propagation prevails under tension. To ensure 

steady-state cracking, the crack tip toughness Jtip must be less than the complementary energy Jb’ calculated 

from the fiber bridging stress σ versus crack opening δ curve, as illustrated in Figure 2.2 and shown in 

Equations 2.1. 

                                   

 

Figure 2.2: Spring law of smeared bridging fibers at one single crack 

 

                                                                        (2.1) 

where σ 0 is the maximum fiber bridging stress corresponding to the crack opening δ 0. Equation 2.1 

employs the concept of energy balance during flat crack extension between external work, crack flank 

energy absorption through fiber/matrix interface debonding and sliding, and crack tip energy absorption 

through matrix breakdown.  This energy-based criterion determines whether the crack propagation mode is 

steady-state flat cracking or Griffith cracking.  

The fiber bridging stress versus crack opening relationship σ(δ), which can be viewed as the 

constitutive law of fiber bridging behavior, is analytically derived based on fracture mechanics, 

micromechanics and probabilistic tools.  In particular, the energetics of tunnel crack propagation along the 

fiber/matrix interface is used to model the debonding process of a single fiber from the surrounding 

cementitious matrix. After debonding is complete the fiber pullout stage begins, and is modeled as slip-

hardening behavior with the assumption that non-linear frictional stress increases with slip distance.  By 

these means, the full debonding-pullout process of a single fiber, with given embedment length and 

Jtip  00   ()d  Jb
'

0

0


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orientation, is quantified as the fiber bridging force vs. fiber displacement relationship.  Probabilistic is then 

introduced to describe the randomness of fiber location and orientation with respect to a crack plane, with 

the assumption of uniform random fiber distribution.  The random orientation of the fibers also necessitates 

the accounting of the mechanics of interaction between an inclined fiber and the matrix crack. In addition, 

the snubbing coefficient η and strength reduction factor f’ ’ are introduced to account for the interaction 

between fiber and matrix and the reduction of fiber strength when pulled at an inclined angle.  In this way, 

the σ(δ) curve can be expressible as a function of micromechanics parameters. 

Apart from the energy criterion, another condition for pseudo strain-hardening is that the matrix 

tensile cracking strength σ c must not exceed the maximum fiber bridging strength σ 0.  

             (2.2) 

where σ c is determined by the matrix-fracture toughness Km and pre-existing internal flaw size a0 and its 

distribution.  σ 0 is the maximum fiber bridging capacity, which is strongly affected by fiber dispersion, and 

fiber/matrix interfacial bond properties that also influenced by cementitious matrix hydration process and 

pore structure. While the energy criterion (Equation 2.1) governs the crack propagation mode, the strength-

based criterion (Equation 2.2) controls the initiation of cracks.  Satisfaction of both equations is necessary 

to achieve strain-hardening behavior of cementitious composites; otherwise, the composite behaves as a 

normal fiber reinforced concrete and tension-softening behavior results, even though a higher amount of 

fibers are incorporated.  

 

2.1.3. Condition for saturated multiple microcracking 

 For SHC with pseudo strain-hardening behavior, high tensile strain capacity results from the 

saturated formation of multiple microcracks.  Material tensile strain capacity increases as the number of 

microcracks increases.  While the steady-state cracking criteria (energy criterion, and strength criterion) 

ensure the occurrence of multiple cracking, it is not directly related to the intensity of multiple cracking.  

Matrix randomness such as flaws and fiber dispersion uniformity play important roles on the intensity of 

multiple cracking. Interestingly, the elevated temperature effect will strongly influence both, as observed 

in this study. The maximum fiber bridging stress σ 0 at the "weakest" section imposes a lower bound of 

critical flaw size cmc, so that only those flaws larger than cmc can be activated and contribute to multiple 

cracking. There also exists a minimum crack spacing controlled by interface properties, which imposes an 

upper bound on the density of multiple cracking.  

In this study, the minimum crack spacing xd for short discontinuous fiber reinforced composites 

was derived, assuming that the matrix cracking strength is uniform at each section. Under this assumption, 

the crack spacing between xd and 2xd was predicted after crack saturation.  The minimum crack spacing 

was determined by the distance necessary for transferring load from the bridging fibers at one crack back 

 c  0
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into the matrix through the fiber/matrix interface shear, so that next cracks can be formed.  However, a wide 

distribution far exceeding two times the minimum crack spacing was often observed in our preliminary 

SHC specimens, due to the variation in matrix properties and non-uniform fiber dispersion.  Large crack 

spacing means that the maximum tensile strain capacity was not achieved (Figure 2.3). 

 

 

 

Figure 2.3: Comparison between saturated microcracking (left), less-saturated microcracking (right), and 
non-saturated microcracking (bottom). 

 

Matrix imperfections, e.g. random distribution of pre-existing flaws, are one cause of the variation 

in crack spacing and tensile strain capacity.  In SHC composites with a quasi-brittle matrix, cracks initiate 

from pre-existing flaws in the matrix. Examined under an optical microscope, the dominating flaws have 

sizes below 4-5 mm, depending on the rheology (e.g. plastic viscosity, yield strength) of the fresh material 

and processing details. The existence of flaws reduces the cracking strength of the cementitious matrix. We 

computed the effect of initial flaw size on the theoretical cracking strength of an infinite two-dimensional 

SHC plate under uniaxial tension. The reduction in matrix tensile cracking strength due to the presence of 

flaws favors the Strength Criterion for Strain-hardening, because the matrix tensile cracking strength σc 

must be lower than the maximum fiber bridging strength σ0 to satisfy the strength-based strain-hardening 

criterion. σ0 can be calculated by taking into account single-fiber debonding and pullout behavior, inclined 
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angle bridging mechanics, snubbing effect, and the averaging effect of random 3-D fiber dispersion 

throughout the cross section. It is a function of fiber and fiber/matrix interfacial parameters (Equation 2.1), 

which are temperature dependent and need to be experimentally quantified. 

The critical flaw size cmc can be determined as the flaw size that corresponds to the cracking stress 

σ0.  The critical flaw size is what separates inert and active flaws – only flaws larger than cmc can be activated 

and contribute to multiple cracking (Figure 2.4).  The pre-existing flaws in SHC can be entrapped air pores, 

weak boundaries between phases, and cracks induced by material differential shrinkage, which all possess 

a random nature and strongly depend on processing details and environmental effects. The number of cracks 

that can form before reaching the maximum fiber bridging stress may therefore be limited, and can vary 

significantly from batch to batch. Therefore, a large number of flaws slightly larger than cmc  are preferred 

for saturated multiple cracking and high tensile strain capacity. On the other hand, flaws much larger than 

cmc will lead to a reduction in the net cross section and fiber bridging stress at the crack section. Under 

elevated temperature after the fiber melts, a large amount of micro-flaws with very similar sizes will be 

introduced to the matrix.  

 

 

Figure 2.4: Effect of random flaw distribution and fiber bridging capacity on the σ(δ) curve, 
complementary energy, and critical flaw size. 

 

Fiber dispersion is another contributor to the variation in tensile strain capacity and unsaturated 

multiple cracking. With a fixed fiber volume percentage, the maximum fiber bridging stress σ0 at the 

weakest section is determined by the degree of fiber dispersion uniformity in the composite. Fiber 

dispersion uniformity is directly influenced by the rheology characteristics, e.g. plastic viscosity and yield 

stress, of the fresh SHC during processing. It also alters after fibers start to melt after the temperature is 
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elevated.  The total fiber amount, orientation randomness, and uniformity of fiber dispersion determines 

the maximum bridging stress σ0, the shape of the σ(δ) curve at the weakest section, and the critical flaw size 

cmc (Figure 2.4).  Melting of fibers, degradation of fiber/matrix interface properties, and non-uniform fiber 

dispersion all lead to a reduction of the value of σ0 at the weakest section, which increases the critical flaw 

size cmc. Therefore, less pre-existing flaws with sizes larger than cmc can be triggered and contribute to 

multiple cracking, resulting in a relatively lower tensile strain capacity. They also shift the σ(δ) curve 

downward, and may reduce complementary energy Jb’ to less than Jtip.  In this case, the steady-state criteria 

are violated and tension-softening behavior results. SHC then loses its ductile behavior and becomes a 

regular FRC material. 

 

2.2. SHC material design, processing, and specimen preparation 

Based on the analytical framework in Section 2.1, we designed preliminary versions of SHC 

mixtures (Table 2.2 and Table 2.3) by integrating micromechanics theory, rheology control during 

processing, and micro-structure tailoring. The SHC design theory required the simultaneous satisfaction of 

steady state cracking criteria and maximized micro-cracking density. The ingredient particle size 

distribution and the combined amount of water and admixtures were first determined to achieve a 

homogeneous cementitious composite material at fresh state, with plastic viscosity and yield stress tailored 

to an optimal level that favored uniform dispersion of micro-scale polyvinyl alcohol (PVA) fibers. Then, 

the micro-parameters of the hardened material, including matrix properties (e.g., fracture toughness, flaw 

size distribution, hydration chemistry), the fiber/matrix interfacial properties (e.g., interfacial chemical and 

frictional bonds, slip-hardening coefficient, fiber debonding and pullout behavior, Cook-Jordan effect), and 

fiber properties (e.g., aspect ratio, strength, Young’s modulus) were tailored to ensure the strain-hardening 

criteria were satisfied.  

The designed SHC-1 binder system contained water, a polycarboxylate-based high range water 

reducer, Ordinary Portland Cement (OPC) Type I cement, ASTM standard Type F fly ash, and silica sand 

that served as fine aggregates. The designed SHC-2 binder system contained similar ingredients, except 

that undensified silica fume and recycled glass bubbles (40 μm diameter) were added. Glass bubbles were 

incorporated into mix design for two reasons: (a) introduce artificial flaws to the cementitious matrix to 

maximize multiple microcracking intensity for larger tensile strain capacity, (b) further improve the 

material resistance to elevated temperature effect. The cementitious ingredients, silica sand, water and 

admixture together formed the SHC matrix, with tailored toughness and tensile cracking strength satisfying 

the strain-hardening criteria. Polyvinyl alcohol (PVA) fibers were incorporated into the composite system 

at a volume fraction of 1.8 %. The PVA fibers were 8 mm long and 39 µm in diameter, with the nominal 
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tensile strength of 1620 MPa and density of 1300 kg/m3. Most importantly, the fiber/matrix interfacial bond 

was strategically tailored at nano-scale so that it can dissipate tremendous energy under loading, while the 

pullout behavior is controlled to ensure a minimum crack width during multiple microcracking. The 

complementary energy and the maximum fiber bridging stress were optimized so that they both satisfy the 

strain-hardening criteria. 

	

Table 2.2: Mixing proportion of SHC-1 

Cement  Water  Sand  Fly ash  Superplasticizer  Fiber 

Kg/m3 

(lb/ft3) 

Kg/m3 

(lb/ft3) 

Kg/m3

(lb/ft3) 

Kg/m3 

(lb/ft3) 

Kg/m3 

(lb/ft3) 
Vol-% 

266 

(16.6) 

309 

(19.3) 

456 

(28.5) 

956 

(59.7) 

2.7 

(0.168) 
1.8 

 

Table 2.3: Mixing proportion of SHC-2 

Cement  Water  Sand 
Undensified 
Silica Fume 

Glass 
Bubble 

Fly ash  Superplasticizer 
Fiber 

Kg/m3 

(lb/ft3) 

Kg/m3 

(lb/ft3) 

Kg/m3 

(lb/ft3) 

Kg/m3 

(lb/ft3) 

Kg/m3 

(lb/ft3) 

Kg/m3 

(lb/ft3) 

Kg/m3 

(lb/ft3) 

Vol-% 

325 

(20.3) 

202 

(12.6) 

325 

(20.3) 

65 

(4.06) 

51 

(3.4) 

33 

(2.03) 

19.5 

(1.22) 

1.8 

 

All mixtures were prepared using a 12 L capacity force-based mixer under controlled room 

temperature 20  1 C and relative humidity conditions 50  5 % RH.  Solid ingredients were first mixed 

at 100 rpm for one minute. Water and chemical admixtures were then added into the dry mixture and mixed 

at 150 rpm for three minutes to produce a consistent and uniform. A number of mixtures with the different 

combinations of water, superplasticizer and viscosity modifying agent were experimented; the yield stress 

and plastic viscosity of the mortar without fibers were measured using a rotational rheometer and 

determined based on Bingham model. This information was used to optimize mix design so that optimum 

plastic viscosity was achieved to favor uniform dispersion of PVA fibers, while optimum yield stress was 

obtained for the workability and desired self-compacting property of the SHC material. 

After the SHC mortar was determined with the target rheological parameters, fibers were 
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introduced to the material system. The mixtures were then cast into tensile or compression molds. No 

external vibration was applied. The mixtures flowed under gravity to fill in the molds, and were therefore 

considered self-compacting. The molds were then covered with plastic sheets, and demolded after 24 hours.  

Finally, the specimens were moisture-cured in plastic bags at 95±5 % RH and 201 C for 7 days, and air 

cured at 50±5 % RH and 201 C for 21 days until the age of 28 days when testing started.  

	

2.3 Measurements of micromechanical parameters 

 The micromechanical parameters described in Table 1 were experimentally and analytically 

determined for each mixture. Based on the conditions for strain-hardening and saturated multiple cracking, 

it is evident that high tensile strain capacity requires a high Jb’/Jtip ratio and a sufficient number of pre-

existing flaws larger than cmc. The matrix toughness Jtip and flaw size distribution are matrix properties, 

while the complementary energy Jb’ is mainly controlled by fiber and interface properties.  

 

 

Figure 2.5: Matrix toughness test to characterize Jtip. 

 

 To experimentally measure Jtip, matrix toughness tests were conducted on various mix designs 

without fibers; therefore it measured the toughness of the cementitious matrix only. This test was similar to 

ASTM E399[1] “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”. The 

ASTM E399 allowed one to use different geometry specimens, such as bending specimens and compact 

tension specimens, to measure the Km value. The cementitious matrix was prepared and cured as described 

in Section 2.2, except that fibers were not added.  The fresh mix was cast into notched beam specimens 

254mm

305mm

76 mm

38	mm
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measuring 305 mm (12 in.) in length, 76 mm (3 in.) in height, and 38 mm (1.5 in.) in thickness.  The matrix 

fracture toughness Km was measured by the three point bending test, as shown in Figure 2.5. The span of 

support was 254 mm (10 in.) and the notch depth to height ratio was 0.4.  Three specimens were tested for 

each test series.  Jtip was calculated from the measured Km using Equations 2.3. 

	 	 																															 	 	 	 	 	 	 (2.3) 

To calculate the complementary energy Jb’, single crack opening tests were conducted to measure 

the fiber bridging spring law – the fiber bridging stress versus crack opening relation. Uniaxial tension test 

was conducted on double-notched specimens (Figure 2.6) to measure the tensile stress vs. crack opening 

relation. The double notches were artificially created to ensure the initiation and propagation of a single 

crack at the notched cross section.  

 

Figure 2.6: Single crack opening test to characterize fiber bridging “spring law” across a crack for 
calculating Jb’. 

The measured fiber bridging spring law across a single crack is shown in Figure 2.7. Processed 

binary images of the crack at the different opening is shown in Figure 2.8. The crack opening at each loading 

stage was accurately measured through image processing and digital image correlation technique (See 

Section 2.4). The fiber bridging stress increased with an initial crack opening, but started decreasing after 

reaching a peak fiber bridging stress. This phenomenon resulted from the average effect of numerous fibers 

bridging the crack with the statistically distributed fiber orientation angle and embedment length. Based on 

the curve, the complementary energy Jb’ was calculated and compared with Jtip measured through matrix 

toughness test. Table 2.4 summarized the results for two mixture designs of SHC. The high Jb’/Jtip ratio for 

Jtip 
Km

2

Em

Gripping length 
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Electrode length 
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both SHC-1 and SHC-2 indicated that the steady-state cracking criteria were satisfied, and that the materials 

would macroscopically exhibit tensile strain-hardening behavior. 	

 

 

Figure 2.7: Fiber bridging stress vs. crack opening relation (Fiber bridging “spring law”). 

 

 

(a) δ=0.02 mm (0.8×10-3 inch) 

 

(b) δ=0.05 mm (2×10-3 inch) 
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(c) δ=0.1 mm (4×10-3 inch) 

 

(d) δ=0.2 mm (8×10-3 inch) 

 

(e) δ=0.4 mm (1.6×10-2 inch) 

Figure 2.8: Single crack opening at different crack width. 

 

Table 2.4: Jb’/Jtip ratios for evaluating strain-hardening energy-criterion 

Temp. 
(°C) 

SHC-1 SHC-2 

J୲୧୮ (kJ/m2) Jୠ
ᇱ  

(kJ/m2) 
Jୠ
ᇱ

J୲୧୮
 

J୲୧୮ 
(kJ/m2) 

Jୠ
ᇱ  

(kJ/m2) 
Jୠ
ᇱ

J୲୧୮
 

20 0.0123 0.4864 39.6 0.0046 0.4321 94.8 
 

The fiber/matrix interface micro-parameters were experimentally characterized through single fiber 

pullout test, as shown in Figure 2.9. Single fiber pull-out test was conducted on small-scale prismatic 

specimens with dimensions of 10 mm × 5 mm × 0.5 mm (0.4 in. ×0.2 in. ×0.02 in.).  A single fiber was 

aligned and embedded into the center of SHC mortar prism with an embedment length of 0.5 mm (0.02 in.).  

Three specimens were tested for each test series.  The load P versus displacement  curve was obtained 

through quasi-static testing and used to determine the interfacial micro-parameters. These interfacial 

parameters, along with fiber volume fraction, length and diameter, were used to calculate the fiber bridging 

law σ(δ) and compared with σ(δ) directly measured through single crack opening test.  
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Figure 2.9: Single fiber pullout test to characterize fiber/matrix interfacial bonding micro-parameters. 

 

 The general profile of a single fiber pullout curve (P vs. ) experimentally measured was 

decomposed into three major regimes. Initially, a stable fiber debonding process occured along the 

fiber/matrix interface. While the load carried by the fiber increased up to Pa, there was no displacement of 

the fiber embedded end, l = le. .  The debond length, ld, increased towards ld = le.  During this “debonding” 

stage, the displacement of the fiber end was the sum of the elastic stretching of the debonded fiber segment 

and of the fiber free length (the portion of the fiber outside the matrix). This debonding process resulted in 

a tunnel-like crack that propagated stably from the free end towards the embedded end of the fiber.  This 

tunneling process was stable until the tunnel crack tip approached the embedded end of the fiber at which 

stage it lost stability and the load suddenly dropped from Pa to Pb.  At this moment the fiber was held in the 

matrix only by friction.  The chemical debonding energy value, Gd, was calculated from the Pa to Pb 

difference using Equation 2.4: 

                                                              (2.4)      

where Ef is the fiber Young’s modulus, and df is the fiber diameter. 

At the point Pb, the embedded fiber end just completed debonding and the frictional bond strength 

τ0 at the onset of fiber slippage was calculated using Equation 2.5:  

                                                                           (2.5) 

Gd 
2(Pa  Pb )2

 2E f d f
3

0 
Pb

d f le
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During the fiber slippage stage, the fiber underwent sliding with slip-hardening, characterized by 

the positive coefficient . The β value was calculated from the initial (S’ approaching 0) slope of the P 

versus S’ curve using: 

                                                               

 When the interfacial chemical bond Gd and frictional bond τ0 were too strong, fiber rupture occurred 

during pullout state or even debonding stage. This would lead to a low value of Jb’ and violation of strain-

hardening criteria. On the contrary, when the interfacial bonds were too weak, maximum fiber bridging 

capacity became lower, leading to the large crack width or even violation of strain-hardening criteria. 

Therefore, the measurement and evaluation of Gd,  τ0,  and β values allowed us to tailor these values in this 

project, to achieve the mixture designs in Tables 2.2 and 2.3 that satisfy strain-hardening criteria.  

 

2.4. SHC uniaxial tensile behavior  

 To measure the tensile stress-strain relation of designed SHCs, direct uniaxial tension tests were 

conducted. The direct uniaxial tensile test is considered the most convincing method for evaluating material 

strain-hardening behavior[2] because some quasi-brittle fiber reinforced brittle matrix composite materials 

can also show apparent hardening behavior under flexural loading – a phenomenon known as “deflection 

hardening”. The direct uniaxial tension test setup was shown in Figure 2.10. The specimen dimensions 

were 228.6 x 76.2 x 12.7 mm. The both ends of the specimen were wrapped with fiber reinforced plastics 

to strengthen the end area and facilitate gripping. In this way, multiple cracking was “forced’” to form 

within the middle gage length of 101.6 mm. Tests were conducted using a 50 kN capacity testing frame 

under a displacement control rate of 0.0025 mm/s to simulate a quasi-static loading condition. Two external 

linear variable differential transformers (LVDTs) were attached to the specimen surface with a gage length 

of 101.6 mm to measure the displacement, which was used to calculate strain.  The tensile stress-strain 

curve of each specimen was determined.  

 During uniaxial tension tests, digital image correlation (DIC) system was used to characterize the 

evolution of strain, damage process and final failure. DIC is a technique to track the position of subsets of 

selected targets in a series of digital images of deformed states relative to an initial undeformed state. For 

DIC setup, uniform random black speckles were sprayed on the background of the test specimen gauge zone 

surface. A pair of non-perpendicular 12-megapixel charge-coupled device (CCD) cameras with 24 mm of 

focal length lenses were mounted on cross-bar of the tripod in order to capture high-resolution images. The 

distance between cameras, object distance from cameras, and the angle between cameras were adjusted 

based on target size, available space using DIC system manual. The external sources of fluorescent lights 

were used to maintain constant optimum illumination of the surface. DIC setup was calibrated by using very 

  (d f / l f )[1 /0d f )(P /S ') S '0 1]
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precise calibration panel or calibration cross, and calibration data were captured by the computer. All high-

resolution images were collected by a computer having high computing capacity. Afterward, images were 

post-processed to obtain 3D deformation for crack distribution and crack characterization. The DIC system 

setup with external lights, DIC inbuilt lights, a pair of cameras, and computer were shown in Figure 2.11.  

 

 

 

Figure 2.10: Direct uniaxial tension test. 
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Figure 2.11: DIC setup. 

 

The test results are shown in Figure 2.12. Despite the variation in the tensile behavior between 

SHC-1 and SHC-2 specimens, the tensile stress-strain curve followed the same pattern containing three 

stages: (1) The initial elastic stage, characterized by Young’s modulus. (2) The strain-hardening stage, 

accompanied by multiple microcracking formations. During this stage, the width of each microcrack 

remained nearly constant after formation, while the increasing applied strain increases the number of the 

microcracks. This stage was characterized by first cracking strength (i.e. the stress when the first micro-

crack occurs), ultimate tensile strength (i.e. the peak stress), and the strain capacity of the material (i.e. the 

strain corresponding to peak stress). As this test was conducted under displacement control, each small load 

“drops” on the curve corresponded to the released energy during the formation of each microcrack. (3) The 

tension-softening stage, accompanied by the formation of a localized fracture at one of the microcracks and 

the continuous drop of the ambient load. At the stage, the SHC material behaved the same as tension-

softening FRC materials. The results showed that the SHC specimens achieved strain-hardening behavior 

with tensile strain capacity more than 4% and 5% for SHC-1 and SHC-2 respectively, which is 400 and 500 

times, respectively, that of concrete adopted in current SNF systems. The tensile properties of SHC-1 and 

SHC-2 were summarized in Table Such strain-hardening behavior leads to a high fracture energy that 

provides ultra-high damage resistance under service or severe loading conditions. Instead of localized 

fracture that represents a brittle failure mode, SHC has ductile response through the formation of distributed 

damage.  The tensile properties of SHC-1 and SHC-2 are summarized in Table 2.5. 
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(a)  

 

(b) 

Figure 2.12: SHC tensile stress-strain curves of: (a) SHC-1, (b) SHC-2. 

 

Table 2.5: Tensile and compressive properties of SHCs 

Properties SHC-1 SHC-2 
Mean Tensile Strength (MPa) 5.27 3.49 
Mean Tensile Strain (%) 4.21 5.12 
Mean Microcrack Width (μm) 30.0 12.5 
Mean Compressive Strength (MPa) 57.3 43.8 

 

The multiple microcracking pattern in SHC at maximum tensile strain capacity is shown in Figure 

2.13. The microcracks have an average width around 30-40 μm for SHC-1, and around 10-20 μm for SHC-
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2. The microcracks were hard to see without aid. Special chemicals were applied to the surface of the 

specimen to better reveal the microcracks. It should be emphasized that these microcracks are “self-

controlled”, which means their width is independent of specimen geometries, applied load or deformation, 

and reinforcement ratios, as long as the material is in the strain-hardening stage; increasing strain only 

increases crack number instead of crack width. The tight self-controlled crack width leads to significantly 

reduced water permeability, chloride diffusion, and other transport properties of SHC under loading 

conditions.  

	

Figure 2.13: Saturated multiple microcracking in SHC. 

 

The multiple microcracking process was captured using DIC, where the different colors showed 

the different levels of local concentrated strain that indicated cracking (Figures 2.14 and 2.15). It should 

be noted that each “colored line” in the image did not necessarily reflect one single crack; rather, it reflected 

a number of adjacent microcracks in a local region. It was observed that SHC-2 exhibited more saturated 

microcracking with tigher crack width than SHC-1. This important finding explained the higher tensile 

strain capacity of SHC-2 than SHC-1 (5.12% vs. 4.21%) but the smaller average crack width (30-40 μm vs. 

10-20 μm). It also validated the micromechanics-based design theory in this study that more tailored flaw 

distribution in a cementitious matrix of SHC led to better controlled microcracking behavior. To further 

explain the macroscopic properties of developed SHC at mesoscopic scale, Figure 2.16 compared the fiber 

bridging spring law in SHC-1 vs. SHC-2 measured by single crack opening tests. It was seen that the critical 

crack opening (i.e. crack opening corresponding to the maximum fiber bridging stress) of SHC-2 was lower 

than SHC-2, leading to the smaller average crack width of SHC-2 than SHC-1.  
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Figure 2.14: DIC images of damage process within SHC-1 as the applied tensile strain increases. 

	



CFP-12-3545 Final Report 
	

 

30 
 

 

Figure 2.15: DIC images of damage process within SHC-2 as the applied tensile strain increases. 
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Figure 2.16: Fiber bridging “spring law” of SHC-1 and SHC-2. 

 

2.5. SHC compressive behavior 

Compressive testing was carried out according to ASTM C39[3] “Standard Test Method for 

Compressive Strength of Cylindrical Concrete Specimens” on standard cylinders measuring 75 mm (3 in.) 

in diameter and 150 mm (6 in.) in length. Tests were conducted on a Tinus Olsen hydraulic test system with 

450 kips (2,000 KN) capacity. To ensure that compressive force was uniformly distributed, the test 

specimens were capped on both ends. Two different types of capping methods were adopted in this study. 

The first capping method was bonded capping using sulfur-based capping compound conforming ASTM 

C617[4]. Sulfur was molten and poured into horizontally leveled capping mold, then immediately one end 

of the cylinder was mounted vertically and waited until the capping material hardened. Similarly, another 

end was also capped to ensure both capped top and bottom ends of the specimen were smooth and parallel. 

The leveling of both ends and verticalness of cylinder was ensured by a spirit level. Another method was 

unbonded capping with neoprene elastomeric pad restrained within steel restrainers conforming ASTM 

C1231[5]. Elastomer pads of hardness 60 and 70 were used. Compression test results of both SHC-1 and 

SHC-2 were consistent with either of the capping methods. Un-bonded capping using elastomer pads for 

capping was a lot faster and easier than bonded capping. Therefore, unbonded capping satisfying ASTM 

C1231 was used in the rest of compression tests. 

The uniaxial compression test was conducted on capped cylinder specimens to measure the load-

displacement curves, under displacement control. The displacement rate was set to be 0.2 in/min until the 
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top loading plate was fully in contact with the specimen; then displacement control testing rate was switched 

to 0.01 in/min. The specimens were loaded until the load dropped by 20% of the peak load. Three to four 

specimens were tested for each test scenario. The average compression test results of SHC-1 and SHC-2 is 

shown in Error! Reference source not found.The average compressive strength of SHC was reported to 

be 57.3 MPa for SHC-1 and 43.8 MPa for SHC-2.  

The final compressive failure mode of SHC specimens was compared with control concrete 

specimens with similar compressive strength (Figure 2.17). In contrast with the sudden brittle failure of 

concrete specimens with splitting cracks (Figure 2.15 (b)), the SHC specimens exhibited ductile failure 

mode with the final failure plane approximately 45 degree to the axis of the specimen. Such ductility 

prevents catastrophic failure under compression.  

 

 

                                                       (a)                                                      (b) 

Figure 2.17: Compressive failure mode of (a) SHC and (b) normal concrete 

 

2.6. SHC flexural behavior under monotonic and cyclic loading 

 Displacement-controlled four-point bending test was conducted on SHC specimens with 

geometries and test setup shown in Figure 2.18.  An LVDT was installed at the midspan of the specimen 

to measure its vertical deflection. The SHC beam specimen was loaded monotonically until failure with a 

loading rate of 0.015 mm/s. Under four-point bending, SHC first underwent an elastic stage, followed by a 

deflection-hardening behavior accompanied by the formation of a number of microcracks on the tensile 

side of the specimen. This allowed the SHC specimen to undergo a large curvature without fracture failure 

under excessively applied deformation. The deflection-hardening response of SHC reflected its 

extraordinary tensile ductility without of the need of steel reinforcements.  A highly deformed SHC 

specimen is shown in Figure 2.19. The bending stress vs. displacement relation of SHC is shown in Figure 
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2.20. While the maximum midspan deflection (measured by LVDT and DIC) was around 23 mm, the 

maximum roller displacement (Δ) was measured as 17.8 mm.  

 

Figure 2.18: Four point bending specimen geometry and test setup. 

 

 

 

Figure 2.19: A highly deformed SHC specimen under four point bending; no steel reinforcement was 

used.  
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Figure 2.20: SHC bending stress vs. displacement relation.  

 

In the cyclic loading tests, each cycle loaded the specimen with an incrementally increasing 

deflection value of 1/10 of maximum displacement capacity of SHC beam specimen, which was followed 

by unloading before starting the next cycle. Figure 2.21 shows the loading history. The loading and 

unloading rate was 0.015 mm/s.   

 

Figure 2.21: The cyclic loading history.  

 

During the testing, a DIC system (Figure 2.18) was used to track the surface deformation and strain 

change of the deformed beam. The DIC is a non-destructive and non-contact measurement tool with many 

advantages over conventional approaches. It computed the displacement of a regular grid of points on the 

specimen surface by comparing the digital images of the specimen surface before and after deformation. In 

this study, the DIC system tracked the full-field deformation, strain and damage from the surface of the 

specimens during elastic, inelastic and post-cracking stages under cyclic loading. In this way, the DIC 
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measurements provided information on the spatial strain and damage evolution and recovery of the 

specimens. The DIC measurements were first verified through comparison with LVDT measurements 

(Figure 2.22). 

 

 

Figure 2.22 Midspan deflection measured by DIC and LVDT. 

 

The SHC beam specimen, even without any steel reinforcement, demonstrated extraordinary 

ductility and considerable load carrying capacity. Unlike reinforced concrete specimens, no localized 

fracture was observed. Instead, multiple microcracks were distributed along the tension side of the specimen, 

with the crack number increasing with increasing deformation during each loading cycle. The large energy 

dissipation capacity (Figure 2.23) of the specimen was solely contributed by SHC itself (i.e. without the 

need of steel reinforcement). After the initial elastic stage, the beam exhibited a “deflection-hardening” 

behavior as indicated by the increasing load carrying capacity following each loading cycle. The crack 

number steadily increased from 14 during the 1st loading cycle to 149 during the 7th loading cycle (Figure 

2.24). The width of these cracks, however, remained below 30 μm. This distributed damage behavior with 

self-controlled microcrack width was unique to SHC material. Upon unloading, crack number slightly 

decreased, whereas the maximum crack width remained almost unchanged. The hysteresis behavior and 

energy dissipation of SHC were associated with the bridging behavior of short discontinuous fibers with a 

statistical distribution of embedment lengths and orientations, especially the fiber/cementitious matrix 

interfacial properties. The large energy dissipation capacity of SHC at mocroscale resulted from its micro- 

and meso-scale energy dissipation mechanisms. Such large energy dissipation capacity can lead to 

significant damage tolerance under dynamic loading conditions (e.g. impact, earthquake) or accidental 

conditions (e.g. during transportation).  
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Figure 2.23: Cyclic behavior of SHC under four point bending. 

 

 

Figure 2.24: SHC crack number and maximum crack width at peak displacement and after unloading for 

each cycle. 

 

2.7. Summary of accomplishments 

A new class of robust strain-hardening cementitious materials (SHCs) for SNF storage systems was 

successfully developed in this project. The new SHCs uniquely feature the following characteristics: 
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 Ultra-high ductility with a tensile strain capacity more than 4%, and up to 6.5%. The tensile 

strain capacity of SHC is more than 400 times that of normal concrete and FRCs.   

 The large tensile ductility of SHC overcomes the inherent brittleness of cementitious materials, 

leading to extraordinary damage tolerance under service loading (e.g. cracking induced 

deterioration, corrosion-induced concrete spalling and fracture) and extreme loading conditions 

(e.g. impact, earthquake, accidental loading during transportation). The fracture energy of SHC 

is two orders higher than current concrete used in SNF storage systems, and one order higher 

than most FRCs.  

 Intrinsically controlled micro-crack width (mean crack width of 30.0 μm for SHC-1, mean 

crack width of 12.5 μm for SHC-2) during strain-hardening stage, which is independent of 

reinforcing ratio, structural member geometry, applied deformation and loading conditions;   

 The tight crack width provides high resistance to chloride diffusion and water permeation, 

compared to conventional concrete at the cracked stage. Maximum allowable crack widths are 

required in various codes and specifications for the design of reinforced concrete structures 

exposed to aggressive chloride environments. The allowable maximum crack width ranges 

from 150 to 300 μm, with the most stringent requirements specified by JSCE[6, 7] and ACI 

224R[8]. According to ACI 224R, the maximum crack width at the tensile face of reinforced 

concrete structures is specified as 150 μm for exposure conditions of seawater, seawater spray, 

wetting, and drying; and 180 μm for deicing chemical exposure. As the microcrack width of 

SHC formed during its strain-hardening stage is intrinsically limited to be below 30 μm, which 

is independent of structural geometry and applied deformation, steel reinforcement is not 

required to control crack width even for the most stringent allowable crack width requirement; 

 Sufficient compressive strength for structural applications including meeting the high strength 

requirement for seismic applications; 

 Large energy dissipation resulted from its hysteresis behavior under cyclic loading.  

A micromechanics-based framework and rheology design methodology was established in this 

project for developing ductile SHCs that feature strain-hardening behavior with optimized tensile ductility. 

The framework links measurable parameters at nano- and micro-scales to composite strain-hardening 

behavior. The framework also took into account the random distribution of flaws and “effective volume” 

of polymeric fibers, in addition to the interface nanoscale tailoring and matrix microstructure manipulation. 

According to this analytical framework, we successfully designed and processed SHC materials with tensile 

ductility two orders higher than SNF concrete and fiber-reinforced concrete, as well as intrinsic crack width 

control capacity. Through tuning the chemical and physical parameters of SHC at microstructure scales, 

the “spring law” (fiber bridging stress vs. crack opening relation) of each individual crack was modified 
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(e.g. from SHC-1 to SHC-2) to achieve a significant change in the crack width distribution during SHC 

strain-hardening stage. By this means, the mean crack width was further reduced to 12.5 μm while the 

tensile strain capacity was increased to above 5%.  

The new SHC materials offer great advantage over normal concrete materials, in terms of improved 

damage resistance and reduced transport properties for SNF storage.  
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3. DEVELOPMENT OF MULTIFUNCTIONAL STRAIN-HARDENING 

CEMENTITIOUS MATERIAL WITH SELF-SENSING CAPACITY 

3.1 Introduction 

The newly designed SHCs were further tailored in this project to achieve novel self-sensing 

properties, turning it into a multifunctional strain-hardening cementitious material (MSC). The focus was 

on strain sensing as well as distributed damage sensing.  

To achieve the objective, the multi-point probing of SHC materials was explored with different 

chemical compositions and physical parameters, which revealed their effects on the complex impedance 

(under a wide range of frequencies) and the electromechanical behavior of SHC. The correlation between 

the electrical properties and mechanical and environmental stimuli was established. A number of challenges 

were successfully addressed for the development of MSC, including the following: 

 The piezoresistivity test method needs to be robust by removing the electrical and electromagnetic 

influence due to the testing frame and ambient environment on the impedance measurements. The 

test results should reflect true material properties.  

 The electrode and electrode/specimen interface effects need to be removed to obtain more accurate 

readings to reflect MSC material properties. 

 Tailoring the electrical properties of MSC should not sacrifice the tensile ductility of MSC due to 

the violation of aforementioned strain-hardening conditions.   

 A minimum gage factor of 5 during elastic straining stage, and a minimum gage factor of 20 during 

inelastic straining (i.e., strain-hardening) stages need to be achieved in MSC.  

 The crack propagation within MSC needs to be carefully controlled within MSC so that a robust 

damage sensing capacity can be established.  

 The impact of environmental factors on MSC electromechanical properties need to be understood.  

Cementitious materials are heterogeneous in terms of their microstructure and physiochemical 

properties. SEM image of cement paste (Figure 3.1) shows that the microstructure of the cementitious 

material is highly complex. Besides ingredients such as sand, coarse aggregates, pozzolans, etc, cement 

paste microstructure includes several parts: pores, cement hydration products, outer products, and 

unhydrated clinkers. Pores include capillary pores, entrapped air voids, and the entrained air system. 

Hydrated cement particles consist of high-density C-S-H, and in some cases an interior core of unhydrated 

cement. The outer product can be solid C-S-H gel, gel pores, calcium hydroxide, calcium sulfoaluminate 

phases. Humidity exists in pore solution and C-S-H layer solution. For pore humidity, there are different 

ions inside: Naା, Kା, 	Caା, 	SOସ
ଶି, 	OHି, etc. For pore solution or gel pore solution, the conductivity is 
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higher than 10	S/m [1, 2] after 1 day curing. The conductivity of C-S-H and other solid phase composites 

is several thousand times lower than that of the pore solution [3].  Under an applied steady electric field, the 

ions in pore water are mobilized to create the electrical current. The electrical response of a cementitious 

material strongly depends on its heterogeneous microstructure, including the distribution and connectivity 

of pores, the interconnecting layers of C-S-H gels, and their interfaces.  

 

 

Figure 3.1. Backscattered SEM image of cementitious paste showing the main microstructural 

features.[4] 

The microstructure of cementitious materials is not only heterogonous, but also age-dependent. 

Figure 3.2 shows the typical plot of porosity change in terms of concrete age. In addition to aging effect, 

humidity content within pores also changes from time to time, due to cement hydration process as well as 

ambient relative humidity changes in the exposure environment.  

 

Figure 3.2. Porosity change with concrete age.  
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In this study, electrical impedance spectroscopy (EIS) was conducted on cementitious material 

specimens with two variables: age and composition. The electrical response of porous cementitious 

materials with a wide frequency from 1HZ to 1MHZ reflected the movement of ions in the pore solution 

and hence was linked to microstructure characterization. Using the improved EIS method throughout the 

following experiments, the cementitious material electrical properties were accurately characterized. In 

order to fundamentally understand the electrical behavior, especially the complex impedance of 

cementitious materials, EIS and equivalent circuit analysis were performed on various mixtures with 

different binder ingredients, water/binder ratios, incorporation of conductive nano-materials, and age effects. 

The equivalent circuit model was further refined to better reflect the contribution of different phases, 

interfaces, components and ingredients on the electrochemical behavior of the material. The results shed 

light on the age-dependent material electrical properties at the composite, component and ingredient levels, 

which laid the groundwork for the systematic development of self-sensing strain-hardening cementitious 

materials for SNF storage applications. A comprehensive electrical impedance study, coupled with 

equivalent circuit analysis, allowed us to tailor the MSC material physical and chemical parameters to 

exhibit a strong correlation between complex impedance and material strain, crack width, damage level, 

and healing. 

The significance of this study was three-fold: First, it allowed us to understand the true electrical 

behavior of the material at the component, phases, microstructure, mesostructure, and composite scales. 

This laid out the groundwork for systematically tailoring the MSC at different scales so that the material 

can behave as versatile piezoresistive sensors, connecting mechanical or electrochemical stimulus to 

different electrical responses. Second, through material tailoring, strain sensing became possible through 

establishing strong gage factors at elastic, inelastic, and tension softening stages. Finally, sensing of damage 

was achieved for the first time, which can capture crack opening and distributed damage evolution. Further 

efforts were made on improving these properties. A series of MSC were further designed, guided by the 

EIS results, the equivalent circuit model parameter studies, and micromechanics-based model that evaluated 

the strain-hardening criteria of MSC. Meanwhile, the material design also took into account the effect of 

chemical composition and hydration products on the rheology of the MSC material during fresh state, and 

their consequent effects on the dispersion of particles as well as the age-dependent microstructure evolution 

within MSC during hardened state.  
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3.2 Electrical impedance spectroscopy on cementitious materials 

3.2.1 EIS principle and test setup 

Impedance spectroscopy is a relatively new and powerful method for characterizing electrical 

properties of materials and their interfaces with electrodes. It can be adopted to investigate the dynamics of 

bound or mobile charge in the bulk or interfacial regions of solid or liquid materials, including ionic, 

semiconducting, dielectric and mixed electronic-ionic materials. Its fundamental theory can be shown 

below. For ideal Ohms law: 

	 	 																															 	 										
( )

( )

E t
R

I t
 	 	 	 																													(3.1) 

With small excitation signal, a sinusoidal potential excitation is applied. The response to this 

potential is an AC current signal, containing excitation frequency and harmonics. The excitation signal, 

expressed as a function of time, has the form of:    

	 	 																																																 0( ) cos( )E t E t 	 																																											(3.2) 

																																												                           0( ) cos( )I t I t                                               (3.3) 

For a linear system, the impedance is written as: 
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With Euler's relationship 

																																	                                      exp( ) cos sini i                                          (3.5) 

																																	                                         0( ) exp( )E t E i t                                           (3.6) 

																																	                                       0( ) exp( )I t I i t i                                          (3.7) 

Then impedance can be re-written as a complex number: 

																																	                         0 0exp( ) (cos sin )
E

Z Z i Z i
I

                               (3.8) 

When the complex number is plotted on the complex Coordinate, Nyquist plot is obtained. To 

experimentally measure impedance response of cementitious materials, AC-Impedance spectroscopy 

technology was utilized to capture data. This study focused on a wide frequency range (1HZ – 1MHZ) AC-

IS results of cementitious material with different proportions of ingredients and age variation from 14 days 

to 180 days.  

 Four-point probe method was adopted for EIS, as shown in Figure 3.3(a). Four copper electrodes 

were applied on the surface of the specimen. Electrodes were parallel to each other with distances shown in 
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Figure 3.3(b). Two outer electrodes were connected to positive polar of Current and Gen Output connectors 

of impedance analyzer, which were used to inject current into the specimen and collect output current data. 

High and Low voltage connectors were connected to the two inner electrodes to measure the voltage existing 

between electrodes. Collected current data, as well as reference voltage data, provided impedance 

information of the specimen within the gage length. The specimen had the thickness of 12.7mm, the width 

of 51 mm and length of 254 mm. The gauge length between two internal electrodes was 102 mm.  

(a) 

(b)   

(c) 

Figure 3.3. EIS test setup: (a) measurement circuit details; (b) specimen details; (c) four-point probe with 

Impedance analyzer 

Specimen 

Grounded 

Electrode 
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copper electrodes. 

.  

EIS measurement is sensitive to environmental conditions, such as humidity, temperature, and 

different outer common electrical signal. It was thus important to verify the accuracy of EIS setup in this 

project before using the technique to measure the electrical response of cementitious specimens. First, 

constant resistor measurement (273 Ohms) was used. Four-point probe method was adopted. Bode plot of 

impedance magnitude and phase degree (Figure 3.4 (a)) showed that below 1 MHZ, phase degree was 

constant as zero degree and impedance magnitude was constant as 270 Ohms. This means the EIS setup 

measured the real electrical property of a pure resistor. Second, shorten circuit measurement was used. The 

leads of EIS system were twisted together to provide shortened circuit. It is shown in Figure 3.4 (b) that 

while the phase degree was not constant, impedance magnitude was almost zero from 0.01 Hz to 100,000 

Hz, and slightly increased to 0.5 ohms beyond 100,000 Hz. Both verification methods proved that with 

relatively lower alternate voltage and appropriate frequency selection, the EIS setup established in this 

project was able to provide accurate measurements to reflect real specimen electrical response. The EIS test 

framework is shown in Figure 3.5.  

(a)                                                                             (b)  

Figure 3.4. EIS verification: (a) constant resistor measurement (273ohms); (b) shorten circuit 

measurement. 
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Figure 3.5. EIS measurements and equivalent circuit modeling on cementitious specimens. 

3.2.2 Materials 

EIS specimens were made of different mixture designs shown in Table 3.1. C stands for cement; F 

stands for fly ash; W stands for water; S stands for silica sand; P stands for PVA fiber; CB stands for carbon 

black nanoparticles. 1% and 4% mean the volume proportions of carbon black. 0.28 and 0.21 are 

water/binder ratios. Eight specimens were tested for each mixture design. 

For each specimen, impedance was measured as a function of frequency in the range of 1Hz to 

10MHz. The phase shift and amplitude, or real and imaginary parts, of the current at each frequency was 

measured. Data collection rate was 35 point per decade. EIS was performed on the specimens at 7, 14, 21, 

28, 42, 63 and 180 days to consider age effect.  

Table 3.1:  Cementitious specimens with different ingredient proportions. 

Specimen no. Composition & Description Specimen no. Composition & Description 

1 C+W (0.21) 7 C+W+CB1% (0.28) 

2 C+W (0.28) 8 C+W+CB4% (0.28) 

3 C+W+S (0.21) 9 C+W+S+F(0.28) 

4 C+W+S (0.28) 10 C+W+F+S+PVA  

5 C+W+F (0.28) 

6 C+W+F+S+ +CB1% 
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3.2.3 EIS test results 

The effects of specimen age on complex impedance of cementitious materials are shown in Figures 

3.6-3.15 for different mixture proportions. For each mixture design, the results were plotted as impedance 

magnitude vs. frequency. It was found that impedance increased with specimen age, and the increase 

became more significant after 28 days. This was the case for all mixture designs. This change of electrical 

response of cementitious materials was due to the hydration process that led to a decrease in pore water and 

an increase in the nonconductive path formed by increasing amount of hydration products.  

Figure 3.6. Bode plot for C+W (0.21). 
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Figure 3.7. Bode plot for C+W (0.28). 
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Figure 3.8. Bode plot for C+W+S (0.21). 
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Figure 3.9. Bode plot for C+W+S (0.28). 
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Figure 3.10. Bode plot for C+W+F (0.28). 
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Figure 3.11. Bode plot for CB+C 1%. 
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Figure 3.12. Bode plot for CB+C 4%. 
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Figure 3.13. Bode plot for C+W+S+F. 
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Figure 3.14. Bode plot for C+W+S+F+P. 
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Figure 3.15. Bode plot for C+W+S+F+CB1%. 
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(d) 

(e) 

Figure 3.16. Bode plots of C+W specimens with water/binder ratios of 0.21 and 0.28, at ages of  (a) 7 

days, (b) 14 days, (c) 21 days, (d) 28 days, and (e) 180 days.  
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(d) 

 

(e) 

Figure 3.17. Bode plots of C+W+S specimens with water/binder ratios of 0.21 and 0.28, at ages of (a) 7 

days, (b) 14 days, (c) 21 days, (d) 28 days, and (e) 180 days.  

 

The effects of fine aggregates, i.e. sands, on complex impedance of cementitious materials are 

shown in the bode plots in Figures 3.18 and 3.19 for different specimen ages. Two scenarios were 

investigated: with and without sand. For all specimen ages, and for two different water/binder ratios, the 

presence of sands in the cementitious material led to an increase in impedance magnitude; such increase 

was more prominent for later ages. The results elucidated the role of silica sands as nonconductive paths for 

a wide range of frequencies in cementitious materials.  

 

100 101 102 103 104 105 106 107
0

7k

14k

21k

28k

35k

 0.21
 0.28

Frequency (HZ)

V
ol

um
e 

Im
pe

da
nc

e 
M

ag
ni

tu
de

 (
O

hm
s-

cm
)

100 101 102 103 104 105 106 107
0

2M

4M

6M

 0.21
 0.28

Frequency (HZ)

V
ol

um
e 

Im
pe

da
nc

e 
M

ag
ni

tu
de

 (
O

hm
s-

cm
)



CFP-12-3545 Final Report 

60 

(a) 

(b) 

(c) 

100 101 102 103 104 105 106 107
0

2k

4k

6k

8k

10k

 C+W
 C+W+S

Frequency (HZ)

V
ol

um
e 

Im
pe

da
nc

e 
M

ag
ni

tu
de

 (
O

hm
s-

cm
)

100 101 102 103 104 105 106 107
0

5k

10k

15k

20k

 C+W
 C+W+S

Frequency (HZ)

V
ol

um
e 

Im
pe

da
nc

e 
M

ag
ni

tu
de

 (
O

hm
s-

cm
)

100 101 102 103 104 105 106 107
0

5k

10k

15k

20k

25k

 C+W
 C+W+S

Frequency (HZ)

V
ol

um
e 

Im
pe

da
nc

e 
M

ag
ni

tu
de

 (
O

hm
s-

cm
)



CFP-12-3545 Final Report 
	

 

61 
 

 

(d) 

 

(e) 

Figure 3.18. Bode plots of C+W+S 0.21 specimens and C+W 0.21 specimens, at ages of: (a) 7 days, (b) 

14 days, (c) 21 days, (d) 28 days, and (e) 180 days.  
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(d) 

 

(e) 

Figure 3.19. Bode plots of C+W+S 0.28 specimens and C+W 0.28 specimens, at ages of (a) 7 days, (b) 

14 days, (c) 21 days, (d) 28 days, and (e) 180 day.  
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(d) 

(e) 

Figure 3.20. Bode plots of C+W 0.28 specimens and C+W+F 0.28 specimens, at ages of (a) 7 days, (b) 

14 days, (c) 21 days, (d) 28 days, and (e) 180 days.  
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(d) 

 

(e) 

 

(f) 

Figure 3.21. Bode plots of C+W+S+F 0.28 specimens and C+W+F+S+P 0.28 specimens, at ages of (a) 14 

days, (b) 21 days, (c) 28 days, (d) 42 days, (e) 63 days and (f) 180 days.  
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The effects of conductive nanoparticles, e.g. carbon black nanoparticles, on the complex impedance 

of cementitious materials are shown in the bode plots in Figure 3.22 at different specimen ages. Three 

scenarios were investigated: 0%, 1% and 4% addition of carbon black nanoparticles. It was found that the 

addition of carbon black nanoparticles reduced impedance magnitudes, especially at later ages. Most 

interesting, the specimens with 4% of carbon black nanoparticles showed negligible age effect on 

impedance magnitudes. At the age of 180 days, the impedance magnitude of specimens with 4% of carbon 

black nanoparticles was three orders lower than specimens without and with 1% carbon black nanoparticles.   
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(c) 

 

(d) 

 

(e) 

Figure 3.22. Bode plot comparison for C+W specimen, CB+C 1% specimen, and CB+C 4% specimen. 

(a) 7day, (b) 14 day, (c) 21 day, (d) 28 day, and (f) 180 day.  
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The impedance magnitude changes with specimen age for all mixture designs at fixed frequency 

of 1,500 Hz were plotted in Figure 3.23.  The 180-day impedance magnitude of different mixture designs 

was further compared in Figure 3.24. Based on the electrical impedance spectroscopy studies, the following 

conclusions were drawn: 

 Material composition, proportion, and age all contributed to the changes of complex 

impedance at a wide range of excitation frequencies. Material aging led to increased 

impedance magnitude, indicating the effect of hydration process on the change of the 

material microstructure, which subsequently resulted in less conductive paths within the 

cementitious material. 

 Water/binder ratio played an important role on the electrical response of cementitious 

materials. A higher water/binder ratio led to lower impedance magnitude. This difference 

was small at specimen early age due to a lower hydration degree and thus higher amount 

of pore water containing ions that can be mobilized to generate current; however, the 

difference became significantly large at later ages of cementitious materials, as the 

hydration process consumed more water.  

 Silica sand dispersed in cementitious matrix acted as nonconductive paths, leading to 

increases in impedance magnitude for a wide range of excitation frequencies, and for both 

early and later ages.   

 Fly ash had an age-dependent effect on the impedance magnitude: specimens with fly ash 

exhibited lower impedance at earlier ages, but higher impedance at later ages compared 

with specimens without fly ash. This effect was due to the lower hydration rate at earlier 

ages and increased pozzolanic reaction at later ages.   

 Introducing PVA fibers into cementitious materials led to an increase of impedance; such 

increase was more significant at earlier ages and became negligible at later ages. In addition, 

the bode plots of specimens with PVA fibers had higher noise, probably due to the 

increased porosity and nonhomogeneity of material microstructure.  

 Adding conductive carbon black nanoparticles into cementitious materials was an effective 

way to reduce impedance magnitude while minimizing the effect of age on the electrical 

response of cementitious materials.  

Based on the important findings from the comprehensive EIS studies, the initial MSC material 

composition and proportion design was formulated. Especially, carbon black nanoparticles were 

incorporated at different percentages into the cementitious material design to explore the resulting material 

electromechanical behavior.  
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Figure 3.23. Impedance magnitude change with age of different cementitious material designs.  

Figure 3.24. 180-day impedance magnitude of different cementitious material designs. 
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3.3 Nyquist plot and equivalent circuit model 

New equivalent circuit model was developed in this project to represent the physical processes in 

the cementitious material that led to its electrical response. In this model, the material impedance is 

expressed as:  

                                                                   (3.9) 

Where Z stands for the impedance of cementitious material; R1 is the resistor that describes 

continuous conductive paths;  R2 and  C1 are the resistor and constant phase element (imperfect capacitor) 

that describe discontinuous conductive paths;  C1 is the constant phase element (imperfect capacitor) that 

describes insulted paths;  is the imaginary unit; ߱ is the radial frequency.  

 The modeled results were plotted as Nyquist plot in Figures 3.25-3.29.  Parameter studies were 

conducted, including cement/binder ratio (Figure 3.25), effect of sands (Figure 3.26), effect of fly ash and 

carbon black nanoparticles (Figure 3.27), effect of PVA fibers (Figure 3.28), and age (Figure 3.29). The 

modeling results generated clear understanding on how different physical and chemical parameters affected 

the complex electrical properties of cementitious materials. The modeling results were compared with 

nyquist plot of experimental results measured by EIS in Figure 3.30, showing good agreement. Figure 3.31 

shows the material composition effect on conductive path resistance R1,, calculated based on the equivalent 

circuit model. Figure 3.32 shows the age effect on conductive path resistance R1. 

 To summarize, the comprehensive EIS experimental study, coupled with new equivalent circuit 

modeling in this project, generated significant insights on the physical and chemical mechanisms that affect 

the AC response and complex impedance of cementitious materials. Such knowledge was generated for the 

first time, and was critical for guiding us to tailor most critical parameters for achieving new generation of 

cementitious materials with robust self-sensing capacity. This study took into account of the heterogeneous 

nature of cementitious materials, as well as its complex microstructure and interfaces, which were generally 

neglected by DC measurements. 
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              (a) (b) 

Figure 3.25. Equivalent circuit model Nyquist plot of (a) C+W 0.21 and C+W 0.28; (b) C+W+S 0.21 and 

C+W+S 0.28 at age of 180 days. 

      (a)       (b) 

Figure 3.26. Equivalent circuit model Nyquist plot of (a) C+W 0.21 and C+W+S 0.21; (b) C+W 0.28 and 

C+W+S 0.28 at age of 180 days.  
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              (a)                                                                         (b) 

Figure 3.27. Equivalent circuit model Nyquist plot of (a) C+W 0.28 and C+W+F 0.28; (b) C+W 0.28 and 

C+CB 1% at age of 180 days. 

 

 

Figure 3.28. Equivalent circuit model Nyquist plot of C+W+S+F and C+W+S+F+P at age of 180 days.  
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      (a)       (b) 

Figure 3.29. Equivalent circuit model Nyquist plot of (a) C+F+S+W+P and (b) C+F+S+W at different 

ages. 
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      (c)       (d) 

Figure 3.30. Nyquist plot of EIS measurements and equivalent circuit model for (a) C+W 0.21, (b) C+W 

0.28, (c) C+W+S 0.28, and (d) CB+C 1%.   

Figure 3.31. Effect of material composition on continuous conductive path R1 at age of 180 days. 
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Figure 3.32. Effect of material age on continuous conductive path R1. 

3.4 Doping SHC with carbon black nanoparticles 

Carbon black nanoparticles were well dispersed into the developed SHCs (see Section 2) with four 

different percentages of total material volume: 0%, 2.5%, 5% and 10%. The fresh mixtures were cast into 

coupon specimens (152mm × 51mm × 25.4mm). Specimens were demolded and moisture-cured at a 

temperature of 20 ± 1 °C and a relative humidity of 50 ± 5% till the age of 42 days. The specimens were 

then exposed to outdoor environment to simulate field condition for 14 days. Scanning electron microscopy 

with energy dispersive X-ray analysis (SEM/EDX) was performed on small samples taking from the cured 

specimens. As shown in Figure 3.33, carbon black nanoparticles were well dispersed in the cementitious 

binder.  

Figure 3.33. SEM/EDX of carbon black nanoparticles dispersed in cementitious matrix.  
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EIS was then performed on the specimens to measure the phase shift and amplitude, including the 

real and imaginary parts. Data collection rate was 35 point per decade. Equivalent circuit modeling was also 

conducted, which took into account of the conductive paths formed by adjacent carbon black nanoparticles, 

discontinuous paths, and insulated paths within the cementitious microstructure. The EIS experimental 

results are compared with equivalent circuit modeling results in Figure 3.34, showing good agreement. In 

these figures, the dual-arc behavior was observed. The rightmost arc in all curves was associated with the 

electrode interface response and did not reflect the material properties. The left arc reflected the 

cementitious material properties, which was used to calibrate the equivalent circuit model parameters. The 

effect of increasing carbon black dosage on the impedance spectra was clearly observed: the diameter of 

the left arc significantly decreased with increasing amount of carbon black nanoparticles; the center of the 

left arc shifted more to the left.  

Figure 3.34. EIS Nyquist plot and equivalent circuit model results. 
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The resistance of R1, R2 and capacitance of C1 obtained from the Nyquist plot and equivalent circuit 

model enabled us to obtain critical information on conductive paths and discontinuous conductive paths. 

Conductive paths and discontinuous conductive paths contributed significantly to the bulk impedance of 

cementitious materials and provided the potential for piezoresistivity. For example, under compressive force, 

discontinuous conductive paths can turn into conductive paths, resulting in a decrease in bulk impedance. 

Under tensile force, some of the conductive paths can become discontinuous conductive paths, leading to 

an increase in bulk impedance.  The effects of carbon black nanoparticle dosage on dielectric parameters 

R1, R2 and C1 are shown in Figure 3.35.  R1 and R2 decreased exponentially with increasing amount of 

carbon black nanoparticles, while C1 increased exponentially. This indicated that increasing carbon black 

nanoparticles led to the increase of conductive paths and discontinuously conductive paths within the SHC 

materials, presenting a material tailoring strategy for achieving self-sensing capacity.  

 

 

Figure 3.35. Effect of carbon black nanoparticles on physical parameters of conductive paths and 

discontinuous conductive paths. 
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3.5 Re-evaluation of strain-hardening criteria 

While incorporating carbon black nanoparticles into SHC improved its electrical properties, it had 

a negative impact on SHC mechanical behavior. Uniaxial tension tests conducted on SHC with different 

amount of carbon black nanoparticles showed that the both tensile strength and tensile strain capacity 

decreased with increasing amount of carbon black nanoparticles (Figure 3.36).  

Figure 3.36. Effect of carbon black nanoparticles on tensile stress-strain relation of SHC. 

In order to explain the macroscopic phenomenon, the strain-hardening criteria was re-evaluated for 

SHCs incorporting carbon black nanoparticles. Single crack opening test was performed on double-notched 

specimens with geometry of 50.8	mm	ൈ12.7	mm	ൈ76.2	mm  (Figure 3.37). Test was conducted with 

displacement control at a displacement rate of 8.5	ൈ10ିହ mm/ second.  Four specimens were tested for 

each scenario. From the single crack test results, the complementary energy Jb’ was calculated. To measure 

matrix crack tip energy Jtip, The matrix toughness test setup is shown in Figure 3.38. The specimens were 

prepared without fibers. After mixing, the fresh slurry was cast into beam specimens that were 305 mm 

long, 50.8 mm deep and 25.4 wide. After curing for 42 days, a sharp notch was made on the mid-span of 

the specimen, with notch depth around 25.4 mm. The matrix fracture toughness Km was measured by the 

three-point bending test. Four specimens were tested for each test series, Jtip was calculated from the 

measured Km based on Equations 3.10 and 3.11.  
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Where is the maximum bridge stress corresponding to the opening σm, Km is the matrix-fracture toughness, 

and Em is the matrix Young’s modulus. 

Figure 3.37. Single crack opening test and Jb’ calculation.  

Figure 3.38. Matrix toughness test. 
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Table 3.2: Proposed Multifunctional Strain-hardening Cementitious Composites design. 

Design Water Cement Sand Fly ash Silica 

fume 

Carbon 

Black 

Superplasticize

r 

Fiber 

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 Vol-% 

0% MSC 312 292 456 935 0 0 2.7 2 

2.5% MSC 277 243 380 584 113 12.5 2.7 2 

5% MSC 296 243 380 600 115 25 2.7 2 

10% MSC 313 243 380 611 117 51 2.7 2 

The pseudo strain-hardening index Jb’/Jtip was calculated the control mixture design as well as 

mixture designs containing 2.5%, 5% and 10% carbon black nanoparticles by total volume of cementitous 

mateirals.  The results are shown in Figure 3.39. Two conclusions were drawn: (1) the pseudo strain-

hardening index was larger than 1 for mixture designs with 2.5%, 5% and 10% carbon black nanoparticles, 

indicating that 2.5% MSC, 5% MSC and 10% MSC were all able to achieve strain-hardening behavior. (2) 

There was an upper threshold of the carbon black amount that could be incorporated; higher amount of 

carbon black nanoparticles could lead to a deterioration of tensile strain capacity due to a lower value of 

Jb’/Jtip, leading to a tension softening behavior.  

Figure 3.39. Pseudo Strain-hardening index (Jb’/Jtip) for 0%, 2.5%, 5% and 10% MSC. 
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4%, while the 2.5% and 0% MSC had tensile strain capacity larger than 5%. With higher amount of carbon 

black nanoparticles, the tensile strength of MSC decreased. Nevertheless, all MSC material exhibited large 

tensile ductility that was hundreds times more than normal concrete or fiber reinforced concrete. After the 

initial elastic stage, the MSC materials underwent a pseudo strain-hardening stage accompanied by steady-

state microcracking with intrinsically controlled crack width. Such unique strain-hardening behavior 

suppressed localized fracture prevalent in cementitious materials.  

 
Figure 3.40. Tensile stress-strain relation of 0%, 2.5%, 5% and 10% MSC. 

 

3.7 Electrical properties of MSC 

The electrical responses of MSCs were measured using four-point AC probing electrical impedance 

spectroscopy. The results are shown in Figure 3.41. The impedance magnitude was plotted against 

excitation frequency. It was clearly observed that increasing the amount of carbon black nanoparticles 

greatly reduced impedance magnitude for a wide frequency range. Compared with the control specimen 

(0% MSC), the impedance magnitude was reduced by 2 order, 3 orders and 4 orders of magnitude lower 

for 2.5% MSC, 5% MSC and 10% MSC respectively.  

In order to test the uniformity that the electrical properties measured for MSCs, EIS was conducted 

on specimens with different gauge lengths (Figure 3.42). Frequency range from 10e2 HZ to 10e4 HZ was 

chosen for uniformity analysis. The measured impedance data were transformed into sheet resistivity unit 

to exclude geometry influence on the electrical properties. The test results are shown in Figure 3.43. It was 

observed that specimens containing carbon black nanoparticles exhibited better uniformity that was barely 

influenced by the gage length.   
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Figure 3.41. Bode plots of 0%, 2.5%, 5% and 10% MSC.   

Figure 3.42. Uniformity tests with different gage lengths. 
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(a)  (b) 

(c)                 (d) 

Figure 3.43. Uniformity test results. (a) 0% MSC; (b) 2.5% MSC; (c) 5% MSC; (d) 10% MSC.  
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3.8 Piezoresistive behavior of MSC  

The piezoresistive behavior of MSC was measured using four-point AC probing electrical 

impedance spectroscopy while the specimen was loaded in uniaxial tension or uniaxial compression. 

Piezoresistive effect refers to the change in electrical resistivity due to mechanical strain. The uniaxial 

tension test setup is shown in Figure 3.44. The uniaxial tension test setup is shown in Figure 3.45. The test 

was conducted with displacement control with a loading rate of 0.005mm/s. Two LVDTs were attached to 

both sides of the specimen to measure displacement, while the force was recorded by the testing system. 

During testing, impedance change was measured at a fixed frequency (1500 HZ).  

 

Figure 3.44. Measuring piezoresistive behavior of MSC under uniaxial tension. (a) Test setup; (b) 

Specimen details.  

 

Figure 3.45. Measuring piezoresistive behavior of MSC under uniaxial compression. 
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Figure 3.46 shows the piezoresistive behavior of 0%, 2.5%, 5% and 10% MSCs under cyclic 

uniaxial tension within elastic range. The impedance magnitude change was plotted against change of 

tensile strain. The fractional change in impedance magnitude is defined as:  

 (3.12)

Where If is the fractional change in impedance magnitude, Ii is the initial impedance magnitude at 

zero strain, and ΔI is the change in impedance magnitude. 

For the 0% MSC specimens, which served as control specimens, no obvious linear relation between 

strain and fractional change in impedance magnitude was observed. A large noise was also seen. When the 

carbon black nanoparticles content increased, linear relation was observed between the fractional change in 

impedance magnitude and strain. With increasing elastic strain, the impedance magnitude increased in a 

linear manner; when the material was unloaded with decreasing elastic strain, the impedance magnitude 

decreased in a linear manner correspondingly. Such piezoresistive behavior under cyclic tension was 

significant, especially for 5% and 10% MSCs. Noise in impedance data was also minimized in 5% and 10% 

MSC. The results clearly revealed that by tailoring the piezoresistive behavior of MSC through 

nanoparticles and micromechanics-based material design, self-sensing of elastic strain under cyclic tension 

was successfully achieved.  

Based on the test results, gage factors and the signal to noise ratios were calculated. Gage factor 

was defined in Equation 3.13, where If is the fractional change in impedance magnitude and εt is the tensile 

strain. The value of gage factor indicates the effectiveness of strain-sensing capacity.  

(3.13) 

The signal to noise ratio is defined as the power of the signal to the power of noise, as shown in 

Equation 3.14, where Psignal is the power of the signal and Pnoise is the power of noise.  

(3.14) 

Compared with control 0% MSC specimens, the 2.5%, 5% and 10% MSC specimens all surpassed 

the target gage factor of 5 during elastic straining stage. The gage factors are 45 ± 23, 268 ± 16 and 95 ± 9 

for 2.5%, 5% and 10% MSCs, respectively, indicating the strong tensile strain-sensing capacity of the three 

versions of MSC materials within elastic range. Specially, the 5% MSC achieved the largest gage factor and 

strongest signal to noise ratio.  
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Figure 3.46. Piezoresistive behavior of MSCs during elastic stage under tension. 

 

Table 3.3. Gage factor and Signal-noise ratio comparison for MSCs under tension. 

Material 0% MSC 2.5% MSC 5% MSC 10% MSC 

Gage factor N/A 45 ± 23 268 ± 16 95 ± 9 

Signal to noise ratio (db) 0 8.34 19.4 17.6 

 

Figure 3.47 shows the piezoresistive behavior of 0%, 2.5%, 5% and 10% MSCs under cyclic 

uniaxial compression within elastic range. The impedance magnitude change was plotted against change of 

compressive strain. For the 0% MSC specimens, which served as control specimens, a correlation between 

strain and fractional change in impedance magnitude was observed, but the pattern of such correlation was 

inconsistent. Robust sensing of strain through measuring impedance changes was thus difficult to achieve 

in the control 0% MSC. For the 2.5%, 5% and 10% MSCs, consistent linear relation between impedance 

magnitude change and compression strain existed during both loading and unloading stages during each 

loading cycle. Gage factor for each material was calculated and compared in Table 3.4. The 2.5%, 5% and 

10% MSC specimens all surpassed the target gage factor of 5 during elastic straining stage. The gage factors 

are 17 ± 3.4, 62 ± 5 and 56 ± 4 for 2.5%, 5% and 10% MSCs, respectively, indicating the strong compression 

strain-sensing capacity of the three versions of MSC materials within elastic range. Specially, the 5% MSC 

achieved the largest gage factor and strongest signal to noise ratio.  
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Figure 3.47. Piezoresistive behavior of MSCs during elastic stage under compression. 

Table 3.4. Gage factor and Signal-noise ratio comparison for MSCs under compression. 

Material 0% MSC 2.5% MSC 5% MSC 10% MSC 

Gage factor 8.4±2.67 13.7±4.8 62.4±6.7 54.0±5.5 

Signal to noise ratio (db) 7.6 12.4 18.6 17.7 

The piezoresistive behavior of MSC beyond its elastic stage, and during inelastic strain-hardening 

stage followed by tension-softening stage was also measured. The results are shown in Figure 3.48, which 

plotted the fractional change of impedance magnitude with increasing tensile strain till the localized fracture 

failure occurred in the specimen. For all MSC specimens, they exhibited three distinguishable stages in their 

tensile stresss-strain curves: (1) elastic stage, (2) strain-hardening stage, which started when the first 

microcrack occurred and ends when localized fracture took place at one of the many microcracks formed 

during this stage, and (3) tensile-softening stage, which corresponds the localized fracture process. During 

the elastic stage, there was no cracking. During the strain-hardening stage, steady-state crack propagation 

prevailed. The number of microcracks increased with increasing tensile strain while the width of each 

microcrack merely changed. During the tensile-softening stage, crack opening increased at the single final 

failure crack with increasing strain, and the total number of total cracks did not change. Interestingly, this 

unique damage process within MSCs was well reflected in their electrical responses. As shown in Figure 

3.48, there was a general trend of increasing impedance magnitude due to increasing strain, indicating a 

strong piezoresistive behavior during the three stages.  For the control 0% MSC, large noise was observed 

in the impedance data, but a nearly linear increasing trend during strain-hardening and tension-softening 
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stages was clear. For the 2.5%, 5% and 10% MSC specimens, the noise in the impedance data was 

significantly reduced, indicating more homogeneous electrical properties of the materials. Moreover, a 

nonlinear relation between fractional impedance magnitude change and tensile strain during strain-

hardening stage and tension-softening stage was found in the 2.5%, 5% and 10% MSCs, which was different 

from the nearly linear relation for the 0% MSC. At the larger strains, the fractional increase in impedance 

magnitude became faster than at the smaller strains. This unique phenomenon was due to the change in the 

dielectric effect of matrix cracks during the multiple cracking process, and the change in the contact 

impedance between fibers and cementitious matrix; both of which were dictated by the fiber bridging law 

across cracks. As a result, the 2.5%, 5% and 10% MSCs not only can reliably “self-sense” strain change 

with reduced noise, but also can “self-sense” strain level. The change of nonlinear relation between 

impedance magnitude and strain during elastic, strain-hardening and tension-softening stages also made it 

possible for damage-level sensing in addition to strain sensing.  

Figure 3.48 also plotted the fitted results for fractional impedance magnitude change vs tensile 

strain. A three-degree polynomial function was used, as defined in Equation 3.15. 

  (3.15) 

Where If is the fractional change in impedance magnitude, and εt is the tension strain. The curve fitting 

parameters are summarized in Table 3.5.  
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Figure 3.48. Piezoresistive behavior of MSCs under uniaxial tension 
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Table 3.5. Fractional impedance magnitude change vs. tensile strain curve fitting parameters.  

Material 

0% MSC 522 -159 26 

2.5% MSC 278394 -12814 340 

5% MSC 42865 1948 11.6 

10% MSC 365112 -20671 359.3

Table 3.6. Electromechanical properties of MSCs.  

Material 
Specimen 

number 

First cracking 

strain (%) 

Ultimate strength 

(MPa) 

Strain-hardening 

capacity (%) 

Strain-hardening 

gage factor 

0% 

MSC 

1 0.14 4.2 3.6 803 

2 0.1 4.4 4.2 932 

3 0.12 3.9 4.6 743 

4 0.15 4.0 3.8 782 

2.5% 

MSC 

1 0.17 3.2 4.5 6574 

2 0.18 3.1 4.8 6210 

3 0.20 3.0 3.9 6000 

4 0.14 3.4 4.1 6870 

5% 

MSC 

1 0.18 2.5 5.0 4017 

2 0.19 2.8 4.7 4200 

3 0.22 3.0 5.2 4501 

4 0.16 2.7 4.4 3821 

1 0.21 2.0 3.2 2208 

2 0.19 1.9 3.0 1982 

a b c
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10% 

MSC 

3 0.23 2.2 3.1 2453 

4 0.23 2.1 2.9 2301 

The electromechanical properties of MSCs are summarized in Table 3.6. The strain-hardening gage 

factors were determined based on Equation 3.16, as shown in Figure 3.49.  

  (3.16) 

Where If is the fractional change in impedance magnitude, Sf is defined as the strain-hardening gage 

factor, and εt is the tension strain. Similar as the elastic gage factor, the strain-hardening gage factor is a 

critical parameter for strain sensing during the strain-hardening stage of the MSC material to predict strain 

level based on measured impedance change. A higher the strain-hardening gage factor means a stronger 

piezoresistive behavior of the MSC material during strain-hardening stage, making it a more sensitive to 

self-sense strain.  The calculated strain-hardening gage factor for MSCs are summarized in Table 3.6. It 

was seen that 2.5% MSC has the highest strain-hardening gage factor and the 0% MSC has the lowest strain-

hardening gage factor. For all the 2.5%, 5% and 10% MSC specimens, inelastic (i.e. strain-hardening) gage 

factors were all well above the target values of 15 set in the proposal. The inelastic gage factors are 6413, 

4134 and 2236 in average for 2.5%, 5% and 10% MSC specimens, respectively. Therefore, we have 

successfully achieved robust strain-sensing in the newly developed MSC materials with large gage factors 

both at elastic and inelastic stages.  

Figure 3.49. Determining MSC gage factors during strain-hardening stage 
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3.9 Effect of damage level on MSC complex impedance 

Impedance spectroscopy at frequencies of 1 HZ to 1 MHZ were conducted on the MSC specimens 

at different damage levels on tensile, in order to demonstrate the effect of microcracking damage on the 

complex impedance of self-sensing MSC. The data for 5% MSC is shown in Figure 3.50. Eight damage 

levels were considered, corresponding to 0%, 1%, 2%, 3%, 4%, 5%, 6%, and 7% applied tensile strain. It 

should be noted that an applied tensile strain level larger than 1% were considered to be extremely high in 

cementitious materials; large cracking and concrete material failure is inevitable at such high tensile strain 

levels, and the structure relies on steel reinforcement to prevent failure. Due to the large tensile strain 

capacity of MSCs, the cementitious material itself can resist extraordinarily large applied tensile strains 

without failure; instead, the damage level within MSCs increased in form of multiple steady-state 

microcracking. The change in damage level in MSCs can also be self-sensed through complex measured 

impedance data, as shown in the Nyquist plot in Figure 3.50. With increasing strain level, the increased 

multiple cracking damage within MSC specimens were shown. It was obvious that increasing microcracking 

damage level in MSC increased the radius of the high-frequency arc of the Nyquist plot and shifted the 

center of the arc to the right. Moreover, equivalent circuit model parameters were extracted from the EIS 

data in Figure 3.50. The resistivity of resistor element in the equivalent circuit model was calculated and 

plotted against tensile strain in Figure 3.51. Based on the sudden change of the slope in the measured 

resistivity increase vs. strain, the localized fracture failure can be identified. The results clearly showed that 

the damage level in MSC, including the increased multiple microcracking process during strain-hardening 

stage and the localized fracture failure that initiates the tension-softening stage, can be successfully self-

sensed by the newly developed MSCs in this project.  
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(a) 

(b) 

Figure 3.50. Effect of material damage process on the complex impedance (a) multiple microcracking 

during strain hardening; (b) localized fracture during tension softening 
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Figure 3.51. Resistivity of the resistor element in MSC vs. tensile strain.: (a) resistivity vs. tensile strain; 

(b) resistivity change vs. tensile strain. 

3.10 Summary of accomplishments 

A new generation of multifunctional strain-hardening cementitious materials (MSCs) for SNF 

storage systems was successfully developed. The MSCs uniquely possess extraordinary damage tolerance 

and self-sensing capacity. With a tensile strain capacity of more than 4%, MSCs exhibit strong 

piezoresistive behavior at both elastic and inelastic stages. The elastic gage factors are 17, 62 and 56 for 

2.5%, 5% and 10% MSCs, respectively, higher than the elastic target gage factor of 5 specified in the 

proposal. The inelastic gage factors are 6413, 4134 and 2236 in average for 2.5%, 5% and 10% MSC 

specimens, respectively, far above the target inelastic gage factor of 20 specified in the proposal. These 

gage factors are also well above the gage factor of 2 (elastic only) for commercial strain gages. Larger gage 

factors mean that a small change in strain can be reflected as large change in the measured impedance, 

indicating a higher sensing capacity. Robust strain self-sensing in MSCs was achieved based on their large 

gage factors and strong signal to noise ratios.  

A fundamental understanding of the electrical, electro-chemical, and electro-mechanical behavior 

of cementitious materials was obtained. Electrical impedance spectroscopy and equivalent circuit analysis 

on various mixtures with different binder ingredients, water/binder ratios, hydration chemistry, 

incorporation of conductive nano-materials, age effects, and damage levels revealed the age-dependent 

material electrical properties at composite, component and ingredient levels. The equivalent circuit model 

was well validated by the experimental data. The results laid the groundwork for the systematic 
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development of MSCs for SNF storage applications. A comprehensive electrical impedance study, coupled 

with equivalent circuit analysis, allowed us to tailor the MSC material physical and chemical parameters to 

exhibit strong correlation between complex impedance and material strain, crack width, damage level, and 

healing. Furthermore, in order to correlate MSC material mechanical behavior (e.g. strain and damage) with 

electrical response, a four-point probing piezoresistivity test method was established. The results also 

revealed the effect of conductive nanoparticles on the electromechanical properties of MSC composite 

material systems. 

The significance of this study was three-fold: First, it allowed us to understand the true electrical 

behavior of the material at component, phases, microstructure, mesostructure, and composite scales. This 

made it possible for systematically tailoring the MSC at different scales so that the material can to behave 

as versatile piezoresistive sensors, connecting mechanical or electrochemical stimulus to different electrical 

responses. Second, through material tailoring, strain sensing became possible through establishing strong 

gage factors at elastic, inelastic, and tension softening stages. Finally, sensing of damage as well as healing 

was achieved for the first time, which can capture crack opening, distributed damage evolution, and 

autogenously healing processes. Further efforts were made on improving these properties. A series of MSC 

were further designed, guided by the EIS results, the equivalent circuit model parameter studies, and 

micromechanics-based model that evaluated the strain-hardening criteria of MSC. Meanwhile, the material 

design also took into account the effect of chemical composition and hydration products on the rheology of 

the MSC material during fresh state, and their consequent effects on the dispersion of particles as well as 

the age-dependent microstructure evolution within MSC during hardened state. 

In addition to experimental development and characterization, analytical models were established 

on the electromechanical behavior of MSC at multiple scales: (a) the change in contact impedance due to 

fiber debonding and pullout behavior at microscale, (b) the impedance vs. crack opening relation at 

mesoscale, and (c) the impedance vs. strain and damage level relation at macroscale. The multi-scale model 

coupled micromechanics with equivalent circuit modeling, and was validated by multi-scale experimental 

data. The multi-scale model elucidated the fundamental mechanisms that were responsible for the unique 

electromechanical behavior of MSCs at elastic, strain-hardening and tension softening stages.   
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4. DISTRIBUTED DAMAGE SELF-SENSING IN MSC THROUGH IMPEDANCE

TOMOGRAPHY 

4.1 Introduction 

Through engineering conductive nanomaterials into the strain-hardening cementitious composite 

materials, the elastic and inelastic strain, and damage process, were strongly correlated to electrical 

conductivity change through large gage factors. To render the electromechanical sensing method proposed 

herein attractive for industrial adoption, algorithms are needed to autonomously measure strain and identify 

damage based on an analysis of the input-output voltages taken from MSC elements stimulated electrically. 

In this project, imaging techniques first developed for the biomedical and geophysics fields were adopted 

and modified to assist in performing electrical impedance tomography (EIT) on MSC specimens. This task 

made it possible to visualize material conductivity in three dimensions based upon voltage measurements 

collected in MSC specimens in a multitude of probe locations. Conductivity reconstruction was a difficult 

nonlinear inverse problem defined by an underdetermined set of linear equations based on the Poisson 

equation. Finite element models (FEM) that describe the forward problem and the backward problem were 

implemented. 

In a spent nuclear fuel storage system, the functionality and effectiveness of components that 

provide radiation shielding, as well as those related to overall structural integrity are ensured by periodic 

visual inspections and measurements taken with portable equipment and instrumentation. Dry cask storage 

systems must have the ability for continuous monitoring of temperature, pressure, structure stability, leakage, 

and degradation, following NRC regulations[1, 2].  

For overpack, visual inspection[3] is the main method carried out on the accessible concrete 

surfaces. Practically, crack comparators and remote portable cameras are set up to measure the extent of the 

concrete surface damage. Visual inspection of in-service concrete structures needs to follow ACI 

201.1R(ACI, 2008a)[4]. Based on the ACI code[5], the frequency of visual inspection on a concrete surface 

is once per 5 years for structures exposed to the natural environment (direct and indirect). Inspection of air 

vents is required daily for most Dry Cask Storage Systems(DCSSs). Routine weekly or monthly inspection 

of the DCSS exterior should also be carried out[6]. The limitations for visual inspection are obvious. The 

subsurface cracking, internal delamination, voids, and corrosion of the steel reinforcement cannot be 

detected by visual inspection. It is difficult to conduct a qualitative study with visual inspection and to 

discern trends in data. The regular visual inspections are known to be highly subjective, labor-intensive, and 

limited to accessible locations. Taking digital images of suspected regions and the application of image 

processing techniques (e.g. digital image correlation technique) is limited to surface features. While great 

technological advances have been made in recent years on many fronts in the field of structural health 
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monitoring (SHM), there still remain very few implementations of SHM systems in operational structures. 

The main limitations are indirect damage sensing and point-based sensing. Sensors in common use do 

not detect damage directly. Complex physics-based models are needed to correlate structural response 

measurements to damage states. Robust algorithms that are generically applicable to the nuclear structural 

concrete components do not yet exist. Furthermore, the widely used sensors are point-based sensors that 

cannot accurately identify spatially distributed damage or deterioration such as cracking and corrosion. A 

dense network of point-based sensors is necessary for analytical models to extrapolate the point 

measurements to predicted component behavior, but highly costly. Distributed and direct sensing that 

provides the spatial resolution necessary to localize and quantify the severity of concrete damage and 

deterioration is direly needed.  

In this project, the innovative multifunctional strain-hardening and self-sensing concrete (MSC) 

was integrated with advanced electrical impedance tomography (EIT) algorithms for achieving distributed 

and direct damage sensing in concrete structures. Using electrical stimulation and advanced modeling 

methods, spatial mapping offering a visual depiction of concrete performance over time was gained. MSC 

can behave as a sensor itself, thus offering spatial data wherever the material is located. This eliminates the 

need for installing and maintaining a dense array of sensors; instead, inexpensive electrodes can be attached 

to structural component boundaries to apply electrical input and measure output signals that collect spatial 

information throughout the material. This approach allows for spatial sensing inside the material although 

the electrodes are only required at boundaries.  

4.2 Complete Electrode Model 

The complete electrode model is the means by which the boundary electrodes are accurately 

modeled. In the current study, the common used mesh generator Netgen is used to create the meshes by 

performing a mixture of advancing front surface meshing and Delaunay tessellation followed by mesh 

optimization. Once the model is created, it is necessary to establish mathematical formulae relating the 

physical conditions imposed at the boundary to the electric field in the interior.  

Based on Maxwell’s equations for electro-magnetics, the flux of electric field E through a closed 

surface equals the total charge density inside divided by ϵ0 constant, as shown in the Equation 4.1. In the 

following equations, E is the electric field, B is the magnetic field, ρ is the charge density, j is the current 

density, ν is the outward unit normal vector, c is the speed of the light, and ε0 is the constant.  

													
0

E



                                                           (4.1) 

In addition, the negative rate of change of the flux of B through the loop can be expressed as 

Equation 4.2,  
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																																																																								 E
t


  


                                                        (4.2) 

The flux of B through a closed surface is equal to zero,  

																																																																											 0B                                                               (4.3) 

 

Then, 

                                                         
0

j E
B

t


  


                 (4.4) 

As for EIT technology, the excitation signal believed as quasi-static as the driving patterns are time 

harmonic at a low frequency. In computation, the static conditions are assumed as static, assuming 

measurements are conducted instantaneously. The magnetization components are neglected,  

                                      0
B

t





  and 0

E

t





    (4.5) 

Then 

                                      0E      (4.6) 

Therefore, when the curl of the vector E is equal to zero, then there exists a scalar uwhose gradient 

is equal to that vector,  

                                      E u                       (4.7) 

Then assuming static current signal injected, Equation 4.5. becomes:  

                                      0

j
B


 

 
                    (4.8) 

In these conditions, the current density can be assumed to be time invariant. If d
nI is the nth current 

pattern driven into the volume, from a boundary electrode surface s then 

                                      
d
n s

I j vds   
                    (4.9) 

Based on the charge conservation law,  

                                      ( )
s

d
j dS Q

dt                        (4.10) 

The charge in the interior of the volume Q  can be expressed as  

                                      
Q dV 

   
                   (4.11) 

Combining equation  Equation 4.9, Equation 4.10, Equation 4.11. 

                                      j
t


   


                    (4.12) 
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Since there are no current sources in the interior of the volume and E does not change with time, 

Equation 4.12 becomes,  

  0j                      (4.13) 

In a linear isotropic medium, the current density and the electric field are related by the 

approximation 

( )j E i E         (4.14) 

Then  

  0E                     (4.15) 

Combine Equation 4.15 and Equation 4.7, it yields the laplacian elliptic partial differential 

equation,  

 ( ) 0u   

 ( ) 0u   
   (4.16) 

The complete electrode model consists of the partial differential Equation 4.16 and the following 

boundary conditions 

( )
( ) ,lel

u x
x dS I
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    1,... ell N    (4.17) 
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n
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   , 1,... elx belongs to l N     (4.18) 
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 

     (4.19) 

Where lU  is the (RMS) potential on thl  the electrode, lI  denotes the RMS of the electric current 

applied to the electrode le , lz is the constant impedance between the thl  electrode and the domain  , and 

nis the unit normal pointing outward from the boundary  . In addition to boundary conditions, the charge 

conservation law has to be obeyed. Thus Equation 4.20 needs to be satisfied: 

1

0
elN

l
l

I


     (4.20) 

Further, the potential reference level needs to be fixed,  

1

0
elN

l
l

U


     (4.21) 
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4.3 Forward problem with Finite element method  

Finite element approximation for the complete electrode model is employed to tackle the forward 

questions. Firstly, the weak form is derived for Galerkin method.   

 

                                      
1 ,

( , , ) {
0 .i

on vertex i
x y z

otherwise
                      (4.22) 

Then hu  can be expressed as  

                                      1

n

h i i
i

u U 



 

                   (4.23) 

Where iU is the value of the potential at the vertex i  and n the number of vertices in the model. For 

the FEM derivations, the discrete conductivity distribution vector ߛ ∈ ԧ௡ is taken as  

                                      1

k

i i
i

  



 

                   (4.24) 

Where,  

                                      
1 ,

( , , ) {
0 .i

on element i
x y z

otherwise
                      (4.25) 

Combining Equation 4.22 and Equation 4.23 leads to  

                                  
0 1,i hu dx dy dz i n 


    

 
                   (4.26) 

Applying Green’s second identity on Equation 4.26,  

                            i h i hu dx dy dz u ds  
 

      
                   (4.27) 

Where  

                           

h
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u
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v


 

  
                   (4.28) 

Then Equation 4.28 becomes  

( )
E E

i h i h i h h
i
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                   (4.29) 

For 1, , 4i   , and plugging in the boundary condition yields,  

1
( ) ( )

E E

i h i h i h
i l h

l

u u u
dx dy dz V u ds

x x y y z z z
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     
   
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                  (4.30) 
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Where lz  is the contact impedance of electrode l and lV the potential measured on it. And then, 

substituting hu from Equation 4.28 leads to  

1
( ) ( )

E E

j j j j j ji i i
i j j l

l

U U U
dx dy dz U V ds

x x y y z z z

      
 

    
    

      
  

(4.31) 

Generalizing equations for the n’th element, the global conductance matrix is assembled by 

evaluating the following entries for each of the elements. These entries formalized as local matrices ܣ௠ ∈

ԧସൈସ, ܣ௭ ∈ Թସൈସ and ܣ௩ ∈ Թସarise from the various factors of generalization equation and depend on the 

actual location of the element.  

If ܷ ∈ ԧସ is the vector of the potential values at ݊ଵ,⋯ , ݊ସ,	in each element the following relation 

holds 

  ( )m z v lA A U AV                       (4.32) 

For a finite set of current patterns dI , the forward problem is formulated as a system of linear 

equations 

*

0
[ ][ ] [ ]M Z V

d
V D L

A A A U

A A V I


       (4.33) 

A set of driving current patterns is shown below: 

1 2[ ]d d d d
kI I I I         (4.34) 

Where ܷ ∈ Թ௅ൈ௞ the conservation of charge theorem imposes 

1

0
k

d
i

i

j I




        (4.35) 

Given a finite element model with known admittivity distribution and a set of current patterns the 

potential at the vertices of the model and the boundary electrodes can be calculated from equation 34. 

Expressing above equation in a more condensed form, the forward problem becomes  

Au b                              (4.36) 

It has an algebraic solution 

  
1u A b                              (4.37) 

The forward problem can be solved either directly or iteratively. In this study, it is solved iteratively. 

In this study, the iterative schemes for the forward problem are the linear preconditioned conjugate gradients 

iteration, designed for solving the LS problem. 

This iterative algorithm generates a sequence of solutions which minimize the least squares residual 
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2
2

1
arg min || ||

2u Au b  (4.38) 

It is known that the rate of convergence can be drastically improved when the system is properly 

preconditioned. If ܯ ∈ Թ௡ା௅ൈ௡ା௅is a proper preconditioned, the modified forward problem becomes  

  
1 1M Au M b                        (4.39) 

Which has a solution identical to the original problem, only this time the convergence depends on 

the properties of the 1M A matrix than A alone.  

The preconditioner is selected in a way that  

      
1M A I 

     
1( ) ( )cond M A cond A   

 (4.40) 

Where I is the identity matrix.  

4.4 Inverse problem 

In order to solve the inverse problem, second derivative terms from the Taylor expansion of the 

nonlinear forward problem are eliminated, so that problems are inversed into well posed problem. The other 

approach is using some Tikhonov type regularization to obtain a step solution within the Newton-Raphson 

algorithm, considering a linearized form of the inverse problem.  

In principle, for the inverse admittivity problem the aim is to obtain a stable solution *  which 

minimizes the residual error 

* 2
2

1 1
( ) ( ( ) ) ( ( ) ) || ( ) ||

2 2
f F V F V F V                      (4.41) 

Where ( ) :F  ԧ௡ → ԧ௠ is the nonlinear forward operator in a problem with n parameters and m 

measurements.  

Let ( ) ( )D F V   , the Taylor series of ( )D  is  

2 31
( ) ( ) '( ) ''( ) ( )

2
D h D D h D h O h             (4.42) 

The first method involves neglecting second order terms in above equation 

( ) '( )D D h  

1( '( )) ( ) '( )( ( ))NRh D D F V F      
     (4.43) 

Finally arriving the Newton-Raphson iterative solution 

  
1

1 '( ) ( ( ))k k k kF V F   
        (4.44) 
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Where '( )kF  is the Jacobian matrix. And then 

'( ) * ( ) '( ) * ( ( ) )f D D F F V        

'( )* '( ) ''( )* ( )

'( )* '( ) ''( )( ( ) )i
i

Hf D D D D

F F F F V

   
   

 

  
   (4.45) 

The second derivative terms in Equation 4.45 can be neglected. Therefore, we can assume 

''( )( ( ) ) 0i
i

F F V                     (4.46)

Then 

21
( ) ( ) '( )*( ( ) ) '( )* ( ) 0

2
f h f F F V h F F h                      (4.47) 

Setting the gradient of equation to zero yields 

'( ) * ( ( ) ) '( ) * ( ) 0h f F F V h hF F                         (4.48) 

From where the step h  is derived as  

  
†'( ) ( ( ))h F V F      (4.49) 

Where †'( )F  is Moore-Penrose generalized inverse of '( )F  . Then 

  

†

1

'( ) ( ( ))GN

k k GN

h F V F

h

 
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 

 
   (4.50) 

Then 

''( )( ( ) )i
i

F F V I       (4.51) 

And then the residual error becomes 

21
( ) ( ) '( )*( ( ) ) ( '( )* ( ) ) 0

2
f h f F F V h F F I h                (4.52) 

And setting the gradient to zero, which leads to the Tikhonov regularization solution 

1( '( )* ( ) ) '( )*( ( ))h F F I F V F            (4.53) 

Substituting this result into the newton-raphson formula gives the Levenberg-Marquardt method 

1

1

( '( )* ( ) ) '( )* ( ( ))LM

k k LM

h F F I F V F

h

    
 





  
 

    (4.54) 

Therefore, the inverse problem can be approximately solved with Finite element method.  

Figure 4.1 shows the adjacent electrical impedance tomography measurement approach. 



CFP-12-3545 Final Report 
	

 

109 
 

 

Figure 4.1: Electrical impedance tomography measurement approach. 

 

4.5 Forward problem calculation and corresponding inverse problem calculation 

4.5.1 Forward problem calculation  

Forward problem was first studied to provide fundamental information for the inverse problem 

computation. The panel specimen was simulated with Finite Element Method (FEM). As shown in Figure 

4.2, the panel specimen was simplified as a 2D specimen. The Specimen conductivity was considered as 

constant 1S/m. With 1 V voltage applied on the specimen from different probes, the voltage distribution on 

the specimen was plotted in Figure 4.2. Figure 4.2 demonstrating 4 types of current injection pattern. The 

feasibility of FEM method for normal panel specimen was verified.  

A panel specimen with a hole drilled in the middle was simulated with FEM. Figure 4.3 

demonstrated the 2D model with a hole in the middle and the corresponding FEM mesh. It was shown that 

compared with Figure 4.2. The voltage distribution on the specimen was different indicating the EIT 

method was feasible to perform on the panel specimen.  

In addition, a panel specimen with a notch on one side of the specimen was simulated. Voltage 

distributions with nine current inject pattern were plotted in Figure 4.3. Compared with Figure 4.2 and 

4.3, the voltage distribution was totally different. Therefore, it was concluded that with current injection 

through the boundary, the captured voltage distribution as able to reflect the damage condition.  
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Figure 4.2: Electrical potential distribution in panel specimen. The FEM model and four current injection 

pattern.  

Figure 4.3: Electrical potential distribution in panel with hole in the middle. 
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Figure 4.4: Electrical potential distribution in a panel with the notch. 

Next, the three-dimensional FEM image reconstruction was conducted. Figure 4.5 shows the simulated 

specimen with a length of 6 inch and width of 2 inch. The copper electrodes were wrapped on the two ends of 

the specimen. The simulated current was injected via top electrodes, and the bottom electrode was grounded. 
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Then voltage distribution was able to reflect the resistivity distribution in the specimen. The finite element 

mesh for specimen without cracks and with simulated cracks is shown in Figure 4.5. The voltage 

distribution along the specimen is illustrated in the figure. Then voltage differences between simulation 

without cracks and simulation with cracks are compared in Figure 4.6. It was found that the potential 

distribution was able to capture damage.  

Specimen model Without cracks 

(FEM) 

With simulated cracks 

 (FEM) 

Figure 4.5: Panel specimen with copper electrodes. 
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(a) 

(b) 

Figure 4.6: Potential distribution for (a) specimen without crack, (b) specimen with crack. 

Figure 4.7: Model for concrete with steel. 

Electrical impedance tomography to image the condition of embedded steel in concrete and MSC was 

also studied. As shown in Figure 4.7, a steel rod was embedded in a cylindric cementitious sample. The electrical 

current was injected from one side and the other side was grounded. After computation, the 3D results were 

shown in Figure 4.8(a). The results were also demonstrated by 2D plot in Figure 4.8(b) and (c). It was observed 

that the voltage distribution was different between specimens with and without steel reinforcement. It was thus 

concluded EIT is a feasible method to characterize crack development and steel reinforcement conditions in 

cementitious materials. 

Steel	

Concrete	
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(a) 

(b)  (c) 

Figure 4.8: Potential distribution for (a) 3D model Comparison for (b) specimen with steel, (c) specimen 

without steel. 

4.5.2 Inverse problem calculation 

The inverse computation was carried out. The image reconstruction problems from boundary 

measurements are in general nonlinear and ill-posed, which are typically solved using a finite element 

forward model and regularized Newton’s method to solve the inverse problem. Currently, there are no 

commercially available finite element programs for EIT image reconstruction based on complete electrode 

model.  

In this project, the Netgen Mesh Generator was used to generate finite element mesh. NETGEN is 

an automatic 3d tetrahedral mesh generator. It accepts input from constructive solid geometry (CSG) or 

boundary representation (BRep) from STL file format.  

After generating the finite element mesh, computation was chosen to evaluate different algorithms 

and to validate the feasibility of the image reconstruction method. The specimen with one center hole is 

shown in Figure 4.9. The electrode number is 16.  

The meshing for the specimen is shown in Figure 4.10. The conductivity of the specimen was 

assumed to be uniformly constant. There were 16 electrodes simulated. All 6400 elements were triangular 

elements. The hole and notch were applied with resistivity ten times more than that of the specimen. 
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As shown in figure 4.9, for the right specimen, the middle part of the specimen was applied with 

higher resistivity. Then forward computation was conducted and image reconstruction followed using 

different algorithms: (1) one step Gauss-Newton reconstruction (Tikhonov prior), (2) one step Gauss-

Newton reconstruction (NOSER prior), (3) one step Gauss-Newton reconstruction (Laplace filter prior),  

(4) one step Gauss-Newton reconstruction (automatic hyperparameter selection), and (5) total variation 

reconstruction. The same simulation experiments were performed on a specimen with a side notch (see 

Figure 4.12), and on a specimen with distributed microcracking damages (see Figure 4.13).   

The image reconstruction results were plotted in Figure 4.11, Figure 4.12, and 4.13. It is shown 

that the different image reconstruction algorithms provided different image reconstruction quality. For this 

scenario, total variation reconstruction provided the best results. It was found that the square hole and notch 

were plotted with EIT image reconstruction. Even for the distributed damages on the specimen, the image 

reconstruction accurately located damage and identified damage size, as shown in Figure 4.13.  

Figure 4.9: Specimen illustration and specimen with a square hole in the middle. 

Figure 4.10: FEM model: Specimen illustration and specimen with a square hole in the middle. 
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Figure 4.11: Reconstructed images using different algorithms. (a) One step Gauss-Newton reconstruction 

(Tikhonov prior); (b). One step Gauss-Newton reconstruction (NOSER prior); (c). One step Gauss-

Newton reconstruction (Laplace filter prior); (d). One step Gauss-Newton reconstruction (automatic 

hyperparameter selection); (e). Total variation reconstruction. 

a	 b	 c	

d	 e	
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Figure 4.12: Specimen with notch and image reconstruction. 
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Figure 4.13. Reconstructed images using different algorithms for distributed damage. (a) One step Gauss-
Newton reconstruction (Tikhonov prior); (b). One step Gauss-Newton reconstruction (NOSER prior); (c). 
One step Gauss-Newton reconstruction (Laplace filter prior); (d). One step Gauss-Newton reconstruction 

(automatic hyperparameter selection); (e). Total variation reconstruction. 

Figure 4.14: Concrete with steel model for image reconstruction. 

Steel	

Concrete	



CFP-12-3545 Final Report 

119 

Figure 4.15: Reconstructed images of the model in Figure 4.14. 

As shown in Figure 4.14, a reinforced concrete specimen was simulated. The forward finite 

element computation was first performed. The simulated measurements were stored for image construction. 

Figure 4.15 shows the reconstructed images based on the simulated measurements. It wasfound that the 

image reconstruction well reflected the presence of steel in the concrete.  

4.6 EIT test and results 

In this project, the image reconstruction method for electrical impedance tomography on MSC and 

cementitious materials in general was established. Based on the image reconstruction algorithm, finite 

element method was conducted to validate the feasibility of the image reconstruction. In addition, electrical 

impedance tomography experiment was designed in conjunction with LabVIEW software. The MSC 

material was tailored to reduce the effect of environmental factors on the damage self-sensing sensitivity. 

The strain-sensing and damage-sensing behavior of MSC under complicated combined loading condition 

were studied. Example results are shown in sections 4.6.2- 4.6.4. The other results will be shown in two 

separate journal papers are submitted for publication. 

4.6.1 EIT test setup  

The framework of EIT method and experimental setup is shown in Figure 4.16. A variety of 

scenarios were investigated, including MSC specimens containing a hole as defect, and subjected to 

multiple microcracking under different levels of loading conditions. Control concrete specimens were also 

studied for comparison purpose.  

The EIT system built in PI’s lab included a data acquisition system, a data processing system, data 

collection LabVIEW code, and the specimen in interest (Figure 4.16). A matrix/multiplexer switch was 

used to handle the switching of both current injection and voltage measurement. The current injection and 

voltage measurements can be switched from one pair of channels to the other pair.  The current and voltage 

signals were transported independently so that noise was minimized. The system automatically controlled 

the switch from one measurement to another. For 16 channels output, the entire scan was approximately 30 

seconds. For 32 channels output, the entire scan was approximately 120 seconds. However, when the 

current was changed with different frequency, the scan time became different. For the lower frequency 

current injection, the scan time was longer. It was reasonably assumed that electrical properties of MSC did 

not vary significantly over the scan period. The short scan time made it possible to satisfy the instant scan 

assumption. AC current source was adopted. With injected current, the voltage was measured and recorded 

with a data acquisition system.   
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Figure 4.16: EIT test setup.  

4.6.2 EIT image reconstruction on panel specimen with a center hole  

Figure 4.17 shows the tested specimen with 16 electrodes made of copper tape and conductive 

silver paste. EIT data collection was conducted on the specimen. 208 data were collected. The Same 

procedure was repeated for three times. The average of the three scans was utilized as the undamaged EIT 

data. The specimen was then drilled with a cetner hole with the diameter of 5 mm. Thereafter, another three 

repeated EIT scans were conducted on the specimen containing the center hole. With the collected data, 

image reconstruction was conducted. Figure 4.18 shows the image reconstruction results. Different 

algorithms were used to reconstruct the image of the distributed damage (i.e. the hole). It was found that 

while most of the algorithms were able to identify the damage, they did have different sensitivity or 

accuracy.  
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Figure 4.17: Specimen with middle hole.  

Figure 4.18. Reconstructed EIT images using different algorithm: (a) One step Gauss-Newton 

reconstruction (Tikhonov prior), (b) One step Gauss-Newton reconstruction (NOSER prior), (c) One step 

Gauss-Newton reconstruction (Laplace filter prior), (d) One step Gauss-Newton reconstruction (automatic 

hyperparameter selection) and (e) Total variation reconstruction. 

EIT was performed on MSC specimens in comparison with control concrete specimens. The 

purpose was to reveal the damage self-sensing capacity of MSC that was not possessed by normal concrete 
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specimens. Figure 4.19 shows the specimen configuration prepared for the EIT experiment. 32 copper 

electrodes were attached to the surface of the specimen. In the first scenario, the specimen made of MSC 

or normal concrete contains a central hole.  After the data were collected from EIT measurements, the data 

was used to reconstruct the damage information within the specimens.  

Figure 4.19: 5% MSC specimen with electrodes. 

(a) 

(b) 

Figure 4.20. (a) Damage location and size; (b) FEM mesh for the specimen. 

To reconstruct the damage image, inverse finite element problems needed to be solved. The 

meshing of the specimen for inverse image reconstruction is shown in Figure 4.20. In the physical model, 

the electrode potentials measured from copper electrodes were correlated to the impedance distribution 

within and throughout the specimen.  

The damage image reconstruction results are shown in Figure 4.21. It was clearly shown that the 

normal concrete specimen failed to identify the millimeter-scale defect through the EIT method. In contrast, 
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the newly developed MSC specimen was able to accurately identify the distributed damage within the 

specimen, validating its damage self-sensing capacity. It should be noted that although the data were 

collected only from specimen boundaries, the distributed damage inside the specimen was located; the 

image reconstruction clearly reflected the location and the shape of the damage.  

(a) 

	(b)	

Figure 4.21. Image reconstruction comparison for (a) normal concrete, and (b) 5% MSC material. 

4.6.3 EIT image reconstruction on coupon specimen with damage 

In addition to identifying a millimeter-scale defect (e.g. a hole), the capability of identifying 

distributed micro-scale cracks in MSC was studied. Figure 4.22 shows the test setup and the framework of 

EIT image reconstruction on coupon specimens with a number of microcracks formed under loading. Two 

materials were studied: MSC with self-sensing capacity, and SHC without self-sensing capacity. SHC was 

chosen over normal concrete as the control material because it was impossible to generate microcracks in 

concrete specimens due to the brittleness of concrete materials, thus making it impossible to evaluate the 

capacity for sensing microcracks. Once casted and cured, the coupon specimens were gripped on a hydraulic 

testing frame to performed uniaxial tension test. EIT was performed on the specimens before the tension 

test, and after the tension test which introduced a number of microcracks into the specimens. Each 
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microcrack had a width below 30 micron. The difference in the collected impedance data before and after 

damage was used for image reconstruction. In this study, the image reconstruction esd based on difference 

image reconstruction. Difference image reconstruction means that there were two sets of measurements. 

The first set of measurements was the original measurement or reference measurement, which was 

conducted before damage occured. The second set of measurements were measurement after damage. The 

damage pattern and image reconstruction of SHC specimens (without self-sensing capacity) are shown in 

Figure 4.23 and 4.24. The damage pattern and image reconstruction of MSC specimens (with self-sensing 

capacity) are shown in Figure 4.25 to Figure 4.28. 
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Figure 4.22: Electrical Impedance Tomography image reconstruction of real damage pattern. 
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Figure 4.23. Damage pattern of normal SHC material. 

(a) 

(b) 

(c) 
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(d) 

(e) 

 (f) 

 (g) 

Figure 4.24. Image reconstruction of damage within normal SHC material with collected for different 

frequency (a) 1 HZ; (b) 10 HZ; (c) 100 HZ; (d) 1000 HZ; (e) 10000 HZ; (f) 100000 HZ; (g) 100000 HZ. 
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Figure 4.23 shows that under uniaxial tension test, a number of microcracks formed in the SHC 

specimen. The red color indicated microcracks under the surface of the specimen. Figure 4.24 shows the 

image reconstruction of damage pattern for the SHC specimen with a frequency range from 1 HZ to 1MHZ. 

It was clearly shown that the reconstructed image failed to locate the damage in an accurate way.  

Figure 4.25 shows the damage pattern in the 5% MSC material. A number of microcracks with 

width smaller than 30 micron formed in the 5% MSC specimen during the tension test. Figure 4.26 shows 

the image reconstruction of damage pattern for the MSC specimen with a frequency range from 1 HZ to 

1MHZ. It was shown that for data collected at 1Hz, 10 HZ, 100 HZ, 1,000 HZ and 10,000 HZ, the 

reconstructed images clearly revealed the location and intensity of the distributed microcracking damage. 

However, EIT performed at the very high frequencies (i.e. 100,000HZ and 1,000,000 HZ) were not able to 

identify the microcracking damage.   

	

Figure 4.25: Damage pattern illustration of 5% MSC material specimen No.(1) . 

(a)	

(b)	



CFP-12-3545 Final Report 
	

 

128 
 

(c)	

(d)	

(e)	

(f)	

(g)	
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Figure 4.26: Image reconstruction of damage within 5% MSC material specimen No.(1) with collected 

for different frequency (a) 1 HZ; (b) 10 HZ; (c) 100 HZ; (d) 1000 HZ; (e) 10,000 HZ; (f) 100,000 HZ; (g) 

1,000,000 HZ. 

Figure 4.27 shows the damage pattern in a different specimen made of 5% MSC. The specimen 

contained a number of microcracks with width smaller than 30 μm and a localized failure crack with a width 

of 380 μm. Figure 4.28 shows the image reconstruction of damage pattern for the MSC specimen with a 

frequency range from 1 HZ to 1MHZ. It was seen that for data collected at 1Hz, 10 HZ, 100 HZ, 1,000 HZ 

and 10,000 HZ, the reconstructed images clearly revealed the location and intensity of the distributed 

microcracking as well as the localized crack. It was also found that EIT performed at the very high 

frequencies (i.e. 100,000HZ and 1,000,000 HZ) were not able to identify the microcracking damage.  

Figure 4.27:  Damage pattern illustration of 5% MSC material specimen No.(2). 

 (a) 

 (b) 
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(d) 

(e) 

(f) 

(g) 



CFP-12-3545 Final Report 

131 

Figure 4.28: Image reconstruction of damage within 5% MSC material specimen No.(2) with collected 

for different frequency (a) 1 HZ; (b) 10 HZ; (c) 100 HZ; (d) 1000 HZ; (e) 10,000 HZ; (f) 100,000 HZ; (g) 

1,000,000 HZ. 

Figure 4.29 shows the damage pattern in the third specimen made of 5% MSC. This specimen was 

loaded to larger strain that induced higher level of damage in form of larger number of microcracks. In 

addition, there was a corner “crash” on the specimen which made the damage pattern more complex. Figure 

4.30 shows the image reconstruction of damage pattern for the MSC specimen with a frequency range from 

1 HZ to 1MHZ. It was seen that for data collected at 1Hz, 10 HZ, 100 HZ, 1,000 HZ and 10,000 HZ, the 

reconstructed images clearly revealed the location and intensity of the distributed microcracking as well as 

the corner damage. For example, for the results based on EIT conducted at 1,000 Hz, the location and 

intensity of damage were accurately revealed by the difference in colors seen for the microcracks region 

and for he corner damage region.  Similar as other results, EIT performed at the very high frequencies (i.e. 

100,000HZ and 1,000,000 HZ) was not able to identify damage.  

Figure 4.29: Damage pattern illustration of 5% MSC material specimen No.(3). 

(a) 
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(c) 

(d) 
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(f) 

(g) 

Figure 4.30. Image reconstruction of damage within 5% MSC material specimen No.(3) with collected 

for different frequency (a) 1 HZ; (b) 10 HZ; (c) 100 HZ; (d) 1000 HZ; (e) 10,000 HZ; (f) 100,000 HZ; (g) 

1,000,000 HZ. 

In the 5th scenario, the specimen was loaded gradually to different strain levels evaluate the 

capability of EIT to reconstruct progressive damage. Figure 4.31 shows the tensile strain levels where the 

test paused for EIT to be conducted. Figure 4.32 shows the specimen before testing. There were 32 

electrodes attached onto the sides of the specimen. The test was paused at 0.5%, 1%, 2%, and 3% tensile 

strain for EIT scan.  
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Figure 4.31: Uniaxial tensile test results and EIT scan point. 

Figure 4.32. Specimen before damage with 32 electrodes.  

Figures 4.33 to 4.36 show the image reconstructions for damage caused by 0.5%, 1%, 2%, and 3% 

applied strain, respectively. The real damage patterns captured by a microscope are also shown in the 

figures. The results clearly show that the damage pattern, location and intensity change with progressive 

loading applied to the MSC specimen were clearly captured by data collected from MSC specimen 

boundaries, validating the direct and distributed damage self-sensing capacity of MSC even at microcrack 

levels.  

(a) 

(b)	

Figure 4.33: Image reconstruction at 0.5% strain. (a) real damage. (b) image reconstruction. 
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(a) 

(b)	

Figure 4.34: Image reconstruction at 1% strain. (a) real damage. (b) image reconstruction. 

(a)	

(b)	

Figure 4.35: Image reconstruction at 2% strain. (a) real damage. (b) image reconstruction. 
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(a) 

(b)	

Figure 4.36: Image reconstruction at 3% strain. (a) real damage. (b) image reconstruction. 

 

4.6.4 EIT image reconstruction on beam specimen with damage  

 

In this section, the damage sensing in MSC was studied at structural element scale using a beam 

specimen subjected to bending load. Figure 4.38 shows the test setup and specimen details of the beam 

made of MSC material. The dimensions of beam specimen are 4 in. × 4 in. ×16 in. The specimens were air 

cured for 28 days, and then subjected to three-point bending (Figure 4.38). The layout of the electrodes are 

shown in Figure 4.38 (c). 27 circle electrodes were attached to the specimen surface. In real applications, 

these electrodes can be easily sprayed onto structural service in the region of interests. Maintaining these 

electrodes is not a concern, because its easy and inexpensive to install or uninstall the electrodes wherever 

needed. The current was first injected into 1-2 electrodes and then the voltage was measured via 1-2 

electrodes, 2-3 electrodes, 3-4 electrode and so on. Thereafter, the current was injected into 2-3 electrodes 

and the voltage was measured with the same pattern.  
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Figure 4.37: EIT image reconstruction on beam specimen. 

 

 

 

 

(a) 
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(b) 

	(c) 

Figure 4.38 Test setup and specimen details for structural sensing test.  

The finite element model of the beam is shown in Figure 4.39. 27 surface electrodes were 

simulated. The mesh size effect was also studied. Data collection was performed at a wide range of low and 

high frequencies (i.e. 1 Hz, 10 Hz, 100 Hz, 1,000 Hz, 10,000 Hz, 100,000 Hz and 1,000,000 Hz). Figure 

4.40 shows the real damage pattern on the surface and inside of the specimen. There existed one bending 

crack with a depth around 1.5 inch. The reconstructed image is shown in Figure 4.41. The results shown 

that the bending crack was successfully “sensed” in three dimensions by EIT performed on the MSC 

specimen with frequency up to 10,000 HZ.  
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Figure 4.39. Finite element model for resistivity reconstruction.  

	

Figure 4.40: Damage location on the surface of the specimen. 
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Figure 4.41. MSC image reconstruction (7 results indicate 1 HZ, 10 HZ, 100 HZ, 1,000 HZ, 10,000 HZ, 

100,000 HZ, 1,000,000 HZ) 

4.7 Summary of accomplishments 

This study made it possible to visualize distributed in MSC based upon impedance measurements 

collected from MSC specimens in probe locations at boundaries. A variety of damage scenarios were 

investigated, including (1) a millimeter-scale defect, (2) a number of distributed microcracks, (3) a localized 

single crack, (4) a mix of localized crack and multiple distributed microcracks, (5) a mix of multiple 

distributed microcracks and corner damage, (6) progressive damage levels, and (7) three-dimensional 

bending crack. Sensing the damage location and density in MSC was successfully accomplished for the 

variety of scenarios at a wide frequency range.  
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The damage self-sensing capacity of MSC was achieved through integrating material innovation 

with algorithms development for effective and accurate image reconstruction. Advances have been made 

on the fronts of materials science and engineering, EIT probing and imaging methods, and FEM method. 

Such interdisciplinary nature of this study was unique, which made it possible for accomplishing the 

fundamental development of new generation of MSC materials that can also be readily be applied for 

industrial adoption. This can lead to a new paradigm for future design of self-sensing structures, such as 

self-sensing spent nuclear fuel storage systems, which can survive harsh environments and extreme 

conditions with long life, and can also self-sense damage to provide early warning. MSC behaves as 

damage-tolerant materials as well as a damage sensor itself, thus offering spatial data wherever the material 

is located. This eliminates the need for installing and maintaining a dense array of sensors; instead, 

inexpensive electrodes can be attached to structural component boundaries to apply electrical input and 

measure output signals that collect spatial information throughout the material. This approach allows for 

spatial sensing inside the material although the electrodes are only required at boundaries.  
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5. MATHEMATICAL AND COMPUTATIONAL MODELING OF DETERIORATION 

PROCESSES 

Please see appendix.  
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6. CONSTITUTIVE MODELING OF MSC AND BENCHMARK PROBLEM 

6.1 Introduction 

In order to predict performance of structures made of MSC, this study developed new constitutive 

models of MSC that took into account the unique tensile strain-hardening behavior. The models were 

incorporated into finite element simulation to study a benchmark problem – a shear wall subjected to 

earthquake loading. The benchmark problem was chosen to study a structure made of new MSC subjected 

to complex loading condition under an extreme loading event (e.g. earthquake) which is expected during 

the long life cycle of spent nuclear fuel storage systems. In a general sense, the shear wall can represent the 

wall element in dry casks, nuclear reactors and other nuclear engineering structures.  

In the past two decades, a significant amount of research in developing constitutive models of 

reinforced concrete has been performed. The cyclic softening membrane model (CSMM) developed by 

Mansour et al [4] is the most recent model to predict shear behavior of structural panels under cyclic shear 

loading. Zhong [5]implemented the model into a finite element program called SCS using OpenSees frame 

work. The SCS has an excellent capability to predict behavior of a series of shear walls tested by Gao[5]. 

In this study, the CSMM based finite element program was modified to account for MSC tensile strain-

hardening properties.  The seismic performance of shear walls with MSC material was studied. The effects 

of tension and compression properties, energy dissipations, pinching characteristics on the seismic 

performance of MSC shear walls were critically examined. 

 

6.2 Cyclic Softening Membrame Model (CSMM) 

This section aims at expanding the scope of the CSMM model originally developed for reinforced 

concrete to account for the unique tensile strain-hardening effect of MSC. In order to develop the so-called 

MSC-CSMM model, the basic principles of the CSMM model for reinforced concrete is presented below. 

 

6.2.1 Formulation of CSMM 

6.2.1.1. Coordinate Systems in CSMM 

Three Cartesian coordinates, x-y, 1-2, and xsi-ysi, are defined in the reinforced concrete elements, 

as demonstrated in Fig. 6.1. Coordinate x-y defines the local coordinate of the elements. Coordinate 1-2 

represents the principal stress directions of the applied stresses that has an angle1 with respect to the x-

axis. Steel bars can be oriented in different directions in the elements. Coordinate xsi-ysi indicates the 

direction of the ‘ith’ group of rebars, where the ‘ith’ group of rebars are located in the direction of axis xsi 

with an anglesi to the x-axis. The stress and strain vectors in x-y coordinates and 1-2 coordinates are 
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denoted as [x, y, xy]T,[x, y, 0.5xy]T, [1, 2, 12]T and [1, 2, 0.512]T, respectively. 

1 si

Figure 6.1: Cyclic stress-strain relationship of material.	

6.2.1.2. Equilibrium and Compatibility Equation 

The applied stresses in the x-y coordinate (x, y and xy) are related to the internal concrete stresses 

(c
x, c

y and c
xy) in the principal stress directions, and the steel bar stresses (fsi) in the bar directions by the 

following equilibrium equation: 

   
1

1 2

12

0

0

c
x si si

c
y si

ic
xy

f

T T

  
   
 

    
                   

     
    

      (6.1) 

wheresi is the steel ratio in the “ith” direction; [T(-1)] and [T(-si)] are the transformation matrices 

from the 1-2 coordinate and the xsi-ysi coordinate to the x-y coordinate, respectively. 

The relationships between the biaxial steel strains (si) in the xsi-ysi coordinate and the biaxial 

concrete strains (1 and 2) in the 1-2 coordinate are defined by the following compatibility equation: 

 '
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1 2

120.5 0.5

si

sisi

si
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 
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 

   
          
   

  

             (6.2) 

6.2.1.3. Uniaxial strain and Biaxial strain 

In reality, uniaxial tests are usually performed in laboratory to determine material properties. There 

is no such exprimental biaxial constitutive material model for the biaxial strains in Equation (6.2). In order 

to solve problems in 2-D dimension, the biaxial strains need to be converted to uniaxial strains so that the 

unixial constitutive material model tested in laboratory can be used. The uniaxial strains are related to the 

biaxial strainsby the Poisson Ratios of cracked concrete: 
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																																							  
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            (6.3) 

In Equation (6.3), 12is the ratio of the resulting tensile strain increment in the principal 1-direction 

to the source compressive strain increment in the principal 2-direction, and21is the ratio of the resulting 

compressive strain increment in the principal 2-direction to the sourcetensile strain increment in the 

principal 1-direction. Values for 12and21for reinforced concrete elements were derived from the panel 

tests by Zhu and Hsu[6].  

 

6.2.1.4. Uniaxial constitutive model for concrete and embedded steel 

The cyclic uniaxial constitutive relationships of concrete with embedded mild steel barswere 

proposed by Mansour [7]. The characteristics of these concrete constitutive laws include: (1) the softening 

effect on the concrete in compression due to the tensile strain in the perpendicular direction; (2) the 

softening effect on the concrete in compression under reversed cyclic loading; (3) the opening and closing 

of cracks, which are taken into account in the unloading and reloading stages, as shown Figure 6.2(a). The 

smeared yield stress of embedded mild steel bars is lower than the yield stress of bare steel bars and the 

hardening ratio of steel bars after yielding is calculated from the steel ratio, steel strength and concrete 

strength. The unloading and reloading stress-strain curves of embedded steel bars take into account the 

Bauschinger effect, as shown in Figure 6.2(b). 
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(a) Concrete  

  

(b) Steel 

Figure 6.2:  Cyclic stress-strain relationship of materials. 

 

6.2.1.5. Finite Element Implementation 
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The constitutive laws discussed before are combined with the equilibrium and compatibility 

equations to form a tangent stiffness matrix [D] for element. The detail of the derivation of the matrix [D] 

is presented in Zhong [5].The formulation to determine [D] is given as follows: 

    /

0.5

x x

y y

xy xy

D

 
 
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   
        
   
   

                    (6.4) 

[D] is evaluated by: 
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In Equation (6.5), [V]is the matrix defined in Equation (6.3) which translates the biaxial strains 

into uniaxial strains using the Hsu/Zhu ratios. [Dc] and [Dsi] are the uniaxial tangential constitutive matrix 

of concrete and the uniaxial tangential constitutive matrix of steel, respectively. [Dc] and [Dsi] are defined 

as follows: 
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												(6.6) 

In Equation (6.6), 1
cE , 2

cE and siE are the tangential stiffness of uniaxial moduli of concrete and 

reinforcement which are computed at a stress/strain state. The derivatives of stress over strain c
1/2 and 

c
2/1 can be obtained by using the uniaxial constitutive relationships and taking into account the states 

of the concrete stresses and uniaxial strains in the 1-2 directions[5]. 12
cG is the shear modulus of concrete 

and is evaluated by the following equation. 

							 1 2
12

1 2

c c
cG

 
 





 (6.7) 

6.2.2 Program SCS and Validation 

6.2.2.1. Implementation 
OpenSees stands for Open System for Earthquake Engineering Simulation [8]. OpenSees has been 

developed in the Pacific Earthquake Engineering Center (PEER) and is an object-oriented framework for 

simulation applications in earthquake engineering using finite element methods. An object-oriented 
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framework is a set of cooperating classes that can be used to generate software for a specific class of 

problem, such as finite element analysis. The framework dictates overall program structure by defining the 

abstract classes, their responsibilities, and how these classes interact. OpenSees is a communication 

mechanism for exchanging and building upon research accomplishments, and has the potential for a 

community code for earthquake engineering because it is an open source. 

Using the OpenSees as the finite element framework, a nonlinear finite element program titled 

Simulation of Concrete Structures (SCS) was developed for the simulation of reinforced concrete structures 

subjected to monotonic and reversed cyclic loading [9]. To create SCS program, the CSMM is implement 

OpenSees, three new material modules, namely SteelZ01, ConcreteZ01 and RCPlaneStress were developed. 

SteelZ01 and ConcreteZ01 are the uniaxial material modules, in which the uniaxial constitutive 

relationships of steel and concrete specified in the CSMM are defined, as shown Error! Reference source 

not found... The RCPlaneStress is implemented with the quadrilateral element to represent the four-node 

reinforced concrete membrane elements. The uniaxial materials of SteelZ01 and ConcreteZ01 are related 

with material RCPlaneStress to determine the material stiffness matrix of membrane reinforced concrete in 

RCPlaneStress.  

6.2.2.2. Validation 
OpenSees stands for Open System for Earthquake Engineering Simulation [8]. OpenSees has been 

developed in the Pacific Earthquake Engineering Center (PEER) and is an object-oriented framework for 

simulation applications in earthquake engineering using finite element methods. An object-oriented 

framework is a set of cooperating classes that can be used to generate software for a specific class of 

problem, such as finite element analysis. The framework dictates overall program structure by defining the 

abstract classes, their responsibilities, and how these classes interact. OpenSees is a communication 

mechanism for exchanging and building upon research accomplishments, and has the potential for a 

community code for earthquake engineering because it is an open source. 

Nine different framed shear walls were tested by Gao[10] to evaluate the seismic performance of 

shear walls under constant axial load and reserved cyclic loading. In this article, two of these shear walls 

are selected for analysis. The wall dimensions were 914.4 mm by 914.4 mm with a thickness of 76.2 mm. 

The cross section of the boundary columns was 152.4 mm square. The details of the reinforcement of the 

specimen are illustrated in Figure 6.3(a). The bottom left and right corner of the specimens were supported 

by a hinge and a roller, respectively. Table 6.1 gives the material properties, reinforcement ratio and axial 

load ratio of each specimen. As noted from the table, the concrete strengths used in the two specimens are 

very close. Specimen SW13 has less reinforcement ratio and lower axial load ratio than Specimen SW4. 
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As observed from the test results, Specimen SW13 has ductile behavior and Specimen SW4 has brittle 

behavior [10]. 

(a) Details of shear walls 

(b) FEM modeling of shear walls 

Figure 6.3:  Frame shear walls [10]. 
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Finite element analyses were conducted on the shear walls named SW4 and SW13. The two 

specimens were modeled by the finite element mesh, as illustrated in Figure 6.3(b).	The wall panel are 

simulated by RCPlaneStress quadrilateral elements, mentioned above. The boundary columns and beams 

are simulated with NonlinearBeamColumn element, which are available elements in OpenSees. The axial 

loads acting on the columns were applied as vertical nodal forces which remain constant in the analysis. 

The comparison of the analytical result with test data of the shear force-drift relationship of the structures 

is illustrated in Figure 6.4.	The analytical result is shown to provide a good correlation with experimental 

data. The primary backbone curves, the initial stiffness, the yield point, the peak strength, the descending 

branch, and the failure characteristics of the analytical result matches very closely with experimental data.  

Table 6.1	Dimensions and properties of specimens 

Specimen 
name 

/

cf

(MPa) 

Column & beam Wall panel Vertical Load 

Hoop 
steel 

(mm) 

Long. 

steel 

Long. 

steel 
(%) 

Panel steel 
(mm) 

Panel 
steel 
(%) 

P (kN) P/Po 
Ratio 

SW4 49.51 #3@63.5 6#4 3.33 #2@152.4 0.23 534 0.46 

SW13 56.91 #2@63.5 6#4 3.33 W2@152.4 0.55 89 0.07 

(a) Shear Wall SW13 
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(b) Shear Wall SW4 

Figure 6.4:  Seismic behavior of shear walls under cyclic loading. 

6.3 Constitutive models of Multifunctional Strain-hardening Cementitious Composites 

To expand the CSMM model to account for the tensile strain-hardening behavior, the constitutive 

laws of normal concrete in CSMM is modified following two beneficial characteristics of MSC. First, the 

tension stiffening of normal concrete is replaced by the tensile strain-hardening behavior of MSC, as shown 

in Figure 6.5 (a). 	Second, the strain at maximum compression stress of MSC is modified to be higher than 

concrete, as shown in Figure 6.5 (b).  
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(b) In compression 

Figure 6.5:  Smeared uniaxial stress-strain relationships of concrete and MSC. 

The behavior of MSC subjected to shear is considered for the softening effect because the biaxial 

state of stress is different than the uniaxial behavior so that the compressive strength is a function of the 

lateral strain. The softened stress-strain relationship of MSC is proposed in this section, as shown in Figure 

6.6. The softening effect of MSC is expected to be different from the concrete elements due to the unique 

multiple microcracking pattern of MSC. The softening effect of for MSC is considered in this model.   

As shown in Figure 6.6, the compressive stress-strain curve of MSC in a 2-D element subjected to 

shear exhibits three characteristics. First, the peak point is reduced or ‘softened’ in both strain and stress. 

Second, the ascending branch is expressed by a bi-linear curve. Third, the descending curve is a parabolic 

curve which intersects the horizontal axis at a large strain of 4εത଴ଶ. 

Figure 6.6:  Softening stress-strain relationship of MSC. 

The ascending branch of the softened stress-strain curve of MSC can be expresses as: 
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The descending branch of the softened stress-strain curve of MSC can be expresses as: 
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02c                (6.10) 

Where εത଴ଶ is the strain at peak stress ௖݂
ᇱ. This value for MSC is usually greater than that for concrete. 

In this section, εത଴ଶ is taken as 0.005 in most of analysis cases. ζ is the softened coefficient. Notice that both 

peak stress ௖݂
ᇱ and the equivalent strain at peak point εത଴ଶ are multiplied by ζ to achieve the effect of stress 

softening and strain softening, respectively. εത଴ଵis the strain at the stress ௖݂௜, which is defined as the limit 

stress for the elastic zone of MSC, and is taken as 0.8 ௖݂
ᇱ. ܧ௘௖௖is the initial modulus of MSC, taken as 90 

percent of the initial modulus of concrete with the same strength. 

6.4 Seismic behavior of Reinforced MSC shear walls 

The proposed MSC-CSMM was implemented in SCS program. The SCS program with MSC is 

utilized to perform similar analyses of the two shear walls SW4 and SW13 mentioned in the previous 

section. In all analyses, the maximum compressive stresses, the tensile stresses at cracking and the tensile 

strains at cracking of MSC are defined the same as the values used with concrete in Section 6.2.The ultimate 

point of the response curve is defined at the point of 80% of the structure’s maximum shear capacity. Some 

of important aspects of the results obtained from the analyses are discussed to evaluate the effect of MSC 

on the seismic performance of the shear wall structures. 

6.4.1 Seismic response of shear walls under monotonic loading 

The results from the analyses of monotonic loading are presented in Figure 6.7. It is very 

interesting to see the very big difference between these two sets of curves. Before the cracking point, MSC 

shear walls and concrete shear walls have almost identical stiffness. After the cracking point, the stiffness 

of all shear walls decreases, the stiffness of MSC shear walls is higher than that of concrete walls. The 

similarity of stiffness before cracking can be explained by two reasons. Firstly, these values of maximum 

compressive stresses, tensile stresses at cracking and the tensile strains at cracking are similar. Secondly, 

the initial stiffness of the compressive stress-strain curve of MSC is defined very close to the initial stiffness 

of concrete. The difference of the stiffness between MSC shear walls and concrete shear walls after cracking 

can be explained by the dissimilarity of the tensile stress-strain curve of MSC and concrete after cracking. 

After cracking, the tensile stress of concrete decreases and is usually neglected. The tensile stress of MSC, 
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however, maintains its value or increases steadily due to the elastic-hardening property of MSC. This tensile 

stress contributes in increasing the shear force capacity of MSC shear walls. 

In both cases of SW4 and SW13, the peak strength and ultimate displacements or total drifts of 

MSC shear walls are greater than concrete shear walls. As shown in Figure 6.7a, the peak strength 

increases about 30% and the displacement increase approximately three times. It is noted that, in the case 

of SW13, the curve is ductile with the use of original concrete and it becomes much more ductile the use 

of with MSC. In the case of SW4, the behavior of wall which is originally brittle becomes a little ductile 

when MSC is used, as shown in Figure 6.7b. 

 

(a) Shear Wall SW13 

 

(b) Shear Wall SW4 

Figure 6.7:  Seismic responses of shear walls using different material under monotonic loading. 
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6.4.2 Seismic response of shear walls under cyclic loading 

The results from the analyses of cyclic loading are presented in Figure 6.8.	The stiffness, peak 

strength, and maximum displacement of the shear walls increase significantly similar to the case of 

monotonic loading. For the sake of the higher ductility, the shear walls can sustain more cycles of loading. 

Therefore, the energy dissipation capacity is sustainably increased. 

(a) Shear Wall SW10 

(b) Shear Wall SW4 

Figure 6.8:  Seismic responses of shear walls using different material under cyclic loading. 

6.4.3 Effect of strain at maximum strength o 

Unlike tensile property, not many studies have been done to investigate the compressive property 

of MSC. The MSC is assumed to have a similar characteristic in compression as confined concrete which 

is more ductile than ordinary concrete [11].It is noted from analysis, when the ascending part of the force-
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displacement curve is affected mostly by the tensile property of material, the descending part is controlled 

by the compressive property, in that, the train at peak compressive stress is the dominant parameter.  

 

(a) Shear Wall SW13 

 

(b) Shear Wall SW4 

Figure 6.9:  Seismic responses of shear walls using MSC material with different values of strain at 
peak strength. 

Error! Reference source not found. shows the results of the same shear walls using MSC material 

with different values of the trains at peak compressive stress. As the strain at peak compressive stress 

increases, the stiffness of the descending part increases and the wall has more ductility. For the case of 

ductile shear wall SW13, this change has little contribution in the overall response of the wall. However, 

this change makes big improvement in the case of SW4 because it original behavior with concrete is brittle. 

In other words, the ductility of material in compression becomes more important in case of brittle structures 

and more attention is need. 
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6.4.4 Pinching effect 

As shown in Figure 6.8, the pinching effect of MSC shearwalls is not much improved compared 

with concrete shear walls. Since tensile property of MSC is very ductile, it is expected to enhance the 

ductility in tensile principal direction; as a result, the pinching effect of the shearwalls will be increased like 

the use of steel in principal direction [4]. However, although the tensile strain is large, but the tensile stress 

is small, it cannot have big influence to help enhance pinching effect on the shear walls. 

6.4.5 Energy dissipation capacity 

Error! Reference source not found. shows the difference in term of energy dissipation capacity 

between concrete walls and MSC structures analyzed in Sections 6.4.1 and 6.4.2. It can be seen that for 

both analyzed cases of monotonic and cyclic loading, the dissipated energy of MSC shearwalls is 

approximately four times greater than concrete shear walls. 

(a) Monotonic loading 

(b) Cyclic loading 

Figure 6.10:  Comparison of energy dissipation capacity of shear walls using concrete and MSC under 
monotonic loading and cyclic loading. 
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6.5. Summary of accomplishments  

In the section, the seismic performance of a reinforced MSC shear wall was studied as a benchmark 

problem. A new Cyclic Softening Membrane Model for MSC was developed. The constitutive model links 

material properties of MSC to structural behavior. The seismic response of MSC shear walls under 

monotonic and cyclic loading, including pinching effect and energy dissipation capacity were critically 

examined. It was concluded that MSC shear walls had superior performance and safety than normal 

reinforced concrete shear walls under seismic loading. Compared with reinforced concrete shear walls, 

reinforced MSC shear walls had significantly larger shear capacity, ductility, and energy dissipation 

capacity. MSC shear walls were also able to survive more cycles than concrete shear walls under cyclic 

loading.  
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7. DURABILITY CHARACTERIZATIONS AND LIFE-CYCLE ANALYSIS

7.1 Introduction 

The objective of this task was to compare the newly developed MSCs with existing concrete 

through durability characterization and life-cycle analysis. Life-cycle modeling represents a comprehensive 

analytic tool for evaluation and management of SNF storage systems with regard to long-term economic 

and environmental indicators. New service life and deterioration models developed within this project were 

critical to facilitate life cycle assessment of both existing and new designs of dry casks using MSCs. Data 

collected from experimental characterization and computational modeling provided deterioration measures 

and input for predictive service life modeling and life estimation. The service life prediction was integrated 

with maintenance and repair schedules to develop a life cycle analysis framework that considered material 

production, construction, use and end-of-life stages.  

A durability-based, lifetime optimization methodology for planning the inspection and repair of 

structures that deteriorate over time was introduced and illustrated in the event trees. The life cycle model 

was based on minimizing the expected total life-cycle cost while maintaining an allowable lifetime 

reliability for the structure. This method took into consideration (1) the quality of inspection techniques 

with different detection capabilities, (2) maintenance and repair frequencies, and (3) the time value of 

money. In addition, the sensitivity analysis was performed to study different sustainability indicators. 

7.2 Durability Characterization 

7.2.1 Chloride penetration and corrosion 

Corrosion of reinforcing steel and other embedded metals is the leading cause of deterioration in 

concrete. When steel corrodes, the resulting rust occupies a greater volume than the steel. This expansion 

creates tensile stresses in the concrete, which can eventually cause cracking and spalling.  

The corrosion of steel reinforcement is complex, but basically, it is an electro-chemical reaction 

similar to that of a simple battery. Concrete is capable of conducting electric current and acts as the 

electrolyte with the circuit being completed by the bar through which the electrons can flow. However, the 

highly alkaline environment (pH is typically over 12) provided by good quality concrete produces a 

protective layer around the steel preventing the flow of current. This is known as passivation.  

In dense concrete, the embedded steel reinforcement is normally protected from corrosion due to 

the formation of a passive layer over the steel surface in the highly alkaline concrete environment. However, 

the breakdown of the passive film occurs either due to the carbonation which reduces the pH of the pore 

water to a non-protective level or by the presence of the significant quantities of chloride ions at 

reinforcement level in concrete[1-3]. Chloride ions are considered to be the primary cause of rebar corrosion 
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in concrete. The source of chloride may be internal and/or external. The chloride introduced into concrete 

at the time of preparation, i.e. from mixing water, chloride contaminated aggregates, chloride containing 

admixtures, etc. is known as internal chloride. On the other hand, chloride entering into hardened concrete 

by the application of deicing salts in bridge decks and parking structures, from sea water in marine structures, 

and from soil and ground water containing chloride salts is known as external chloride.  

Carbonation occurs when carbon dioxide from the air penetrates the concrete and reacts with 

hydroxides, such as calcium hydroxide, to form carbonates. In the reaction with calcium hydroxide, calcium 

carbonate is formed. This reaction reduces the pH of the pore solution to as low as 8.5, at which level the 

passive film on the steel is not stable. Carbonation is generally a slow process. The amount of carbonation 

is significantly increased in concrete with a high water-to-cement ratio, low cement content, short curing 

period, low strength, and highly permeable or porous paste. 

MSC specimens were prepared from 4-inch diameter cylinders with 8-inch height, which were 

casted according to ASTM C192 without tamping. These specimens were cut using wet masonry saw to the 

thickness of 2 in. ± 0.04 in. tolerance (Figure 7.1).  

 

 

Figure 7.1. Cylinder specimens for rapid chloride penetration test 

 

Prior to the rapid chloride penetration measurement, specimens were conditioned in a vacuum 

desiccator (Figure 7.2) using a vacuum pump for 3 hours, introducing negative pressure to >0.95 bar into 

the chamber. Distilled water was then instilled into the vacuum system until the entire specimen was 

immersed in water, the pumping was continued for another hour. The vacuum was vented and the specimens 

remained immersed in distilled water for another 18 hours. After conditioning, concrete samples were 

installed in between measuring cells. Distilled water from specimen conditioning was poured into the 

measuring cells to confirm that no leakage occurs on the cells before they are filled with proper solutions. 
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Figure 7.2. Conditioning of specimens with a vacuum desiccator 

Approximately 250 mL of solutions was poured into respective measuring cells, 3% sodium 

chloride solution on the anode and 0.3M sodium hydroxide solution on the cathode. These two measuring 

cells were connected to a power supply through the electrodes (Figure 7.3). With the flow of electric current 

that was maintained under 60V DC potential for 6 hours period, anionic chloride was repelled from the 

anodic side into the specimen. In the case of a higher penetrability specimen, a larger number of ions were 

transported into the material, which created a higher conductivity between the anode and cathode, indicated 

by a larger current reading.  

Figure 7.3. Rapid chloride penetration test 



CFP-12-3545 Final Report 

163 

Figure 7.4. Rapid chloride permeability test measurement in progress 

The rapid chloride permeability test was performed on MSC and conventional concrete specimens 

at 28 days and 90 days (Figure 7.4). Measurement of the current through the distilled water-saturated 

concrete sample was obtained every five minutes for a total of 6 hours. The total charge passed through the 

sample can be obtained by an integration of the current over time, as expressed in Equation 7.1: 

     (7.1) 

Where 

Q = charge passed (Coulombs) 

I = electrical current (A) 

T = current testing time (s) 

T = total testing period (6 hours) 

Since the measurement was performed in 72 steps of 5 minutes interval yielding a total of 6 hours, 

integration can be done in a simplified calculation shown in Equation 7.2: 

        (7.2) 

MSC rapid chloride permeability measurement resulted in an average of 48.87 Coulombs of charge passed 

at 90 days, which was categorized as negligible; 203.52 Coulombs at 28 days, which was categorized as 

very low; while conventional concrete samples resulted in an average of 4748.16 Coulombs and 3207.89 

Coulombs at 28 days and 90 days, respectively. The results are shown in Table 7.1. 

Conductivity of the concrete was calculated by Equation 7.3 
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 (7.3) 

Where 

σ = bulk conductivity (Siemens/meter) 

V  = applied voltage (V) 

L  = length of the specimen (m) 

A  = specimen cross sectional area (m2) 

t  = total measurement period (s) 

As the experiment proceeds, more ions migrated into the concrete causing an increase in the 

conductivity of the specimen. However, the net change in conductivity during the test also depended on the 

amount of chloride ions binding to the concrete matrix which decreased conductivity, and a possible 

increase in the temperature (due to the application of high voltage), which decreased the conductivity 

according to Equation 7.4 

          (7.4) 

Where 

ρ = resistivity at temperature T (Ω) 

ρ0 = resistivity at temperature T0 (Ω) 

  = temperature coefficient of resistivity 

T  = temperature (ºC) 

T0  = fixed ambient temperature (ºC) 

The net conductivity was observed to decrease slightly for MSC, and increased slightly for 

conventional concrete due to the net interaction of the aforementioned reasons. The calculated bulk 

conductivity was 22.96 mS/m and 15.51 mS/m for control concrete at 28 and 90 days, and 0.98 mS/m and 

0.24 mS/m for MSC at 28 and 90 days, respectively. 

Table 7.1. Total charge passed and conductivity in rapid chloride permeability test 

Properties Age MSC Control Concrete 

Charge passed 
(Coulombs) 

28 days 515 4750 

90 days 73.4 3210 

Conductivity 
(millisiemens/meter) 

28 days 2.13 23.0 

90 days 0.84 15.51 

ሺܶሻߩ ൌ 0ሾ1ߩ ൅ ሺܶߙ െ 0ܶሻሿ
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Accelerated corrosion test was performed using a standard procedure with a 30V DC capacity 

potentiostat (constant voltage source). Electromigration of chloride ions from the solution into concrete 

specimen hastened the corrosion and expansion of steel rebar. Localized expansion of rebar generated 

tensile stress on concrete specimen that resulted in cracking. A crack in the concrete allowed exposure of 

the steel bar to the solution provides a shorter electrical path. This phenomenon resulted in a current increase 

that can be a failure indicator even without the appearance of a visible crack on the concrete specimen. The 

experimental setup was adopted from Florida DoT standard for accelerated corrosion test. 

The theory of the accelerated corrosion test relies on basic theory of electrolysis in electrochemistry. 

When two different metals are connected to a power supply and immersed in an aqueous electrolyte, the 

more reactive electrode loses electrons and corrode, as shown in Figure 7.5. In this case, the iron electrode 

was more reactive than the copper electrode, and elemental iron readily lost their electrons to become 

aqueous iron ions. 

Figure 7.5. Electrochemical cell of copper and iron 

Chloride ions migration from the solution to the rebar through the porous concrete specimen caused 

oxidation in the steel that manifests in volume expansion thus creating a tensile stress in the embedded rebar, 

leading up to cracks in the concrete. In order to accelerate the corrosion process, electrochemical process is 

used to enhance the efficiency of chloride ions to attach themselves onto the steel bar. Since sodium chloride 

dissociates into positive sodium ions and negative chloride ions when dissolved in water, the negative 

charge of chloride is used by attaching the steel bar to a positive voltage source. The higher the voltage of 

the steel bar, the faster and larger are amount of chloride ions that are attracted and react to the steel bar.  

The standardized procedure for accelerated corrosion test is to embed a bar through the center of a 

concrete cylinder with diameter 4 inches and height 5.75 inches, suspended at 1.75 inches height from the 
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cylinder base. Test setup is shown in Figure 76. In this experiment, the specimen was moist cured for 14 

days upon demolding, and partially submersed in a 5% sodium chloride solution with 6V DC applied 

electric field to facilitate the initiation of corrosion. The steel bar concrete complex using rebar with 

diameter 0.375in similar to the ties used in the SC-UHPC beam is electrically connected to the cathode and 

a 2 inch wide, 0.063in thick stainless steel strip was selected as anode due to its stable behavior compared 

to the rebar electrode (Figure 7.7).  

 

Figure 7.6. Accelerated corrosion test setup 

 

 

Figure 7.7. Accelerated corrosion test on a MSC 
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Through chloride diffusion test and accelerated corrosion test in this study, it was found that both 

corrosion initiation time and propagation time were prolonged by MSC in comparison with control concrete. 

Through the multiple microcracking behavior and self-controlled crack width of the new MSC, the chloride 

diffusion rate was significantly slowed down, through prolonging the corrosion initiation time. In addition, 

the strain-hardening behavior and tensile ductility of the MSC were able to accommodate the expansion and 

resulting tensile strain during the corrosion stage, providing extra spalling resistance. Furthermore, 

microcracking behavior in MSC led to a microcell corrosion mechanism, in contrast with the localized 

macrocracking behavior and macrocell corrosion mechanism in concrete, thus prolonging the corrosion 

propagation time. The three levels of corrosion protection offered by MSC (i.e. prolonged corrosion 

initiation and propagation stages, and spalling resistance) led to prolonged service life of the overpack in 

dry casks, and significantly reduced maintenance and repair intervals. The improved service life was 

considered in the life cycle analysis.   

 

7.2.2 Freeze and thaw 

Concrete materials that are saturated or nearly saturated with water can be damaged by repeated 

freezing and thawing cycles. Because water expands when freezing, fully or mostly saturated concrete will 

experience internal stresses from the expanding ice during a cooling event. If the pressure developed 

exceeds the tensile strength of the concrete, the cavity will dilate and rupture. The accumulative effect of 

successive freeze-thaw cycles and disruption of paste and aggregate can eventually cause expansion and 

crack, scaling, and crumbling of the concrete[4, 5]. 

Freezing and thawing testing was conducted on non-air-entrained MSC and non-air-entrained 

normal concrete prisms over 15 weeks based on ASTM C666A. After 5 weeks (110 cycles of freezing and 

thawing), the non-air-entrained concrete specimens had severely deteriorated. The non-air-entrained MSC 

specimens survived 330 cycles with no degradation of dynamic modulus.  The freeze-thaw durability factor 

of MSC was calculated as 100, far larger than 10 for the non-air-entrained concrete. 

 

7.2.3 Restrained shrinkage cracking 

Shrinkage of concrete, when constrained, often causes early-age cracking in concrete. The tensile 

ductility of MSC is two orders higher than its shrinkage strain measured in this task. Therefore, ECC can 

accommodate the restrained shrinkage deformation to suppress localized cracking. Shrinkage ring tests were 

conducted to simulate the shrinkage of a freshly cast MSC layer constrained by a steel ring, following 

AASHTO T334-08. The standard steel ring had an outer diameter 12 in. and wall thickness of 0.5 in 

(Figures 7.8 and 7.9). The inner and outer faces were machined smooth and polished to minimize friction 

between the concrete layer and the steel ring. Once the control concrete or MSC were casted around the 
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steel ring, the specimens were demolded 24 hours after casting. Top surfaces of the specimens were lined 

with silicone sealant to prevent water from evaporating from the top surface. Figure 7.10 shows the 

specimens after casting. Curing with wet burlap was done right after the specimen hardened to mimic the 

condition on site. The burlap was kept wet for three days prior to its removal (Figure 7.11). Then the 

specimen was exposed to ambient temperature between 21ºC to 24ºC and humidity 40% to 60%. Crack 

formation and development in the rings was visually monitored periodically using a portable microscope 

microscope.  

In contrast with the localized cracking in the control concrete specimens, whose crack width 

increased as the shrinkage strain increased with time, the MSC layer exhibited a number of distributed 

microcracks with crack width under 30 micron. The width of these microcracks did not increase as the 

shrinkage strain increased with time; instead, the number of microcracks increased. The results indicated 

that MSC does not require steel reinforcement to control shrinkage cracking.  

	

	

Figure 7.8. Test setup for crack width measurement of restrained shrinkage test 
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Figure 7.9 Specimen dimension for restrained shrinkage test. 

	

. 	

Figure 7.10: Casted restrained shrinkage specimens of (a) MSC and (b) control concrete.  
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Figure 7.11: Specimen moisture-curing with a burlap 

7.2.4 Alkali-silica reaction 

Alkali-silica reaction is the most common form of alkali-aggregate reaction in concrete. Alkali-

silica reaction is a chemical reaction between hydroxyl ions in the alkaline cement pore solution in the 

concrete and reactive forms of silica present in some aggregates (e.g., opal, chert, chalcedony, tridymite, 

cristobalite, strained quartz)[6]. The resulting chemical reaction produces an alkali-silica gel that swells 

with the absorption of moisture, and this swelling exerts an expansive pressure within the concrete, resulting 

in internal damage that manifests as characteristic map cracking on the surface concrete[7]. 

The primary factors influencing the initiation and propagation of alkali-silica reaction include: a) a 

sufficiently high alkali content of the cement (or alkali from other sources such as deicing salts, seawater, 

and groundwater); b) a reactive aggregate; and c) available moisture, generally accepted to be relative 

humidity greater than 80 percent. In general, ASR can cause serviceability issues and can also exacerbate 

other deterioration mechanisms. 

The alkali silica reaction resistance and potential degradation of MSC was characterized in this task. 

To promote alkali silica reaction, ASTM C1260-94 and ASTM C1293 were followed. Specimens were 

exposed to 1 M NaOH solution. Measurements were taken at 7, 28, and 56 days, followed by measurements 

at 3, 6, 9, and 12 months. Selected samples were impregnated with epoxy and then surface polished to 0.25 

microns to be analyzed using scanning electron microscopy with a back-scatter sensor to identify the 

location of the gel and how fibers confine the microstructure to prevent the overall expansion. Figure 7.12 

and 7.13 show the severe deterioration of the control concrete specimen due to ASR, while the MSC did 

not exhibit any deterioration. 
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(a) Control concrete specimen 

 
(b) MSC specimen 

 
Figure 7.12: Alkali-silica reaction resistance of MSC. 

 

 

 
 

Figure 7.13: Time-dependent alkali-silica reaction expansion of MSC compared to control concrete 

 

7.3 Service life prediction of reinforced concrete structures 

LCCA estimated initial construction costs, protection costs, and future repair costs to compute the 

costs over the design life of the structure. A number of models for predicting the service life of concrete 

structures for estimating life-cycle costs have been developed recently. The corrosion of embedded steel 

MSC 
Control Concrete
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reinforcement in concrete due to the penetration of chlorides from deicing salts, groundwater or seawater is 

the most prevalent form of deterioration in concrete structures. Deterioration of reinforced concrete 

structures due to chloride ingress followed by reinforcement corrosion is the principal factor that has been 

used to mathematically predict service life in practical solutions.  

The initiation period, ti, defines the time takes for sufficient chlorides to penetrate the concrete cover 

and accumulate in sufficient quantity at the depth of the embedded steel to initiate corrosion of the steel. 

Specifically, it represents the time taken for the critical threshold concentration of chlorides, Ct, to reach the 

depth of cover, xd. This study predicts the initiation period assuming diffusion to be the dominant 

mechanism. Fick’s second law is the governing differential equation: 

2

2

dx

Cd
D

dt

dC


	
(7.5) 

where C = chloride content, D = apparent diffusion coefficient, x = depth (from the exposed surface), and t 

= time. 

The chloride diffusion coefficient is a function of both time and temperature, and it is governed by 

the following relationship to account for time-dependent changes in diffusion: 

																														 mref
ref t

t
DtD )()(    (7.6) 

where D(t) = diffusion coefficient at time t, Dref = diffusion coefficient at time tref (= 28 days), and m = 

constant (depending on mix proportions).  

The temperature dependent changes in diffusion is determined by: 

																														 )]
11

(exp[)(
TTR

U
DTD

ref
ref    (7.7) 

where D(T) = diffusion coefficient at time t and temperature T, U = activation energy of the diffusion 

process (35000 J/mol), R = gas constant, and T = absolute temperature. 

The chloride exposure conditions (e.g., the rate of chloride build up at the surface and maximum 

chloride content) are selected by the model based on the type of structure, the type of exposure (e.g., to 

marine or deicing salts) and the geographic location (as shown in Figure 7.14). The solution is carried out 

using a finite difference implementation of Fick’s second law (Equation 7.5) where the value of D is 

modified at every time step using Equation 7.6 and 7.7. 

In this study, the effects of temperature, corrosion inhibitors, and the addition of silica fume and fly 

ash on the permeability and diffusivity of concrete were considered. In addition, the influence of crack on 

the diffusion coefficient was also accounted for. Crack width was selected as the main test variable. when 

a crack occurs in the cover concrete, the corrosion of the steel reinforcement may be accelerated because 

the deterioration causing factors can pass through the crack. In recent years the effect of cracking on the 
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penetration of concrete has been the subject of numerous investigations [8-11], All of these studies have 

clearly indicated that the presence of cracks could contribute to an increase in the diffusion coefficient. A 

comparison of diffusion coefficients for cracked and uncracked concrete shows an increase in the diffusion 

coefficient for cracked concrete by one or two orders of magnitude, with wider cracks resulting in higher 

values.  

 

Figure 7.14: The chloride exposure conditions 

 

 

Figure 7.15: Monthly temperatures conditions 

 

The diffusion coefficients of concrete do not increase with increasing crack widths up to the so-

called “threshold crack width,” while, over this threshold value, the diffusion coefficients start to increase. 

The threshold crack width is found to be around 30~80 μm based on the present test data. After this 

threshold, the chloride diffusion coefficient through cracked concrete is proportional to the crack width. 

MSC is a fiber-reinforced cement-based composite material micromechanically tailored to achieve high 

ductility and multiple cracking under tensile and shear loading. The characteristic strain-hardening after 

first cracking is accompanied by multiple microcracking. Even at ultimate load, the crack width remains on 
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the order of about 30 μm. This tight crack width is self-controlled and, whether the composite is used in 

combination with conventional reinforcement or not, it is a material characteristic independent of 

reinforcing bar reinforcement ratio. In contrast, normal concrete and fiber-reinforced concrete rely on steel 

reinforcement for crack width control, and the crack width can easily go up to hundreds of microns.  Fig. 

7.16 [11, 12] shows the relationship between the effective diffusion coefficient of chloride ions and the 

beam deformation level for mortar and specimens with strain-hardening behavior measured by the PI. MSC 

falls within this category. Despite the same or higher magnitude of imposed overall deformation and higher 

crack density, the MSC specimens reveal a effective diffusion coefficient considerably lower than that of 

the reinforced mortar because of the tight crack width control.  

 
Fig. 7.16 Diffusion coefficient versus preloading deformation level for ECC and mortar [11, 12] 

 

Once the corrosion of rebar starts, corrosion product (rust) is formed and deposited on the surface 

of rebar. The formation of rust is controlled by the corrosion rate (cr), which can be determined theoretically 

by Faraday's law or experimentally by the galvanostatic pulse method. 

 

7.4 Durability based LCCA model 

7.4.1 System definition  

The typical DCSS designs analyzed in this study are constructed upon an existing reinforced 

concrete overpack (MAGNASTOR) originally built by NAC INTERNATIONAL, INC[13]. Figure 7.17 

and Table 7.1 illustrates the structures of the different types of the overpack system. Two types of materials 

system, normal concrete and MSC, respectively, are assessed in this study. The material mixtures and 

durability parameters are shown in Table 7.2. 
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Figure 7.17: Details of the overpack structure[13].  

 

Table 7.1 Dimension and Volume of the concrete cylinder. 

Type of Structure Cylinder 

Wall Depth 25 in. 

Total Length 200 ft 

Reinf. Depth 2.5 in. 

Vol. of Concrete 5524 cub. yd 

 

 

Table 7.2 Material composition and chloride diffusion parameters 

 Normal Concrete MSC 

water cement ratio 0.4 0.3 

Fly ash (%) 0 40% 

Average crack width (µm) 30 100 

D28 (in*in/sec) 1.231E-8 7.085E-9 

m 0.2 0.44 

Hydration (yrs) 25 25 

Ct (% wt. conc) 0.05 0.05 

Prop. (yrs) 20 20 

Rebar volume 5.2% 5.2% 
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Rebar type Epoxy coated Epoxy coated 

 

7.4.2 Life Cycle Assessment Model 

If all attributes and consequences of a decision concerning a structure can be expressed in monetary 

terms, then an optimal decision will be the one that minimizes the life-cycle cost of the structure. Generally, 

if the benefits of each alternative are the same, then the expected life-cycle cost up to time T, LCC(T), may 

be represented as 

																														 )()()()( TCTCTCCTLCC RINMI    (7.8)	

where CI is the initial material and construction costs, CM(T) is the expected cost of maintenance, CIN(T) 

indicates the cost of inspections, and CR(T) is the repair cost. Costs and benefits may occur at different times 

so in order to obtain consistent results it is necessary for all costs and benefits to be discounted to a present 

value. Discount rates are influenced by a number of economic, social and political factors and thus can be 

quite variable. 

 

 

Figure 7.18: Timeline and maintenance schedule for construction activities. 

 

The total life-cycle costs are calculated as the sum of the initial construction costs and the 

discounted future repair costs over the life of the structure. These are typically construction and preservation 

costs, including material costs, equipment rental and operating costs, and labor costs. The initial 

construction costs are simply the cost of the concrete + the cost of the steel (or other reinforcement) plus 

the cost of any surface protection (membrane or sealer). Future repair costs are calculated on a “present 

worth” basis using the inflation rate, i, and the real discount rate, r. 

The discount rate is a central element to economic analysis, and can significantly influence LCCA 

results. Historical trends over the last several years indicate that the real time value of money ranges 

approximately between 3% and 5%[14]. In the LCCA model, a real discount rate is used. Real discount 
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rates reflect the true time value of money with no inflation premium. The real discount rate of 4% for  all 

costs was estimated based on values recommended by the U.S. Office of Management and Budget (OMB). 

 

Table 7.3 Economic parameters  

Concrete &Steel Repair 

Concrete ($/cub.yd) 76.76 Repair ($/sq.ft) 37.16 

MSC ($/cub.yd) 195.85 Area to repair (%) 10 

Vol. of Concrete 5524 cub. yd Repair interval 10(Normal)/20(MSC) 

Steel ($/lb) 0.45 Repair Qtty 7159 sq.ft 

Rebar Qtty(lb) 2170424 
 

 
 

7.5 Results and discussions 

7.5.1 Service life prediction results 

Figure 7.19 displays the change in chloride concentration over time on the surface of the rebar. The 

chloride concentration exponentially grows during service life. It can be also seen that under service 

condition, it takes around 60 years for the chloride concentration reaching the threshold for the initiation of 

corrosion, while for MSC system, the corrosion point has been greatly extended to about 170 years. This 

can be mainly attributed to the tightly cracking control property of MSC materials. The large cracks in 

normal concrete due to structural loads would significantly accelerate the chloride transport, thereby 

influence the deteriorate rate of structures. Figure 7.20 shows the service life of each materials mix, dividing 

the total into the initiation period and propagation period. 

 

	
Figure 7.19 Chloride concentration at rebar as a function of time. 
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Figure 7.20 Predicted service life for the first time repair event. 

 

Figure 7.21 and 7.22 use color to show how the chlorides diffuse through the concrete over the 

initiation period. On the left-hand-side of this cross-section is a color scale of chloride concentrations, 

expressed as either % wt. of concrete. At the point of initiation, the color at the outer edge of the reinforcing 

steel should correspond to the Ct, which is 0.5% wt in this study. 

	
(a) 15 years 

 
(b) 30 years 
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(c) 50 years 

Figure 7.21: Chloride distribution on the cross section of normal concrete materials. 

 

	
(a) 50 years 

 
(b) 100 years 

	
（c）150 years 

Figure 7.22: Chloride distribution on the cross section of MSC materials. 
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Figure 7.23 shows the concrete's diffusivity over time. In a typical analysis, this graph shows that 

the diffusivity decreases over time (this is modeled through the "m" term described above); on the other 

hand, the diffusivity oscillates annually, due to the annual changes in temperature (diffusivity increases with 

temperature). 

Figure 7.23: The change of diffusion coefficient versus time. 

7.5.2 Life cycle cost analysis results 

Figure 7.24 gives the life cycle cost for each materials system. It shows that the MSC overpack 

system increases the initial costs at year one of the life cycle. The MSC system is about 40% higher for 

initial cost than the conventional system in year 1. By the end of life cycle, however, the total cost of the 

normal concrete system is significantly higher than MSC system.  The MSC system saves about 30% of 

total cost comparing with normal concrete.  

Figure 7.25 displays the present value of all costs, by year, over the analysis period. The values are 

created by summing all costs that occur in a given year and then discounting this value to the next year 

using the real discount rate specified in the previous section. It can be seen that by the year 100 of the life 

cycle, the conventional system exceeds the total life cycle cost of MSC system.  These results show that 

assessing costs from a life cycle perspective is important for long-live systems. While initial costs would 

suggest the normal concrete is more economical than the MSC system, total life cycle costs show a 30% 

advantage for the MSC materials by the end of 300 years. 
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Figure 7.24: Life cycle costs. 

 
Figure 7.25: Cumulated costs during service life.  

 

7.5.3 Sensitivity analysis 

Sensitivity analysis is the calculating procedure used for prediction of the effect of changes in the 

key input data on output results. In this procedure input parameters are altered one by one from initial values 

in order to determine their impact on the analysis outcomes. This, if necessary, prevents unwanted 

alterations of outcome variables. This procedure is often used in investment decision making related with 
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the investment project evaluation under conditions of uncertainty. Uncertainty in cost parameters and the 

future conditions of inflation ratio, repair interval, and repair cost can affect the outcomes of LCCA.   

Figure 7.26 shows that the repair cost significantly affects the life cycle costs. The total life cycle 

cost increases as the repair cost grows. And the repair related costs have a more significant impact on the 

conventional concrete system than the SHC system. When the repair cost is lower than 8 $/cub.yd, the 

normal concrete system still costs less than SHC system even though the later system can greatly reduce 

repair events. As the repair cost pass this threshold, the normal concrete costs surpass SHC system for the 

total life cycle. This difference becomes more obvious as the repair cost increases.  

 

	
Figure 7.26: The impact of a repair cost on life cycle cost. 

 

Repair interval is another important parameter that can change total cost in LCCA. Figure 7.27 

shows the influence of repair interval on the life cycle costs. It can be seen that the repair frequency strongly 

influences the total life cycle costs, especially when the repair interval is shorter than 5 years. This result 

indicates that the quality of repair significantly affects the life cycle cost. For normal concrete, due to the 

natural brittleness, most often drying shrinkage of "new" repair material restrained by "old" concrete 

substrate causes cracking of the repair material, combined with interface delamination between the repair 

and the concrete substrate, which may also introduce chlorides, oxygen, moisture, alkali or acid  into the 

repaired concrete structure and accelerate further deterioration. MSC is a material micromechanically 

designed with high ductility and toughness indicated by multiple micro-cracking behaviors. Experimental 

study on a layered repair system verified that the high ductility of MSC can relieve shrinkage induced 
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stresses in the repair layer and at the MSC/concrete interface, thereby suppressing large surface cracks and 

interface delamination.  

Figure 7.28 shows the development of total life cycle cost net present value depending on the 

material system and the discount rate applied when calculating the net present value costs. The figure shows 

that increasing the discount rate reduces the differences of facility life-cycle costs net present values for two 

selected material systems. At discount rate of 7.0 %, there is almost no difference in the facility life cycle 

cost net present values for those two systems. This suggests the selection of a discount rate can be a key 

parameter in determining the results of a comparative LCCA, and can have a significant effect on long-term 

investment decisions. The sliding discount rate affects the conventional design results more greatly than the 

MSC design because the conventional design requires more repair in later years when compared to the MSC 

system.  

Figure 7.29 provides the initiation time for rebar corrosion as a function of average crack width 

under service condition. It can be noticed that when the crack width is small enough, usually below 50 

microns, the chloride induced service life reduction is negligible. However, once the crack width is larger 

than this threshold, the diffusivity of concrete is approximately proportional to the crack width. As a result, 

the initiation time of corrosion dramatically declined. When the crack width reaches 200 microns, it only 

takes about 20 years for chloride concentration passing Ct.  

	
Figure 7.27: The impact of repair interval on the life cycle cost. 
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Figure 7.28: Discount rate variation from 0-4% and the corresponding life cycle cost. 

 

 
Figure 7.29:  initiation time for rebar corrosion 

 
7.6 Summary of accomplishment 

The durability of MSC was characterized. Common deterioration mechanisms in spent nuclear fuel 

storage systems were studied, including restrained shrinkage cracking, chloride penetration, embedded steel 

corrosion, freeze and thaw, and alkali-silica reaction and elevated temperature effect. The details study of 
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elevated temperature effect is reported in a published journal paper [15] and a Ph.D. dissertation [16] 

advised by PI. The experimental results revealed that MSC had superior durability to conventional concrete, 

mainly due to its extraordinarily high damage tolerance, chemical stability and low transport properties 

even under large applied deformation. The improved durability leads to an extended service life for SNF 

systems when MSC is used in lieu of conventional concrete.  

A framework for LCCA that assesses the life cycle cost concrete overpack of dry cask system was 

proposed. Two potential material designs were evaluated and compared using this LCCA framework: a 

conventional concrete design, and a new MSC design. Life-cycle analysis was conducted on dry cask 

systems to compare the newly developed MSCs with existing concrete. The results showed the life cycle 

cost of a representative dry cask system can be reduced by 30% when MSC is used. It should be noted that 

the life cycle analysis was based on simple assumption that corrosion is the dominant deterioration mode, 

and other types of deterioration or failure events will not occur during the structural life cycle. When other 

deterioration modes and possibilities of natural and man-made hazards are considered, the life cycle cost 

advantage of SNF systems using MSC will be even more predominant.  
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SUMMARY & PLANS

The following are the on-going or completed research tasks. We also briefly discuss our future

plans. We also provided journal papers, conferences talks and awards that have resulted from this

research funding.

(I) Numerical methodology for transient diffusion equation to meet maximum prin-

ciples and the non-negative constraint: One of main tasks on the numerical modeling

front is to the develop numerical methodologies for satisfying maximum principles and the

non-negative constraint for transient problems.

(a) In the first year, we have finished the development of a robust methodology for linear

transient diffusion equations. The research is also submitted for review to an international

journal. We have briefly outlined this research component in this yearly report.

(b) We have just started developing non-negative methodologies for nonlinear (in particular,

semi-linear and quasilinear) diffusion-type equations. The transport in sophisticated

degradation models will be nonlinear transient diffusion-type equations. This part of

work will be finished by the end of year #2, and we plan to include the results in the

subsequent quarterly reports.

(II) Deriving mesh restrictions to meet maximum principles: We have made a great

progress on deriving mesh restrictions to meet maximum principles and the non-negative

constraint for advection-diffusion and linear reactions. Our plan is to finish this part of the

research and submit the research findings to a peer-reviewed journal by the end of this year

(2013). Some of the main findings are provided in this yearly report.

(III) On achieving element-wise species balance and enforcing maximum principles

for advection-diffusion-reaction equations: We have been developing a state-of-the-art

numerical methodology to simultaneously meet the element-wise species balance, the non-

negative constraint and avoid node-to-node spurious oscillations. The numerical methodolo-

gies have been derived. We also obtained some preliminary results. Currently, we are in the

process of developing a computer code to be able to solve large-scale realistic problems. To

complete this research task, it make take two quarters. It is worth saying that this component

of the research is truly transformative research and will greatly enhance simulation capabil-

ities for a wide variety of fields including degradation of materials, contaminant transport.

In this yearly report, we have provided the numerical methodologies, and some preliminary

numerical results.

(IV) Deriving a chemo-thermal-deformation model for degradation studies: We have

been developing a hierarchy of mathematical models to model various mechanisms of degra-

dation. The models will account for coupled chemo-thermal-deformation response, which is

crucial for mathematical modeling of degradation of materials. As discussed in our proposal,

this mathematical model in consistently derived using mechanics and thermodynamics prin-

ciples. In particular, the model will satisfy the second law of thermodynamics, which is not

the case with some of the current models for degradation. After this model is derived, we

need to develop a computational framework to solve the resulting nonlinear partial differ-

ential equations, which will be another research task, as outlined in the proposal. We will

report our research progress on this task in subsequent quarterly reports.

Conferences & Invited Talks

C1. “Numerical modeling of diffusive-reactive systems;” K.B. Nakshatrala, ASME Interna-

tional Mechanical Engineering Congress & Exposition, Houston, Texas, November 9–15,

2012.



C2. “Modeling moisture degradation of structural members;” M.K. Mudunuru, and K.B. Naksha-

trala, ASME International Mechanical Engineering Congress & Exposition (Special session

on Environmental effects and failure of engineering structures), Houston, Texas, November

9–15, 2012.

C3. “On achieving element-wise species balance and enforcing non-negative constraint for

advection-diffusion equation;” M.K. Mudunuru, and K.B. Nakshatrala, American Geo-

physical Union Fall Meeting, San Francisco, California, December 3–7, 2012.

C4. “Least-squares finite element formulations for flow problems;” J.N. Reddy, K.B. Naksha-

trala, and J. Chang, American Geophysical Union Fall Meeting, San Francisco, California,

December 3–7, 2012. [An invited talk]

C5. “Optimization-based methodology for enforcing maximum principles and the non-negative

constraint ;” K.B. Nakshatrala, American Geophysical Union Fall Meeting, San Francisco,

California, December 3–7, 2012.

C6. “A robust non-negative numerical framework for diffusion-controlled bimolecular-reactive

systems;” M.K. Mudunuru, K.B. Nakshatrala, and A.J. Valocchi; SIAM Conference on

Computational Science and Engineering (SIAM CSE13), Boston, February 25–March 1,

2013.

C7. “Importance of non-negative numerical solution for mixing-controlled reactive transport ;”

A.J. Valocchi, and K.B. Nakshatrala, SIAM Conference on Mathematical & Computational

Issues in the Geosciences, University of Padova, Italy, June 17–20, 2013.

C8. “On modeling thermal and moisture degradation of materials and structures;” M.K. Mudunuru,

C. Xu, and K.B. Nakshatrala, US National Congress on Computational Mechanics, Raleigh,

North Carolina, July 22–25, 2013.
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A Report on Research Task #4.1

Enforcing maximum principles and the non-negative constraint

for transient linear diffusion equations

1. INTRODUCTION AND MOTIVATION

Certain quantities (e.g., concentration of a chemical species and absolute temperature) naturally

attain non-negative values. A violation of the non-negative constraint for these quantities will imply

violation of some basic tenets of Physics. It is, therefore, imperative that such physical constraints

are met by mathematical models and by their associated numerical formulations. Herein, we shall

focus on two popular transient mathematical models, in which physical restrictions like the non-

negative constraint play a central role. The first model is based on Fick’s assumption (commonly

referred to as Fick’s law) and balance of mass. Fick’s assumption is a simple constitutive model to

describe the diffusion of a chemical species in which the flux is proportional to the negative gradient

of the concentration. The second model is based on Fourier’s assumption and balance of energy,

which describes heat conduction in a rigid conductor. Both these constitutive models combined

with their corresponding balance laws give rise to transient diffusion-type equations, which are

parabolic partial differential equations.

There has been tremendous progress in Applied Mathematics for these type of equations with

respect to existence and uniqueness results, qualitative behavior of solutions, estimates, and other

mathematical properties [79, 32]. In particular, it has been shown that transient diffusion-type

equations satisfy the so-called maximum principles [79]. It will be shown in a subsequent section

that the non-negative constraint can be shown as a consequence of maximum principles under

certain assumptions. Analytical solutions to several problems have been documented in various

monographs (e.g., see references [19, 77]). However, it should be noted that most of these solu-

tions are for isotropic and homogeneous media, and for simple geometries. For problems involving

anisotropic and heterogeneous media, and complex geometries; finding analytical solutions is not

possible, and one has to resort to numerical solutions. Obtaining physically meaningful numerical

solutions for transient diffusion equation that satisfy maximum principles and the non-negative

constraint is the main aim of this research. It is well-known (and will be discussed in subsequent

sections) that many popular numerical schemes (including the ones that are based on the finite

element method) do not satisfy maximum principles and the non-negative constraint. Even for

isotropic diffusion, stringent restrictions on the time step and the computational mesh are neces-

sary to meet these important mathematical properties.

The usual approach of solving linear second-order parabolic partial differential equations under

the finite element method is to employ Galerkin formalism for spatial discretization. Several theo-

retical results (which include convergence proofs, a-priori estimates) for this approach can be found
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in the literature (e.g., see Reference [30]). But it has been adequately documented in the litera-

ture that this approach will not satisfy maximum principles and the non-negative constraint (for

example, see Reference [45]). Thus, there is a need to develop new methodologies that will satisfy

important mathematical properties like maximum principles and the non-negative constraint, and

thereby improve the overall predictive capabilities of current numerical schemes.

1.1. Maximum principles for transient systems. Transient diffusion equations fall in the

realm of parabolic partial differential equations (PDEs), whereas steady-state diffusion equations

are elliptic PDEs. A noticeable difference in maximum principles for parabolic PDEs and the

corresponding ones for elliptic PDEs is that, in the case of a parabolic PDE, the maximum can

occur either on the boundary of the domain or in the initial conditions. On the other hand, for a

second-order elliptic PDE, the classical maximum principle says that the maximum occurs on the

boundary of the domain (under some appropriate conditions on the input data and domain). A

more precise mathematical treatment in Section 2.

Several papers have also addressed maximum principles for transient systems (i.e., parabolic

problems) in numerical setting. Herrera and Valocchi [48] have employed flow-oriented derivatives

with backward Euler to obtain non-negative solutions in the context of finite difference and finite

volume methods. One method that is commonly employed in the area of subsurface hydrology is by

Chen and Thomee [22]. This method is based on the standard single-field formulation but employs

lumped capacity matrix. (By the standard single-field formulation we refer to the formulation

obtained by employing the semi-discrete approach using method of vertical lines at integral time

steps, and Galerkin formalism for spatial discretization. See Appendix for more details of this

formulation.) It is noteworthy that lumping capacity matrix approach is commonly considered as

a variational crime [53]. Reference [13] also alters the capacity matrix to preserve positivity for

parabolic problems but restricts to isotropic diffusion. Other notable works are [86, 83, 33, 31],

which all focused on getting restrictions on the mesh (and in some cases on the time step) to meet

maximum principles. More importantly, they did not consider anisotropy, and such restrictions are

not possible for anisotropic and heterogeneous medium.

There are several papers that considered consistent capacity matrices, but derived restrictions

on the time step to satisfy maximum principles [68, 92, 57, 45, 51]. A striking difference be-

tween the time step restrictions with respect to numerical stability and maximum principles is that

numerical stability places an upper bound on the selection of the time step whereas maximum

principles place a lower bound on the selection of the time step. The time step is selected based on

the following inequality:

0 < ∆tMP
crit ≤ ∆t ≤ ∆tstabilitycrit (1.1)

where ∆tstabilitycrit is the critical time step to obtain stable results, and ∆tMP
crit is the critical time step

to satisfy maximum principles. It should be however mentioned that these works on deriving time

step restrictions have considered one-dimensional problems or isotropic media, and these conditions

are not applicable otherwise. To the best of our knowledge, none of the prior works presented a

methodology for transient anisotropic diffusion equations to satisfy maximum principles and the

non-negative constraint on general computational grids with no further restrictions on the time

step.
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1.2. Our approach and main contributions of this report. Herein, we shall employ

the Rothe method (or the method of horizontal lines) [88] to solve transient anisotropic diffusion

equation. There are several papers in the literature that have employed Rothe method to solve

parabolic equations [45, 15, 60, 21]. These papers, except for Reference [45], did not apply the

Rothe method in the context of maximum principles. Although Reference [45] addressed maximum

principles by using the Rothe method, but the formulation is restricted to isotropic diffusion. In

addition, Reference [45] employed techniques from stabilized methods, which is different from

the approach taken in this research. In the proposed formulation, the temporal discretization

using the Rothe method will give rise to inhomogeneous elliptic partial differential equation, which

is solved using the approach presented in our earlier paper [73]. An attractive aspect of the

proposed methodology is that there are no additional restrictions on the time step to meet maximum

principles.

1.3. An outline and notation used in this report. The remainder of this report is orga-

nized as follows. In Section 2, we present governing equations for transient anisotropic diffusion,

and discuss maximum principles and the non-negative constraint. In Section 3, we derive a method-

ology for enforcing maximum principles and the non-negative constraint for transient anisotropic

diffusion equation using the method of horizontal lines. In Section 4, we illustrate the perfor-

mance of the proposed formulation using representative numerical examples. Finally, conclusions

are drawn in Section 5.

The symbolic notation adopted in this report is as follows. Repeated indices do not imply

summation. (That is, we do not employ Einstien’s summation convention.) We shall employ the

standard notation for open, closed and half-open intervals [11]:

(a, b) := {x ∈ R
∣

∣ a < x < b}, [a, b] := {x ∈ R
∣

∣ a ≤ x ≤ b},
(a, b] := {x ∈ R

∣

∣ a < x ≤ b}, [a, b) := {x ∈ R
∣

∣ a ≤ x < b} (1.2)

Similar to our earlier paper [73], we shall make a distinction between vectors in the continuum and

finite element settings. We also make a distinction between second-order tensors in the continuum

setting versus matrices in the context of the finite element method. The continuum vectors are

denoted by lower case boldface normal letters, and second-order tensors will be denoted by upper

case boldface normal letters (for example, vector x and second-order tensorD). In the finite element

context, we shall denote the vectors using lower case boldface italic letters, and the matrices are

denoted using upper case boldface italic letters. For example, vector v and matrix K. Other

notational conventions adopted in this report are introduced as needed.

2. GOVERNING EQUATIONS: TRANSIENT ANISOTROPIC DIFFUSION

Let Ω ⊂ R
nd be a bounded open set, where “nd” denotes the number of spatial dimensions.

The boundary is denoted by ∂Ω, which is assumed to be piecewise smooth. A spatial point is

denoted by x ∈ Ω. The gradient and divergence with respect to x are denoted by grad[·] and div[·],
respectively. Let t ∈ [0,I] denote the time, where I > 0 denotes the length of the time interval.

The concentration of an inert chemical species is denoted by c(x, t). The (spatial) boundary is

divided into two parts: ΓD and ΓN such that ΓD∪ΓN = ∂Ω and ΓD∩ΓN = ∅. ΓD is that part of the

boundary on which Dirichlet boundary condition (i.e., the concentration) is prescribed, and ΓN is

the part of the boundary on which Neumann boundary condition (i.e., the flux) is prescribed. The
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unit outward normal to the boundary is denoted by n̂(x). The governing equations for transient

anisotropic diffusion can be written as follows:

∂c(x, t)

∂t
− div[D(x)grad[c(x, t)]] = f(x, t) in Ω× (0,I) (2.1a)

c(x, t) = cp(x, t) on ΓD × (0,I) (2.1b)

n̂(x) ·D(x)grad[c(x, t)] = qp(x, t) on ΓN × (0,I) (2.1c)

c(x, t = 0) = c0(x) in Ω (2.1d)

where D(x) is the diffusivity tensor, f(x, t) is the volumetric source/sink, cp(x, t) is the prescribed

concentration on the boundary, qp(x, t) is the prescribed flux on the boundary, and c0(x) is the

prescribed initial condition. The diffusivity tensor is symmetric, and is assumed to be bounded

above and uniformly elliptic. That is, there exists two constants 0 < ξ1 ≤ ξ2 < +∞ such that

ξ1y
Ty ≤ yTD(x)y ≤ ξ2y

Ty ∀x ∈ Ω and ∀y ∈ R
nd (2.2)

The above initial boundary value problem given by equations (2.1a)–(2.1d) is a linear parabolic

partial differential equation. From the theory of partial differential equations, such equations are

known to satisfy maximum principles under appropriate regularity assumptions on the input data

and the domain [85, 66].

Remark 2.1. It should be noted that a consequence of Fickian/Fourier mathematical model is

that a thermal/chemical disturbance at a point will be felt at other points instantaneously. This is

because of the parabolic nature of the resulting partial differential equations. To put it differently,

these mathematical models predict that the information travels at infinite speed, which is against

the current accepted laws of Physics. Several modifications have been suggested in the area of heat

conduction to have finite speeds for thermal disturbances, and most of these models are hyperbolic

partial differential equations. Some notable works on this topic are by Maxwell [65], Catteneo [20],

and Gurtin and Pipkin [40]. A more detailed discussion with respect to finite speed thermoelasticity

can be found in Reference [55]. It is noteworthy that hyperbolic partial differential equations do

not possess maximum principles “similar” to the ones possessed by elliptic and parabolic partial

differential equations. This area of research is far from settled, and is beyond the scope of this

paper.

2.1. Maximum principles for parabolic equations. Maximum principles for parabolic

partial differential equations can be traced back to Levi [61] and Picone [82]. A brief history and

other references on maximum principles for parabolic partial differential equations can be found

in the book by Protter and Weinberger [85]. Herein, we shall employ an approach similar to that

of Nirenberg [76]. Before we state a maximum principle for linear parabolic partial differential

equations, we shall introduce relevant notation and definitions. The parabolic cylinder is defined

as ΩI := Ω× (0,I). The parabolic boundary is defined as follows:

ΓI :=
{

(x, t) ∈ ΩI

∣

∣

∣
x ∈ ∂Ω or t = 0

}

(2.3)

The parabolic cylinder and parabolic boundary are pictorially described in Figure 1. Let Cm(Ω)

denotes the set of functions defined on Ω that are continuously differentiable up to m-th order. We
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Figure 1. A pictorial description of parabolic cylinder ΩI and parabolic boundary ΓI .

shall introduce the following function space with differing smoothness in the x- and t-variables:

C2
1 (ΩI) :=

{

c : ΩI → R | c, ∂c

∂xi
,

∂2c

∂xi∂xj
,
∂c

∂t
∈ C(ΩI); i, j = 1, · · · , nd

}

(2.4)

Theorem 2.2 (maximum principle). Let c(x, t) ∈ C2
1 (ΩI)∩C(ΩI) satisfy ∂c/∂t−div[D(x)grad[c]] ≥

0 in ΩI . Then c(x, t) achieves its minimum on the parabolic boundary of ΩI. That is,

min
(x,t)∈ΩI

c(x, t) = min
(x,t)∈ΓI

c(x, t) (2.5)

Proof. A proof can be found in standard books on partial differential equations (e.g., see

[85, 66, 32]). �

Remark 2.3. The above maximum principle implies that if one has volumetric source every-

where and at all times (i.e., f(x, t) ≥ 0) then the minimum will occur on the boundary of the

domain or in the initial condition. A logically equivalent statement of the above theorem can be

written as follows: If c(x, t) satisfies ∂c/∂t − div[D(x)grad[c]] ≤ 0, the maximum occurs on the

parabolic boundary. That is,

max
(x,t)∈ΩI

c(x, t) = max
(x,t)∈ΓI

c(x, t) (2.6)

Maximum principles play a central role in the study of partial differential equations. Many

uniqueness theorems and powerful estimates for elliptic and parabolic partial differential equations

utilize some form of maximum principles [36, 79]. Maximum principles also have important physical

implications in mathematical modeling, as they place restrictions on physical quantities. One such

implication is the non-negative constraint. We now show that, under certain assumptions, the

non-negative constraint is a consequence of the maximum principle given by Theorem 2.2. For the

present discussion, let us assume that ΓD = ∂Ω (that is, we prescribe Dirichlet boundary conditions

on the whole boundary). If f(x, t) ≥ 0 (i.e., we have volumetric source), cp(x, t) ≥ 0 (i.e., we have

non-negative prescribed Dirichlet boundary conditions on the whole boundary), and c0(x) ≥ 0

(i.e., we have non-negative prescribed initial concentration); then the maximum principle given by

Theorem 2.2 implies that the quantity c(x, t) is non-negative in the whole domain and at all times.
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That is,

c(x, t) ≥ 0 ∀x ∈ Ω and ∀t ∈ [0,I] (2.7)

It should be noted that the above discussion on maximum principles and the non-negative constraint

is in continuum setting. For most practical problems (which will involve complex geometries and

spatially varying coefficients), it is not possible to find analytical solutions. Therefore, one has to

resort to numerical solutions. This leads to the following questions, which are central to this paper.

Whether numerical formulations satisfy maximum principles and the non-negative constraint for

transient diffusion equation. If so, under what conditions? If not, is it possible to fix a given

numerical formulation to meet these important principles? This area of research is popularly

referred to as discrete maximum principles.

Remark 2.4. Some recent efforts [64, 75, 73] have addressed similar questions with respect to

maximum principles and the non-negative constraint, but all these studies have considered steady

diffusion equation.

2.2. Discrete maximum principles. The discrete analogy of maximum principles is com-

monly referred to as discrete maximum principles (DMP). Some main factors which affect numerical

solutions with respect to discrete maximum principles are:

(i) topology of the domain (e.g., shape of the domain, features like holes in the domain),

(ii) type of mesh (e.g., Delaunay, well-centered, structured vs. unstructured),

(iii) element type (simplicial vs. non-simplicial elements),

(iv) mesh size (i.e., aspect ratio),

(v) medium properties (e.g., anisotropy, heterogeneity),

(vi) order of approximation (i.e., low-order vs. high-order), and

(vii) temporal discretization (e.g., time stepping scheme, selection of the time step).

The first six factors are equally applicable to steady anisotropic diffusion equation. Systematic

studies on the effect of first five factors on maximum principles and the non-negative constraint

can be found in references [75, 73, 70]. Reference [80] discusses in detail about the sixth factor.

The last factor (in combination with other six factors) is the subject matter of this paper.

This leads to the problem statement of this paper: Develop a finite element methodology for

linear transient tensorial diffusion equation that satisfies maximum principles and the non-negative

constraint on general computational grids for low-order finite elements with no additional restric-

tions on the time step. To the best of our knowledge, such a methodology does not exist in

the literature. In the next section, we shall extend the optimization-based methodologies that

are presented in references [75, 73] for steady diffusion equations to transient diffusion equation.

We shall explicitly enforce constraints on the nodal concentrations to satisfy maximum principles

and the non-negative. We shall restrict to low-order finite elements, which include two-node line

element, three-node triangular element, four-node quadrilateral element, four-node tetrahedron el-

ement, eight-node brick element, and six-node wedge element. However, it should be noted that

the proposed methodology is not applicable to high-order elements, as enforcing non-negative con-

straints at nodes does not imply non-negative concentrations throughout the domain for high-order

elements (e.g., three-node line element, six-node triangular element) [80].
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3. PROPOSED METHODOLOGY: DERIVATION AND IMPLEMENTATION

DETAILS

Herein, we shall employ the method of horizontal lines (also known as the Rothe method) [88]

as opposed to the commonly employed method of vertical lines [53]. The method of horizontal lines

is a discretization sequence in which the time is discretized first followed by spatial discretization.

To this end, we shall define two sets of time levels: integral and weighted time levels. The time

interval of interest [0,I] is divided into N non-overlapping subintervals such that

[0,I] =
N
⋃

n=1

[tn−1, tn] (3.1)

where tn (n = 0, · · · , N) are referred to as integral time levels. For convenience, we shall assume

that the time step ∆t to be uniform, which implies that

∆t =
I
N

and tn = n∆t (3.2)

However, it should be noted that the proposed methodology can be easily extended to non-uniform

time steps. We shall apply the method of horizontal lines at weighted time levels, which are defined

as follows:

tn+η := (1− η)tn + ηtn+1 (3.3)

where the parameter η ∈ [0, 1]. The concentration and its rate at integral time levels are respectively

denoted as follows:

c(n)(x) = c(x, t = tn) (3.4a)

v(n)(x) =
∂c

∂t
(x, t = tn) (3.4b)

The following notation is used to denote quantities at weighted time levels:

c(n+η)(x) := (1− η)c(n)(x) + ηc(n+1)(x) ≈ c(x, tn+η) (3.5a)

v(n+η)(x) := (1− η)v(n)(x) + ηv(n+1)(x) ≈ ∂c

∂t
(x, t = tn+η) (3.5b)

c(n+η)
p (x) := cp(x, tn+η) (3.5c)

f (n+η)(x) := f(x, tn+η) (3.5d)

q(n+η)
p (x) := qp(x, tn+η) (3.5e)

3.1. Derivation. In designing the proposed methodology, attention will be exercised on two

different aspects. The first aspect is to make sure that the non-negative constraint and maximum

principles are preserved after both temporal and spatial discretizations. The second aspect is to

achieve numerical stability in solving the resulting differential-algebraic equations. As we shall see

in subsection 3.2, we will be adding additional equations in the form of lower and upper bounds (i.e.,

inequality constraints). This implies that we will be dealing with differential-algebraic equations.

It is important to note that numerical time integration schemes that are designed for ordinary

differential equations may not be stable and accurate for solving differential-algebraic equations.

This point has been discussed adequately in the literature (e.g., see references [10, 42, 43]). An

important work on numerical time integration of differential-algebraic equations is by Petzold [81],
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and the title of this paper (“Differential/algebraic equations are not ODEs”) succinctly summarizes

the above discussion.

We shall employ the generalized-α method for temporal discretization. The generalized-α

method was first proposed for second-order transient systems in Reference [23], and later mod-

ified for first-order transient systems in Reference [58]. After applying the generalized-α method

to the governing equations (2.1a)–(2.1c), we obtain the following equations:

v(n+αm)(x)− div[D(x)grad[c(n+αf )]] = f (n+αf )(x) in Ω (3.6a)

c(n+αf )(x) = c
(n+αf )
p (x) on ΓD (3.6b)

n̂(x) ·D(x)grad[c(n+αf )] = q
(n+αf )
p (x) on ΓN (3.6c)

where the parameters αm, αf ∈ [0, 1]. In addition, we have the following relationship:

c(n+1)(x) = c(n)(x) + ∆t
(

(1− γ)v(n)(x) + γv(n+1)(x)
)

(3.7)

where the parameter γ ∈ [0, 1]. The initial condition takes the following form:

c(0)(x) = c0(x) in Ω (3.8)

Remark 3.1. Many popular time stepping schemes are special case of generalized-α method.

For example, forward Euler (αm = 1, αf = 1, γ = 0), trapezoidal rule (αm = 1, αf = 1, γ = 1/2),

and backward Euler (αm = 1, αf = 1, γ = 1).

Herein, we shall take αm = γ. This selection is intended to inherit the non-negative property

for the resulting time discrete equations. The time discrete equations in terms of concentration

take the following form: Find c(n+αf )(x) such that we have

1

αf∆t
c(n+αf )(x)− div[D(x)grad[c(n+αf )]] = f (n+αf )(x) +

1

αf∆t
c(n)(x) in Ω (3.9a)

c(n+αf )(x) = c
(n+αf )
p (x) on ΓD (3.9b)

n̂(x) ·D(x)grad[c(n+αf )] = q
(n+αf )
p (x) on ΓN (3.9c)

The above boundary value problem (3.9a)–(3.9c) is a second-order inhomogeneous elliptic partial

differential equation with Dirichlet and Neumann boundary conditions. Specifically, equation (3.9a)

is the well-known steady-state anisotropic diffusion equation with decay, as αf∆t will be always

positive. The decay coefficient can be identified as 1/(αf∆t), and the volumetric source term is

f (n+αf )(x)+ 1
αf∆tc

(n)(x). This boundary value problem is also known to satisfy maximum principles

and the non-negative constraint. The selection αm = γ made it possible to preserve maximum

principles and the non-negative constraint by ensuring the decay coefficient to be positive, and the

volumetric source at discrete time levels to be non-negative.

It should be emphasized that an arbitrary temporal discretization will not preserve maximum

principles and the non-negative constraint. An important aspect is to ensure is that the resulting

equation after a temporal discretization of transient diffusion equation (2.1a) is a diffusion equation

with decay instead of a Helmholtz equation. Diffusion equation with decay takes the following form:

α(x)c(x) − div[D(x)grad[c]] = f(x) (3.10)

with α(x) ≥ 0. If α(x) < 0, the equation is referred to as Helmholtz equation. It should be

noted that Helmholtz equation does not have a maximum principle similar to the one possessed
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by diffusion equation with decay [36]. Hence, in order to preserve maximum principles and the

non-negative constraint, the temporal discretization based on the method of horizontal lines should

be carried out in such a way that the resulting decay coefficient is non-negative.

Recently, Nagarajan and Nakshatrala [73] have proposed a procedure for enforcing maximum

principles and the non-negative constraint for steady diffusion with decay equation, which we shall

modify to solve equations (3.9a)–(3.9c). We start by applying Galerkin formalism to equations

(3.9a)–(3.9c). The corresponding weak form takes the following form: Find c(n+αf )(x) ∈ Pn+αf

such that we have
∫

Ω
w(x)

1

αf∆t
c(n+αf )(x) dΩ +

∫

Ω
grad[w] ·D(x)grad

[

c(n+αf )
]

dΩ

=

∫

Ω
w(x)f (n+αf )(x) dΩ +

∫

Ω
w(x)

1

αf∆t
c(n)(x) dΩ

+

∫

ΓN

w(x)q
(n+αf )
p (x) dΓ ∀w(x) ∈ Q (3.11)

where the function spaces Pn+αf
and Q are defined as follows:

Pn+αf
:=
{

c(x) ∈ H1(Ω)
∣

∣ c(x) = c
(n+αf )
p (x) on ΓD

}

(3.12a)

Q :=
{

w(x) ∈ H1(Ω)
∣

∣ w(x) = 0 on ΓD
}

(3.12b)

After executing the usual steps of the finite element method, the above weak form (3.11) can be

converted to a system of linear equations of the following form:

Kc(n+αf ) = f (n+αf ) (3.13)

where “ndofs” denotes the number of (free) degrees-of-freedom, c(n+αf ) ∈ R
ndofs denotes the

unknown vector containing nodal concentrations at the weighted time level tn+αf
, f (n+αf ) ∈ R

ndofs

is a known vector, and K is a symmetric and positive definite matrix. It will be shown in a

subsequent section that the finite element solution obtained by solving the system of linear equations

(3.13) may not satisfy maximum principles and the non-negative constraint. Using optimization-

based techniques, we now modify the above solution procedure to meet these important physical

constraints.

3.2. Enforcing maximum principles and the non-negative constraint. We shall denote

the standard inner product on finite dimensional Euclidean spaces by 〈·; ·〉. We shall use the symbols

� and � to denote component-wise inequalities for vectors. That is, for given any two (finite

dimensional) vectors a and b

a � b means that ai ≤ bi ∀i (3.14)

Similarly, one can define the symbol �. The optimization problem can then be written as follows:

minimize
c
(n+αf )

∈Rndofs

1

2

〈

c(n+αf );Kc(n+αf )
〉

−
〈

c(n+αf );f (n+αf )
〉

(3.15a)

subject to c
(n+αf )
min 1 � c(n+αf ) � c

(n+αf )
max 1 (3.15b)

where 1 is a vector containing ones of size ndofs× 1, and c
(n+αf )
min and c

(n+αf )
max are respectively the

lower and upper bounds. For enforcing maximum principles, c
(n+αf )
min and c

(n+αf )
max can be taken as

13



follows:

c
(n+αf )
min := min

{

min
x∈Ω

c0(x), min
x∈∂Ω

c
(n+αf )
p (x)

}

(3.16a)

c
(n+αf )
max := max

{

max
x∈Ω

c0(x), max
x∈∂Ω

c
(n+αf )
p (x)

}

(3.16b)

For problems involving only the non-negative constraint, one can employ the following:

c
(n+αf )
min = 0 and c

(n+αf )
max = +∞ (3.17)

Alternatively, for enforcing the non-negative constraint, one can replace the constraint (3.15b) with

the following:

0 � c(n+αf ) (3.18)

where 0 denotes the vector of size ndofs× 1 containing zeros. It should be noted that the above

optimization problem (3.15) belongs to quadratic programming. Since, for the problem at hand, the

matrix K is positive definite (which makes the objective function (3.15a) convex) the optimization

problem belongs to convex quadratic programming. A sound mathematical theory is already in place

for studying convex quadratic programming [16], and several efficient algorithms are available in

the literature [78, 95, 16]. In this paper, we shall employ the built-in optimization solver available

in MATLAB [7]. Some other popular packages that can handle convex quadratic programming

optimization problems are GAMS [6], TAO [72], and DAKOTA [8].

Once the nodal concentrations are obtained at weighted time level, one can obtain the nodal

concentrations at integral time levels as follows:

c(n+1) =
c(n+αf ) − (1− αf )c

(n)

αf
(3.19)

Although c(n+αf ) � 0, the nodal concentrations at integral time levels based on equation (3.19)

need not be non-negative if αf 6= 1. To put it differently, one is assured of satisfying maximum

principles and the non-negative constraint under the proposed methodology if αm = γ ∈ (0, 1] and

αf = 1. If needed, calculate nodal rate of concentrations using the following expression:

v(n+1) =
c(n+1) − c(n) − (1− γ)∆tv(n)

γ∆t
(3.20)

It should also be emphasized that explicit schemes (i.e., the forward Euler) cannot be employed

under the proposed methodology to meet maximum principles and the non-negative constraint.

The various steps involved in the numerical implementation of the proposed methodology to satisfy

maximum principles and the non-negative constraint are summarized in Algorithm 1, which could

serve as a quick reference during computer code design and implementation.

4. A REPRESENTATIVE NUMERICAL RESULT

In this section, we shall illustrate the performance of the proposed methodology for enforc-

ing maximum principles and the non-negative constraint using a representative two-dimensional

problem. It should be, however, noted that the proposed methodology is equally applicable for

solving three-dimensional problems. We do not solve any three-dimensional problem here as, in

comparison with one- and two-dimensional problems, there are no additional difficulties other than

the usual book keeping that is associated with most three-dimensional problems. In our numerical
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Algorithm 1 Implementation of the proposed methodology based on αf = 1.

1: Input: Initial condition c(x), Dirichlet boundary conditions cp(x, t), Neumann boundary con-

ditions qp(x, t), time step ∆t, total time of interest I, αm = γ ∈ (0, 1].

2: Construct initial nodal concentrations c(0)

3: Set c(n) ←− c(0), t←− 0, n←− 0

4: while t < I do

5: Calculate c
(n+1)
min and c

(n+1)
max (see equations (3.16)–(3.17))

6: Call non-negative solver to obtain c(n+1)

minimize
c
(n+1)∈Rndofs

1

2
〈c(n+1);Kc(n+1)〉 − 〈c(n+1);f (n+1)〉

subject to c
(n+1)
min 1 � c(n+1) � c(n+1)

max 1

7: If needed, obtain rate of nodal concentrations at integral time levels (but need to choose

γ > 1/2 to obtain stable results for the rates)

v(n+1) =
c(n+1) − c(n) − (1− γ)∆tv(n)

γ∆t

8: Set c(n) ←− c(n+1), t←− t+∆t, n←− n+ 1

9: end while

simulations we have employed low-order finite elements, and have taken αf = 1. It is assumed that

αm = γ = 1, unless stated otherwise.

4.1. Transient anisotropic diffusion in square plate with a hole. The computational

domain is given by Ω := (0, 1) × (0, 1) − [0.45, 0.55] × [0.45, 0.55]. The initial concentration in the

domain is taken to be zero (i.e., c0(x) = 0). The volumetric source is zero (i.e., f(x, t) = 0). The

inner hole is prescribed with a constant concentration of unity, and the outer hole is prescribed

with a constant concentration of zero. The diffusivity tensor is taken as follows:

D(x) = RD0R
T (4.1)

where D0 and the rotation tensor are, respectively, defined as follows:

D0 =

(

k1 0

0 k2

)

(4.2a)

R =

(

+cos(θ) − sin(θ)

+ sin(θ) + cos(θ)

)

(4.2b)

with the values k1 = 10, k2 = 10−3 and θ = −π/6. Using the maximum principle given by Theorem

2.2, it can be concluded that the concentration in the domain should be between zero and unity.

This test problem is used to illustrate the following aspects:

(i) The numerical results from COMSOL [71] (which is a popular commercial finite element

software package) do not satisfy the maximum principle and the non-negative constraint for

transient anisotropic diffusion.
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(ii) The proposed methodology satisfies the maximum principle and the non-negative constraint

even on unstructured meshes with no additional restrictions on the time step.

(iii) The approach of using the backward Euler time stepping scheme with lumped capacity matrix

does not guarantee non-negative solutions in the case of anisotropic diffusion.

Using numerical simulations it has been found that the transient solution is very close to the

steady-state solution for time greater than 0.05. Therefore, the time steps for this test problem are

chosen to be smaller than or equal to 0.05 so that they are appropriate for transient analyses.

We first show the results obtained using COMSOL [71]. Two different meshes are employed

in the numerical simulations, which are shown in Figure 2. The variation of the minimum concen-

tration with time is shown in Figure 3, and the numerical results from COMSOL did not satisfy

the non-negative constraint. Figures 4 and 5 show the spread of the violation of the non-negative

constraint and the concentration profiles using COMSOL for four-node structured mesh and three-

node unstructured mesh, respectively. From these figures, the following two observations can be

made:

(a) The magnitude of the violation of the non-negative constraint increases as the time step de-

creases.

(b) The violation reaches a steady-state value after sufficient time, which is around t = 0.05 for

this problem. It should be emphasized that this steady-state value for minimum concentration

is a significant non-negative number, and the violation of the non-negative constraint is nearly

5%.

The aforementioned problem is also solved using the proposed methodology. Figure 6 shows the

unstructured computational meshes used in the numerical simulation. The concentration profiles

obtained under the proposed methodology using these computational meshes are shown in Figures

7 and 8. Clearly, the proposed methodology satisfies the maximum principle and the non-negative

constraint at all time levels. Figure 9 clearly shows that the approach of employing the backward

Euler time stepping scheme with lumped capacity matrix is not sufficient to meet the maximum

principle and the non-negative constraint in the case of transient anisotropic diffusion. This ap-

proach will work in the case of transient isotropic diffusion provided some restrictions on the mesh

are met.

5. CONCLUDING REMARKS

We have presented a novel methodology for transient anisotropic diffusion equations that satis-

fies maximum principles and the non-negative constraint on computational grids with no additional

restrictions on the time step. The methodology has been developed using the method of horizontal

lines, and techniques from convex programming. We have shown that the semi-discrete procedure

based on the standard single-field formulation gives unphysical negative concentrations and vio-

lates maximum principles. Using several representative numerical examples we have shown that

the proposed methodology satisfies maximum principles and the non-negative constraint on general

computational grids with anisotropic and heterogeneous diffusion. The proposed methodology per-

forms gives physically meaningful non-negative concentrations even on coarse computational grids

and for small time steps.
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Figure 2. Anisotropic diffusion in a square plate with a hole: This figure shows the meshes

employed in the numerical simulations using COMSOL [71]. The left figure shows a struc-

tured mesh based on four-node quadrilateral elements, and the right figure shows an un-

structured mesh based on three-node triangular elements.
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Figure 3. Anisotropic diffusion in square plate with a hole: This figure shows the variation

of minimum concentration with time under the meshes shown in Figure 2. COMSOL [71] is

employed in the numerical simulation. The solution is very close to the steady-state response

for time greater than 0.05.
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(a) ∆t = 0.0001, t = 3∆t (minimum = -0.08447) (b) ∆t = 0.0001, t = 0.05 (minimum = -0.05351)

(c) ∆t = 0.001, t = 3∆t (minimum = -0.07781) (d) ∆t = 0.001, t = 0.05 (minimum = -0.05350)

Figure 4. Anisotropic diffusion in square plate with a hole: Concentration profiles using

COMSOL [71] by employing structured four-node quadrilateral mesh. The finite element

mesh is also shown. The numerical results clearly violated the non-negative constraint for

the concentration. The regions that violated the non-negative constraint are indicated in

white color.
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(a) ∆t = 0.0001, t = 3∆t (minimum = -0.1170) (b) ∆t = 0.0001, t = 0.05 (minimum= -0.05406)

(c) ∆t = 0.001, t = 3∆t (minimum = -0.09527) (d) ∆t = 0.001, t = 0.05 (minimum = -0.05406)

Figure 5. Anisotropic diffusion in square plate with a hole: Concentration profiles using

COMSOL [71] by employing unstructured three-node triangular mesh. The finite element

mesh is also shown. The numerical results clearly violated the non-negative constraint for

the concentration. The regions that violated the non-negative constraint are indicated in

white color.
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Figure 6. Anisotropic diffusion in a square plate with a hole: This figure shows the meshes

employed in the numerical simulations using the proposed numerical methodology. The left

figure shows an unstructured mesh based on four-node quadrilateral elements, and the right

figure shows an unstructured mesh based on three-node triangular elements. The meshes

are generated using GMSH [1].
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Figure 7. Anisotropic diffusion in square plate with a hole: Concentration profiles using

the proposed methodology by employing unstructured four-node triangular mesh, which is

shown in figure 6(a). The numerical results satisfy the maximum principle and the non-

negative constraint. The numerical results are visualized using Tecplot [2].
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Figure 8. Anisotropic diffusion in square plate with a hole: Concentration profiles using

the proposed methodology by employing unstructured three-node triangular mesh, which is

shown in figure 6(b). The numerical results satisfy the maximum principle and the non-

negative constraint. The numerical results are visualized using Tecplot [2].
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Figure 9. Anisotropic diffusion in square plate with a hole: This figure shows the concen-

tration profiles obtained using the backward Euler time stepping scheme (αf = αm = γ = 1)

and lumped capacity matrix approach. The unstructured four-node quadrilateral mesh

shown in figure 6(a) is used in the numerical simulation. Clearly, the numerical results do

not satisfy the maximum principle and the non-negative constraint. In the case of isotropic

diffusion, employing the backward Euler time-stepping scheme with lumped capacity matrix

approach can be employed to satisfy maximum principles and the non-negative constraint

(with some restrictions on the mesh). As it is evident from this figure, meeting these con-

ditions is not sufficient in the case of transient anisotropic diffusion. The regions of the

violation of the non-negative constraint are shown in white color. The numerical results are

visualized using Tecplot [2].
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A Report on Research Task #4.2

On achieving element-wise species balance and enforcing

maximum principles for advection-diffusion-reaction equations

6. MOTIVATION BEHIND THE RESEARCH

Many phenomena in mathematical physics and engineering science are modeled using advection-

diffusion-reaction (ADR) equation [37, 27, 91, 28]. For example, ADR equations naturally arise

in many chemical, biological, and technological important processes such as degradation / healing

of materials under extreme environmental conditions, coupled chemo-thermo-mechano-diffusion

problems arising in nuclear industry, contaminant transport in heterogeneous anisotropic porous

media, turbulent mixing in atmospheric sciences, diffusion-controlled biochemical reactions with

applications to medicine, ionic mobility in chemical and biological sciences, transport and dispersion

of injected tracers in hydrogeological systems. In addition, advection-diffusion-reaction equation

serves as a good mathematical model in the field of numerical analysis, as it offers various challenges

in obtaining stable and accurate numerical solutions [69, 56, 54, 67].

The typical unknown in these equations will be concentration. It should be noted the phys-

ical quantities like concentration of a chemical species or absolute temperature naturally attain

non-negative values. In certain constitutive models, these quantities satisfy the so-called diffusion-

type equations, which are either elliptic or parabolic partial differential equations. These ellip-

tic/parabolic PDEs satisfy important mathematical properties like maximum principles, compari-

son principles, the non-negative constraint, and monotone property [79]. Any robust and reliable

numerical formulation needs to satisfy these mathematical properties and the physical constraints

like the non-negative constraint. In the literature, it is well-documented that traditional numeri-

cal methods perform poorly for advection-dominated ADR equations (e.g., see reference [29]). In

the past few decades, considerable progress has been made in trying to capture various localized

phenomena and obtain sufficiently accurate numerical solution for ADR equations on coarse grids.

It is then natural to ask: “why there is a need for yet another numerical formulation for ADR

equation?”

The three main challenges to solve an ADR equation are in capturing localized phenomena and

avoiding node-to-node spurious oscillations, in satisfying the non-negative constraint and maximum

principles, and in satisfying element-wise (or local) species balance. It should be emphasized that

the current numerical formulations do not meet one or more of the aforementioned features. This

sets up the main objective of this research work, which is to develop a finite element methodology

for advection-diffusion-reaction equations that possesses the following desirable properties:

(i) No spurious node-to-node oscillations in the entire domain.

(ii) Captures the interior and boundary layers for advection-dominated problems.
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(iii) Satisfies discrete maximum principles and the non-negative constraint.

(iv) Satisfies element-wise species balance.

(v) Gives sufficiently accurate solutions even on coarse computational grids1.

6.1. An outline of the report. The remainder of the report is organized as follows. The

governing equations for ADR systems are presented in Section 7. In Section 8, we propose

an optimization-based mixed finite element method to satisfy discrete maximum principles and

element-wise species balance. This involves minimizing a least-squares functional subject to a set

of constraints. In Section 9, we perform numerical h-convergence of the proposed methodology.

Finally, conclusions are drawn in Section 10.

The standard symbolic notation is adopted in this report. We shall denote scalars by lowercase

English alphabet or lowercase Greek alphabet (e.g., concentration c). We shall make a distinction

between vectors in the continuum and finite element settings. Similarly, a distinction is made

between second-order tensors in the continuum setting versus matrices in the context of the finite

element method. The continuum vectors are denoted by lower case boldface normal letters, and

the second-order tensors will be denoted using upper case boldface normal letters (e.g., vector x

and second-order tensor D). In the finite element context, we shall denote the vectors using lower

case boldface italic letters, and the matrices are denoted using upper case boldface italic letters

(e.g., vector v and matrix K). Other notational conventions adopted in this report are introduced

as needed.

7. GOVERNING EQUATIONS: ADVECTION-DIFFUSION-REACTION SYSTEM

Let Ω ⊂ R
nd be a bounded open domain, where “nd” denotes the number of spatial dimensions.

The boundary of the domain is denoted by ∂Ω, which is assumed to be piecewise smooth. Mathe-

matically, ∂Ω := Ω−Ω, where a superposed bar denotes the set closure. A spatial point is denoted

by x ∈ Ω. The gradient and divergence operators are, respectively, denoted by grad[·] and div[·].
Let c(x) denote the concentration field. The boundary is divided into two parts: Γc and Γq such

that Γc ∪ Γq = ∂Ω and Γc ∩ Γq = ∅. Γc is that part of the boundary on which the concentration is

prescribed, and Γq is the part of the boundary on which the total flux is prescribed. The governing

equations take the following form:

α(x)c(x) + div [c(x)v(x) −D(x)grad[c(x)]] = f(x) in Ω (7.1a)

c(x) = cp(x) on Γc (7.1b)

(c(x)v(x) −D(x)grad[c(x)]) · n(x) = qp(x) on Γq (7.1c)

where n(x) is the unit outward normal to the boundary, v(x) is the known velocity field, α(x) is

the decay co-efficient, f(x) is the prescribed volumetric source, D(x) is the anisotropic diffusivity

tensor, cp(x) is the prescribed concentration, and qp(x) is the prescribed total flux. The diffusivity

tensor is assumed to be symmetric, uniformly elliptic and bounded above.

1One may expect some subjectivity in calling a mesh to be coarse. But in a subsequent section, we will define

precisely what is meant by a “coarse mesh” for advection-diffusion-reaction equations in terms of P -matrices.
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7.1. Single-field Galerkin formulation. Let us define the following function spaces, which

will be used in the remainder of this report:

C :=
{

c(x) ∈ H1(Ω)
∣

∣ c(x) = cp(x) on Γc
}

(7.2a)

W :=
{

w(x) ∈ H1(Ω)
∣

∣ w(x) = 0 on Γc
}

(7.2b)

Q :=
{

q(x) ∈
(

H1(Ω)
)nd
}

(7.2c)

where H1(Ω) is a standard Sobolev space [32]. Given two fields a(x) and b(x) on K, the standard

L2 inner product over K is denoted as follows:

(a; b)K =

∫

K
a(x) · b(x) dK (7.3)

The subscript for the inner product will be dropped if K = Ω. The single-field Galerkin formulation

for advection-diffusion with (linear) decay reads as follows: Find c(x) ∈ C such that we have

(w;αc) + (w; div[vc]) + (grad[w];Dgrad[c]) = (w; f) ∀w(x) ∈ W (7.4)

It is well-known that the single-field Galerkin formulation does not perform well, as it produces

spurious node-to-node oscillations on coarse grids [29]. The formulation also violates the non-

negative constraint and maximum principles for anisotropic medium, and does not possess element-

wise species balance property.

8. PROPOSED NUMERICAL METHODOLOGY: DMP AND ELEMENT-WISE

SPECIES BALANCE

Let the computational domain Ω be discretized into a set of “Nele” non-overlapping open sub-

domains, which will be referred to as elements. We shall denote the mesh discretization by Th. The
mesh parameters for a given Ωe ∈ Th are defined as follows:

Th =

Nele
⋃

e=1

Ωe (8.1a)

h = max
Ωe∈Th

{

diam(Ωe)
}

(8.1b)

diam(Ωe) = the longest edge of mesh cell Ω̄e (8.1c)

where a superposed bar denotes the set closure. The boundary of Ωe is denoted as ∂Ωe := Ωe−Ωe.

We now present a finite element methodology to obtain numerical solutions for ADR equations

that satisfies maximum principles and element-wise species balance.

8.1. First-order mixed formulation. We shall rewrite the governing equations for ADR in

first-order mixed form, which take the following form:

q(x) − v(x)c(x) +D(x)grad[c] = 0 in Ω (8.2a)

div[q(x)] = f(x)− α(x)c(x) in Ω (8.2b)

c(x) = cp(x) on Γc (8.2c)

q(x) · n(x) = qp(x) on Γq (8.2d)

The various components of the proposed computational framework for ADR equations are as fol-

lows:
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(i) Construct a least-squares functional for the above first-order equations

(ii) Use low-order finite element interpolation for c(x) and q(x)

(iii) Enforce maximum principle as constraint: cmin ≤ c ≤ cmax in Ω

(iv) Enforce local mass balance: div[q] = f(x)− α(x)c(x) in each mesh cell Ωe
∫

∂Ωe

q(x) · n(x) dΓ =

∫

Ωe

f(x) dΩ−
∫

Ωe

α(x)c(x) dΩ

We now construct various least-squares functionals and analyze the influence of various con-

straints on the performance of these least-squares. Hsieh and Yang [52] have proposed a similar

least-squares functionals for a different set of first-order mixed form of isotropic advection-diffusion

equations. Even for isotropic case, they did not consider the effects of maximum principles and

element-wise (or local) species balance on the performance of these least-squares. In this report,

we investigate how do these least-squares functionals perform when one includes anisotropy, het-

erogeneity, linear reaction term, non-solenoidal velocity field, and influence of constraints.

8.2. Weighted primitive LSFEM. The weighted primitive least-squares functional FPrim(c,q) :

C × Q → R based on L2–norm is given by:

FPrim (c,q) :=
1

2

∥

∥

∥A(x)
(

q(x)− c(x)v(x) +D(x)grad[c(x)]
)

∥

∥

∥

2

Ω

+
1

2

∥

∥

∥β(x)
(

α(x)c(x) + div[q(x)]− f(x)
)

∥

∥

∥

2

Ω

+
1

2

∥

∥

∥
q(x) · n(x)− qp(x)

∥

∥

∥

2

Γq
(8.3)

where the second-order tensor A(x) and the scalar function β(x) are the weights, and are defined

as follows:

A(x) =

{

I LS Type-1

D−1/2(x) LS Type-2
(8.4a)

β(x) =







1 LS Type-1
1 if α(x) = 0

α−1/2(x) if α(x) 6= 0

}

LS Type-2
(8.4b)

8.3. Weighted stabilized LSFEM. The weighted stabilized least-squares functional FStab(c,q) :

C × Q → R based on L2–norm is given by:

FStab (c,q) :=
1

2

∥

∥

∥
A(x)

(

q(x)− c(x)v(x) +D(x)grad[c(x)]
)

∥

∥

∥

2

Ω

+
1

2

∥

∥

∥β(x)
(

α(x)c(x) + div[q(x)] − f(x)
)

∥

∥

∥

2

Ω

+
1

2

∥

∥

∥
q(x) · n(x)− qp(x)

∥

∥

∥

2

Γq

+
1

2

∑

Ωe∈Th

τΩe

∥

∥

∥
div
[

c(x)v(x) −D(x)grad[c(x)]
]

+ α(x)c(x) − f(x)
∥

∥

∥

2

Ωe

(8.5)

where the element dependent stabilization parameter τΩe ≥ 0 is given as:

τΩe = cΩeh
2
Ωe

(8.6)
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8.4. Weighted streamline diffusion LSFEM. The weighted streamline diffusion least-

squares functional FStrDif(c,q) : C × Q → R based on L2–norm is given by:

FStrDif (c,q) :=
1

2

∑

Ωe∈Th

∥

∥

∥
A(x)

(

q− cv +Dgrad[c]− δΩev (div[cv −Dgrad[c]])
)

∥

∥

∥

2

Ωe

+
1

2

∑

Ωe∈Th

∥

∥

∥β(x)
(

αc+ div[q]− f − fδΩe

)

∥

∥

∥

2

Ωe

+
1

2

∑

Ωe∈Th

∣

∣

Γq

∥

∥

∥
q · n− qp − δΩev · n (f − αc)

∥

∥

∥

2

Ωe

(8.7)

where the element dependent streamline diffusion parameter δΩe ≤ 0 and the term fδΩe
is given as

follows:

δΩe = −
c̆Ωeh

2
Ωe

‖D‖∞
(8.8a)

fδΩe
= δΩe

(

grad[f − αc] · v + div[v] (f − αc)
)

(8.8b)

8.5. Weighted negatively stabilized streamline diffusion LSFEM. The weighted neg-

atively stabilized streamline diffusion least-squares functional FNgStb(c,q) : C × Q → R based on

L2–norm is given by:

FNgStb (c,q) :=
1

2

∑

Ωe∈Th

∥

∥

∥
A(x)

(

q− cv +Dgrad[c]− δΩev (div[cv −Dgrad[c]])
)

∥

∥

∥

2

Ωe

+
1

2

∑

Ωe∈Th

∥

∥

∥β(x)
(

αc+ div[q]− f − fδΩe

)

∥

∥

∥

2

Ωe

+
1

2

∑

Ωe∈Th

∣

∣

Γq

∥

∥

∥
q · n− qp − δΩev · n (f − αc)

∥

∥

∥

2

Ωe

+
1

2

∑

Ωe∈Th

τΩe

∥

∥

∥div
[

cv −Dgrad[c]
]

+ αc− f
∥

∥

∥

2

Ωe

(8.9)

where the element dependent parameters τΩe ≤ 0 and δΩe ≤ 0 are given as:

δΩe = −
c̃Ωeh

2
Ωe

‖D‖∞
(8.10a)

τΩe = −˜̃cΩeh
2
Ωe

(8.10b)

In the subsequent sections, we will present representative numerical results for steady-state

advection-diffusion-reaction equations. In particular, we shall consider several canonical problems

that exhibit localized phenomena such as steep interior and boundary layers. The performance

of the four least-squares formulations (primitive, stabilized, streamline diffusion, and negatively

stabilized streamline diffusion) are analyzed when subjected to the non-negative constraint and the

local species balance constraint.
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9. NUMERICAL h-CONVERGENCE STUDY

Consider the computational domain to be a unit square Ω = (0, 1)× (0, 1). The diffusivity D is

assumed to be a constant. The velocity field is taken as v(x) = êy. The boundary conditions can

be written as follows:

c(x) =

{

sin(πx) for y = 0

0 for x = 0 or x = 1 or y = 1
(9.1)

A pictorial description of the boundary value problem is given in Figure 10. Using the method

of manufactured solutions, we construct the analytical solution to the concentration field. The

corresponding analytical solution for c(x) which satisfies the boundary conditions given by equation

(9.1) is as follows [35]:

c(x, y) =
sin(πx)

em2−m1 − 1

(

em2−m1em1y − em2y
)

(9.2)

where

m1 =
1−
√
1 + 4π2D2

2D
(9.3a)

m2 =
1 +
√
1 + 4π2D2

2D
(9.3b)

By using equation (9.2), we calculate the corresponding flux vector and volumetric source . The

analytical expressions for q(x) and f(x) are given as follows:

q(x, y) =

(

−Dπ cos(πx)
em2−m1−1

(em2−m1em1y − em2y)
sin(πx)

em2−m1−1
((1−m1D) em2−m1em1y − (1−m2D) em2y)

)

(9.4a)

f(x, y) =
sin(πx)

em2−m1 − 1

(

(

m1 −m2
1D + π2D

)

em2−m1em1y −
(

m2 −m2
2D + π2D

)

em2y
)

(9.4b)

In the present study we have taken D = 1. From figures 11–14, one can conclude that the per-

formance of four-node quadrilateral finite element mesh is much better than that of the three-node

triangle finite element mesh. The proposed methodology works well.

10. CONCLUDING REMARKS

We have presented a methodology for advection-diffusion equation that satisfies the non-

negative constraint and maximum principles even for anisotropic medium, possesses element-wise

species balance property, and provides physically meaningful numerical solutions without node-to-

node oscillations even on coarse computational grids. Numerical h-convergence is performed on a

series of hierarchical meshes, and the proposed methodology performed well. It is noteworthy that

four-node quadrilateral meshes performed better than three-node triangular meshes.
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x

y

(0, 0) (1, 0)

(0
,1
)

c = sin(πx)

c
=

0

c = 0

c
=

0 v = êy

α = 0

D = 1

Figure 10. Numerical h-convergence study: A pictorial description of the two-dimensional

boundary value problem used in the convergence analysis.

Figure 11. Numerical h-convergence study: This figure shows the typical three-node tri-

angular and four-node quadrilateral meshes used in the numerical convergence study. The

meshes shown in the figure have 21 nodes along each side of the computational domain.

A series of hierarchical computational meshes is employed in the study: 11 × 11, 21 × 21,

41× 41, 81× 81, and 161× 161 meshes.
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(a) Concentration: No constraints (b) Concentration: Local mass balance

(c) Flux (x-component): No constraints (d) Flux (x-component): Local mass balance

(e) Flux (y-component): No constraints (f) Flux (y-component): Local mass balance

Figure 12. Numerical h-convergence study: This figure shows the concentration and flux

profiles for stabilized least-squares finite element method for T3-mesh with 161 nodes on

each side of the domain. The numerical results obtained are very similar to that of the

primitive least-squares. The concentration and flux profiles match with the analytical solu-

tion when there are no mass balance constraints. But when local mass balance is enforced

as a constraints one obtains negative values for concentration. The flux profile for stabi-

lized least-squares with local mass balance constraints differ considerably as compared to

analytical solution.
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(a) Concentration: No constraints (b) Concentration: Local mass balance

(c) Flux (x-component): No constraints (d) Flux (x-component): Local mass balance

(e) Flux (y-component): No constraints (f) Flux (y-component): Local mass balance

Figure 13. Numerical h-convergence study: This figure shows the concentration and flux

profiles for stabilized least-squares finite element method. In this case, we use Q4-mesh with

161 nodes on each side to perform the numerical simulation. This formulation based on the

Q4-element is able to predict the nature of the analytical solution both qualitatively and

quantitatively. There are no violation of the non-negative constraint when one enforces the

local mass balance constraints.
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Figure 14. Numerical h-convergence study: This figure provides information in regards to

the error incurred in satisfying local mass balance for stabilized least-squares functional. The

left figure shows the error for T3-mesh while the right figure shows the error for Q4-mesh.

One can observe that the maximum and minimum values of error in local mass balance for

T3-mesh is much bigger than that of Q4-mesh.
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A Report on Research Task #4.3

Mesh restrictions on T3 element to satisfy maximum principles

for heterogeneous anisotropic diffusion

11. INTRODUCTION AND MOTIVATION

Diffusion-type equations are commonly encountered in various branches of engineering, sciences,

and even in economics [27, 54, 67, 69, 91, 9, 87]. These equations have been well-studied in

Applied Mathematics, and several properties and estimates have been derived [32, 79]. Numerous

numerical formulations have been proposed and their performance have been analyzed both the-

oretically and numerically [37, 34, 47, 46, 17, 18, 25, 26, 59]. Several sophisticated software

packages have been developed to solve these type of equations [3, 5, 4]. Special solvers for solving

the resulting discrete equations have also been proposed and studied adequately [90, 41].

This paper concerns with numerical solutions. Despite the aforementioned advances, it should

be noted that a numerical solution will always lose some mathematical properties that the exact

solution possess. In particular, the aforementioned numerical formulations do not satisfy compari-

son principles, maximum principles, and the non-negative constraint. There are two possible routes

to satisfy maximum principles and the non-negative constraint under the finite element method.

The first approach is to employ optimization-based methodologies to explicitly enforce the desir-

able properties as constraints. Some notable works in this direction are presented in references

[75, 73, 74]. One of the main advantages of these methods is that there is no need to place

restrictions on the mesh. But this comes with an additional computational cost. Although it has

been shown that the additional computational cost is less than 10% [74].

The second approach is to place restrictions on the mesh to meet maximum principles and the

non-negative constraint. Ciarlet and Raviart [24] have shown that numerical solutions based on the

single-field Galerkin finite element formulation, in general, does not converge uniformly. It should

be, however, noted that the single-field Galerkin formulation is a converging scheme. Ciarlet and

Raviart have also shown that a sufficient condition for single-field Galerkin formulation to converge

uniformly for isotropic diffusion is to employ a well-centered three-node triangular elements with

low-order interpolation. The obvious advantage of the second approach is that one can use the

single-field Galerkin formulation without any modification. The drawback is that an appropriate

computational mesh may not exist because of the required restrictions on the shape and size of

the finite element. For example, it is a herculean task (sometimes impossible) to generate a well-

centered triangular mesh for any given two-dimensional domain [93]. Note that requiring a mesh

to be well-centered is a more stringent requirement than requiring the mesh to be Delaunay.
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11.1. Main contributions and outline of the report. Herein, we shall focus on the second

approach. In particular, we shall derive sufficient conditions for restrictions on the three-node

triangle finite elements to meet comparison principles, maximum principles, and the non-negative

constraint in the case of heterogeneous anisotropic diffusion. The remainder of this research report

is organized as follows. In Section 12, we shall present the governing equations for anisotropic

diffusion and associated comparison principle, maximum principle, and the non-negative constraint.

In Section 13, we shall present discrete versions of the comparison principle and maximum principle.

We then derive restrictions on the mesh for three-node triangle element to meet maximum principles

and comparison principles for heterogeneous anisotropic diffusion. Conclusions are drawn in Section

14.

12. ANISOTROPIC DIFFUSION EQUATION AND ASSOCIATED

MATHEMATICAL PRINCIPLES

12.1. Anisotropic diffusion equation. Let Ω ⊂ R
nd be a bounded open domain, where

“nd” denotes the number of spatial dimensions. The boundary of the domain is denoted by ∂Ω,

which is assumed to be piecewise smooth. Mathematically, ∂Ω := Ω − Ω, where a superposed

bar denotes the set closure. A spatial point is denoted by x ∈ Ω. The gradient and divergence

operators are, respectively, denoted by grad[·] and div[·]. Let c(x) denote the concentration field.

The boundary is divided into two parts: ΓD and ΓN such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅ for
well-posedness. ΓD is that part of the boundary on which Dirichlet boundary condition is prescribed

(i.e., the concentration is prescribed), and ΓN is the part of the boundary on which the Neumann

boundary condition is prescribed (i.e., the flux is prescribed). For uniqueness of the solution, we

shall assume that meas
(

ΓD
)

> 0. The governing equations take the following form:

−div [D(x)grad[c(x)]] = f(x) in Ω (12.1a)

c(x) = cp(x) on ΓD (12.1b)

−n(x) ·D(x)grad[c(x)] = qp(x) on ΓN (12.1c)

where n(x) is the unit outward normal to the boundary, f(x) is the prescribed volumetric source,

D(x) is the anisotropic diffusivity tensor, cp(x) is the prescribed concentration, and qp(x) is the

prescribed flux. Physics of the problem demands that the diffusivity tensor be symmetric. That is,

DT(x) = D(x) ∀x ∈ Ω (12.2)

In addition, the diffusivity tensor is assumed to be uniformly elliptic and bounded above. That is,

there exists two real numbers 0 < γ1 ≤ γ2 < +∞ such that we have

0 < γ1ξ · ξ ≤ ξ ·D(x)ξ ≤ γ2ξ · ξ ∀ξ ∈ R
nd\{0} and ∀x ∈ Ω (12.3)

From the theory of partial differential equations, it is well-known that the aforementioned boundary

value problem satisfies the so-called maximum principles, the non-negative constraint, and com-

parison principles. We shall present the relevant results in the form of theorems without proofs.

For complete details, see references [32, 79].

Theorem 12.1 (A comparison principle). Let L[c] := −div[D(x)grad[c]]. Let c1(x), c2(x) ∈
C2(Ω) ∩ C0(Ω). If L[c1] ≥ L[c2] in Ω and c1(x) ≥ c2(x) on ∂Ω then we have

c1(x) ≥ c2(x) ∀x ∈ Ω (12.4)

36



Theorem 12.2 (A maximum principle and the non-negative condition). Let cp(x) ≥ 0 on ∂Ω

and D(x) be continuously differentiable. If c(x) ∈ C2(Ω)∩C0(Ω) satisfies the differential inequality

−div[D(x)grad[c]] = f(x) ≥ 0 in Ω, then c(x) satisfies the following conditions:

min
x∈Ω

c(x) = min
x∈∂Ω

c(x) (12.5)

c(x) ≥ 0 in Ω (12.6)

Various numerical formulations such as finite element methods, finite volume methods, and

finite difference methods exist to solve these governing equations (12.1a)–(12.1c). It is well-known

that the framework offered by finite element methods are successful in obtaining accurate numerical

results for elliptic and parabolic partial differential equations. Among them single-field Galerkin

formulation is a very popular method for self-adjoint operators because of its rich mathematical

literature and amenability for computer implementation. Herein, we will outline the single-field

Galerkin formulation and derive mesh restrictions based on this methodology. It should be noted

that restrictions imposed on a mesh change as one alters the numerical formulation.

12.2. Single-field Galerkin formulation. We shall need the following function spaces to

precisely write down the single-field Galerkin formulation:

C :=
{

c(x) ∈ H1(Ω)
∣

∣ c(x) = cp(x) on ΓD
}

(12.7a)

W :=
{

w(x) ∈ H1(Ω)
∣

∣ w(x) = 0 on ΓD
}

(12.7b)

where H1(Ω) is a standard Sobolev space [32]. Given two fields a(x) and b(x) on K, the standard

L2 inner product over K is denoted as follows:

(a; b)K =

∫

K
a(x) · b(x) dK (12.8)

The subscript for the inner product will be dropped if K = Ω. The single-field Galerkin formulation

for anisotropic diffusion equation reads as follows: Find c(x) ∈ C such that we have

(grad[w];D(x)grad[c]) = (w(x); f(x)) + (w(x); qp(x))ΓN ∀w(x) ∈ W (12.9)

It is well-documented that the single-field Galerkin formulation violates the non-negative constraint

and maximum principles on general computational grids [24, 73, 75]. The violation is more severe

if the diffusion tensor is anisotropic. In the next section, by appealing to theory of nonnegative

matrices [12, 50, 94], we shall derive sufficient conditions on T3 elements to satisfy comparison

principles, maximum principles, and the non-negative constraint.

13. MESH RESTRICTIONS TO SATISFY COMPARISON AND MAXIMUM

PRINCIPLES

13.1. Discrete equations. In this subsection, we will outline the discrete versions of the

governing equations for anisotropic diffusion and the corresponding mathematical principles. To

this end we use low-order finite elements to discretize the anisotropic diffusion equations (12.1a)–

(12.1c) based on single-field Galerkin formulation (12.9). One of the important reasons for the

use of low-order finite elements (linear simplicial elements) for anisotropic diffusion is that they

play a prominent role in satisfying maximum principle. They are also of utmost importance in

mesh generation of complex geometries, error analysis, and adaptive local mesh refinement. The

low-order finite element discretization of anisotropic diffusion leads to a system of linear equations
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given by Kc = f , where K is the stiffness matrix, c is the nodal concentration vector, and f is

the volumetric source vector.

Based on this standard finite element methodology, we analyze the properties that the stiffness

matrix inherits and has to possess from the continuous boundary value problem. From the equations

(12.2) and (12.3), diffusivity tensor being symmetric and positive definite implies that the stiffness

matrix K is also symmetric and positive definite. One of the most important property that the

discrete system needs to have inorder to mimic the mathematical properties that continuous system

possess is that the stiffness matrix K has to be a monotone matrix. This is a necessary and

sufficient condition for the discrete equations to satisfy comparison principles, maximum principles,

and to meet the non-negative constraint. On general computational grids, it is well-known that

the stiffness matrix obtained via low-order finite element discretization of anisotropic diffusion will

not be a monotone matrix. So one of the ways to make sure that the stiffness matrix belongs to

the class of monotone matrices is that we impose restrictions on the element shape and size in a

computational mesh. In next subsection, we will discuss on a subclass of monotone matrices which

are easily amenable for deriving mesh restrictions.

13.2. Monotone matrices. The stiffness matrix K is said to be monotone if K−1 exists and

K−1 � 0. This means that
(

K−1
)

ij
≥ 0 ∀i, j. So in order to make sure that the stiffness matrix

be monotone, we have to impose restrictions on K−1. This means we have to find a computational

mesh such that
(

K−1
)

ij
≥ 0 ∀i, j. In general, to get an explicit analytical formula for

(

K−1
)

ij
is

extremely difficult and not viable. Hence, it is not a feasible option to find mesh restrictions based

on the condition that
(

K−1
)

ij
≥ 0. So a practicable route to obtain monotone stiffness matrices

through mesh restrictions is to consider strictly diagonally dominant matrices, which form a subset

to the class of monotone matrices [94, Section 3, Corollary 3.20 and Corollary 3.21]. The matrix

K is said to be strictly diagonally dominant if it satisfies the following conditions:

(a) Positive diagonal entries: (K)ii > 0,

(b) Non-positive off-diagonal entries: (K)ij ≤ 0 ∀i 6= j, and

(c) Strict diagonal dominance of rows: | (K)ii | >
∑

i 6=j

| (K)ij | ∀i, j.

One should note that the above three conditions are sufficient but not necessary for the stiffness

matrix to be monotone. The obvious advantage of considering strictly diagonally matrices is that

there is no need to compute
(

K−1
)

ij
explicitly because it is known aprior that these matrices are

monotone. Hence, through the manipulation of the entries of the stiffness matrix we can derive the

restrictions on the computational mesh to achieve strict diagonal dominance. We will now present

the discrete versions of the comparison principle and maximum principle outlined in Theorems 12.1

and 12.2

Theorem 13.1 (A discrete comparison principle). A numerical formulation is said to possess a

discrete comparison principle, if for any two finite-dimensional volumetric source vectors f1 and f2

which satisfy the relation f1 � f2, then the finite-dimensional numerical solutions satisfy c1 � c2.

Theorem 13.2 (A discrete maximum principle and the non-negative constraint). A numerical

formulation is said to possess a discrete maximum principle and meets the non-negativity constraint,

if for any finite-dimensional volumetric source vector f � 0 and for a given Dirichlet boundary

conditions vector cp (x) � 0 on ∂Ω, then the finite-dimensional numerical solution c (x) satisfies
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the following conditions:

min
x∈Ω

c (x) = min
x∈∂Ω

cp (x) (13.1a)

c (x) � 0 ∀x ∈ Ω (13.1b)

Remark 13.3. It should be noted that if a numerical formulation satisfies discrete comparison

principle then it automatically obeys discrete maximum principle and non-negativity constraint.

This can be shown by constructing a volumetric source vector f2 � 0 based on the monotone

stiffness matrix K and the non-negative Dirichlet boundary conditions vector cp (x). The explicit

formula for f2 is given by f2 = Kcp. Hence, this results in c2 = cp � 0. So from the Theorem 13.1,

it is evident that for any finite-dimensional numerical solution c1 we have the relation c1 � c2 � cp.

The non-negative constraint on the concentration vector c1 follows from the fact that cp � 0.

Remark 13.4. In the continuous setting, the comparison principle implies the maximum princi-

ple and vice-versa. The maximum principle implies the non-negative constraint. In discrete setting,

a numerical methodology may inherit one or more of discrete versions of these principles, and in

some cases, none. Here are some of the examples:

(i) The single-field Galerkin formulation for anisotropic diffusion on general computational grids

does not possess any of the discrete versions of the comparison principle, the maximum prin-

ciple or the non-negative constraint.

(ii) Le Potier’s method [84] and Lipnikov et al. [62, 63] satisfy the non-negative constraint but

does not possess the discrete version of the comparison principle and the maximum principle.

(iii) The optimization-based methods based on low-order finite elements [64, 75, 73] satisfies the

non-negative constraint and possess a discrete version of the maximum principle. However, the

methods do not inherit the comparison principle (a counterexample is shown in the Reference

[74, Section 4, Figure 1]).

(iv) The single-field Galerkin formulation for isotropic diffusion based on well-centered triangular

meshes possess discrete versions of all the three principles (the comparison principle, the

maximum principle, and the non-negative constraint).

13.3. Sufficient conditions on local stiffness matrix. In this subsection, we will obtain

sufficient conditions that insures the local stiffness matrix for a T3 element to be weakly diagonally

dominant. We will employ low-order Lagrange finite elements to derive the local stiffness matrix.

The reason for using low-order finite elements is that the shape functions for these elements are

monotonic and do not change their sign within the element [75, 73]. Note that this reasoning will

not hold for higher-order Lagrange finite elements as the shape functions for these elements can

change their sign within the element and hence need not satisfy the discrete maximum principle

(for more details see Reference [80]). Once we make sure that all of the local stiffness matrices are

weakly diagonally dominant then the standard finite element assembly process guarantees that the

global stiffness matrix is strictly diagonally dominant. After all if the stiffness matrix K is strictly

diagonally dominant, from subsections 13.1–13.2, we are ascertained that the the nodal values for

the concentration vector are non-negative. Thus we have non-negative solution everywhere in the

T3 element which results in non-negativity on the whole computational domain.

A pictorial description of the T3 element on which we derive sufficient conditions is given in

Figure 15. The mesh element PQR corresponds to an arbitrary T3 element of the computational

mesh in (X,Y ) coordinate system. Through a sequence of angle-preserving affine transformations
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and scaling operations this arbitrary mesh element is transformed to an actual element ABC in

(x, y) coordinate system. This transformation is composed of rigid body motion of the triangle

PQR and homogeneous deformations of its sides. Based on the principles of continuum mechanics

[39, 38, 49], we will now outline the corresponding mathematical equations for this transformation

and scaling operations:

x = Qp+ c (13.2a)

‖ui‖ = λi‖vi‖ where λi ∈ R+ and i = {1, 2, 3} (13.2b)

where p is the coordinates of a point in (X,Y ) coordinate system, x is the coordinates of a point in

(x, y) coordinate system, c is the translation vector, Q is a proper orthogonal transformation matrix,

‖vi‖ is the length of a side of the triangle PQR, ‖ui‖ represents the length of the transformed side

of PQR, and λi relates the length of a side in PQR to that of the corresponding transformed side

in ABC. Note that such type of transformation does not change the angles of the triangle PQR.

Hence the angles and their orientation are preserved during such transformations.

Such transformations are needed due to the fact that we want to reduce the number of variables

on which we derive mesh restrictions. By performing these type of transformations, we only need

to consider the coordinates (a, b) to derive restrictions on the T3 element. But if we consider a

general arbitrary mesh element given by triangle PQR, we need to consider all the coordinates

of the triangle. This make the problem complicated and the derived mesh restrictions based on

the arbitrary mesh element will be difficult to analyze and interpret. Important information such

as the lower and upper bounds on the angles of the triangles of the computational mesh, which

is need to generate quality triangulations might be difficult to deduce if one considers analyzing

the arbitrary mesh element. Note that this is one of the most influential factors in generating

triangular meshes. In our case, for two-dimensional domains, a quality triangulation means that

one can obtain a lower bound on the angles of the triangles in the computational mesh [93]. If one

does not preserve the angles during the transformation then it might result in small angles in the

triangle PQR (needle-like or degenerate triangles) and hence achieving a quality triangular mesh

is daunting. These needle-type triangles and the corresponding triangulations gives rise to highly

ill-conditioned stiffness matrices and causes inherent difficulties in developing error estimates.

Our objective is to find the coordinates (a, b) such that the local stiffness matrix is weakly

diagonally dominant for a given type of diffusivity tensor. The local stiffness matrix for anisotropic

diffusion equation based on single-field Galerkin formulation is given by:

Ke =

∫

Ωe

BD(x)Bt dΩ (13.3)

where the matrix B in terms of the coordinates (a, b) is given as follows:

B =
1

b





−b (a− 1)

b −a
0 1



 (13.4)
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Since the entries in the matrix B are constants. We have the local stiffness matrix Ke given as

follows:

Ke = B





∫

Ωe

D(x) dΩ



Bt (13.5)

In the subsequent subsections, we present various sufficient conditions through which we can find

these coordinates (a, b) and glean information on the possible angles, corresponding shape and size

of the triangle ABC.

13.3.1. T3 element for heterogeneous isotropic diffusivity. In this subsection, we consider the

case where the diffusivity is isotropic and heterogeneous in the total domain. For this case, we

show that the diffusivity does not have any influence on determining the coordinates (a, b). This

means that the restrictions we obtain on the coordinates and the angles of the triangle ABC is

independent of how the diffusivity is varying across the domain. The following is the local stiffness

matrix for scalar heterogeneous isotropic diffusion:

Ke =
1

b2

∫

Ωe

D(x) dΩ





b2 + (a− 1)2 a− a2 − b2 (a− 1)

a− a2 − b2 a2 + b2 −a
(a− 1) −a 1



 (13.6)

where the integral of the diffusivity D(x) over the actual T3 element Ωe (triangle ABC) is given

as follows:

D̃ =
1

meas(Ωe)

∫

Ωe

D(x) dΩ (13.7)

where meas(Ωe) = b
2 is the area of the actual T3 element ABC is always positive. As the scalar

diffusivity D(x) > 0, so its definite integral over Ωe which is D̃ is also greater than zero. Hence the

simplified expression for the local stiffness matrix is given as follows:

Ke =
D̃

2b





b2 + (a− 1)2 a− a2 − b2 (a− 1)

a− a2 − b2 a2 + b2 −a
(a− 1) −a 1



 (13.8)

We shall now present the sufficient conditions so that the matrix Ke is weakly diagonally dominant:

Condition No-1. Positive diagonal entries: (Ke)ii > 0 ∀i = 1, 2, 3. This restriction gives us

the following inequalities:

(Ke)11 =
D̃

2b

(

b2 + (a− 1)2
)

> 0 (13.9a)

(Ke)22 =
D̃

2b

(

a2 + b2
)

> 0 (13.9b)

(Ke)33 =
D̃

2b
> 0 (13.9c)

As D̃ > 0 and b > 0, it is evident that all of the inequalities given by equations (13.9a)–(13.9c) are

trivially satisfied. Hence this condition has no effect on obtaining restrictions on coordinates (a, b).
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Condition No-2. Weak diagonal dominance of rows: | (Ke)ii | ≥
∑

i 6=j

| (Ke)ij | ∀i, j where

i = 1, 2, 3 and j = 1, 2, 3. This restriction gives the following inequalities:
(

b2 + (a− 1)2
)

≥
(

a2 + b2 − a
)

+ (1− a) (13.10a)
(

a2 + b2
)

≥ a+
(

a2 + b2 − a
)

(13.10b)

1 ≥ (1− a) + a (13.10c)

Note that these inequalities (13.10a)–(13.10c) are trivially satisfied. Hence this condition has no

influence on obtaining restrictions on triangle ABC.

Condition No-3. Non-positive off-diagonal entries: (Ke)ij ≤ 0 ∀i 6= j where i = 1, 2, 3 and

j = 1, 2, 3. This restriction gives the following inequalities:

(Ke)ij =















(Ke)12 = D̃
2b

(

a− a2 − b2
)

≤ 0

(Ke)13 = D̃
2b (a− 1) ≤ 0

(Ke)23 = D̃
2b (−a) ≤ 0

∀i 6= j

using the fact that D̃ > 0 and b > 0, and rearranging the above relations we get the following

inequalities:
(

a− 1

2

)2

+ b2 ≥
(

1

2

)2

(13.11a)

a ≤ 1 (13.11b)

a ≥ 0 (13.11c)

The region in which the coordinates (a, b) satisfy the above inequalities given by the equations

(13.11a)–(13.11c) is shown in Figure 16. According to these inequalities (13.11a)–(13.11c), het-

erogeneity of the scalar diffusivity has no role in obtaining the feasible region for the coordinates

(a, b). It is evident from the Figure 16 that the interior angles of the triangle ABC are either acute

or atmost right-angle. Based on the sufficient conditions, one can notice that an obtuse-angled

triangle is not possible. So in order to satisfy discrete comparison principle, discrete maximum

principle, and non-negative constraint the triangulation of a given computational domain must

contain acute-angled triangles or right-angled triangles. These three sufficient conditions show that

well-centered or acute-angled triangulation inherit all the three discrete versions of the continuous

properties of scalar heterogeneous isotropic diffusion equations.

13.3.2. T3 element for heterogeneous anisotropic diffusivity. In this subsection, we consider

the case where the diffusivity D(x) =
(

Dxx(x) Dxy(x)
Dxy(x) Dyy(x)

)

is anisotropic and heterogeneous across the

domain. For sake of brevity and ease of manipulations, we drop the symbol (x) in the components

of the diffusivity tensor. Note that the symbol ‘x’ in the components of D(x) is dropped for sake of

convenience and should not be interpreted as though the diffusivity tensor is constant. As discussed

in Section 12, the diffusivity tensor satisfies certain properties. Based on these equations (12.2) and

(12.3), we derive various results related to D(x) that we will be using in deriving mesh restrictions.

Lemma 13.5 (Necessary conditions on the components of anisotropic diffusivity tensor). If D(x)

is symmetric, uniformly elliptic, and bounded above. Then its components satisfy the following
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relations:

Dxx > 0 (13.12a)

Dyy > 0 (13.12b)

DxxDyy > D2
xy (13.12c)

Proof. Since D(x) is symmetric from Spectral Theorem [44, Section 79, Theorem 1], the

eigenvalues of D(x) are real. According to the equation (12.3), D(x) is uniformly elliptic, and

bounded above. Hence the eigenvalues are positive and bounded above. The eigenvalues in terms

of Dxx,Dxy, and Dyy are given as follows:

λ1 =
(Dxx +Dyy) +

√

(Dxx −Dyy)
2 + 4D2

xy

2
(13.13a)

λ2 =
(Dxx +Dyy)−

√

(Dxx −Dyy)
2 + 4D2

xy

2
(13.13b)

Now using the fact that λ1 > 0 and λ2 > 0 we get the following relations:

Dxx +Dyy > 0 (13.14a)

(Dxx +Dyy)
2 > (Dxx −Dyy)

2 + 4D2
xy (13.14b)

On algebraic manipulations of the above equations results in the relations (13.12a)-(13.12c) which

completes the proof. �

Definition 13.6 (Positive linear maps). Let U and V be two vector spaces defined over a field

K. A function Φ : U → V is called a linear map if it satisfies the following conditions:

Φ[x+ y] = Φ[x] + Φ[y] ∀x,y ∈ U (13.15a)

Φ[αx] = αΦ[x] ∀x ∈ U , α ∈ K (13.15b)

Let Mn := Mn×n(R) be the set of all real matrices of size “n×n” defined over a field of real number

R. This space of matrices Mn is a vector space[44]. A linear map Φ : Mn →Mk is called positive if

Φ(A) is positive semi-definite whenever A is positive semi-definite and is strictly positive if Φ(A)

is positive definite whenever A is positive definite [14, Section 2.2].

Theorem 13.7 (Strictly positive linear mapping of anisotropic diffusivity). Let Φ[•] :=
∫

Ωe
[•]dΩ.

Show that Φ[•] is a linear map and Φ[D(x)] is symmetric, uniformly elliptic, and bounded above.

Proof. From the definition 13.6, it is evident that Φ[•] is a linear map and Φ[D(x)] is sym-

metric. Note that from equation (12.3), the scalar ξ ·D(x)ξ > 0 and meas(Ωe) > 0. As it is well

known that Lebesgue integration of a scalar for a strictly positive measure is always greater than

zero [89]. Hence
∫

Ωe
ξ ·D(x)ξ > 0 ∀x ∈ Ωe. Integrating the equation (12.3), over Ωe result in the

following relation:

0 < γ1ξ · ξ ≤
1

meas(Ωe)

∫

Ωe

ξ ·D(x)ξ ≤ γ2ξ · ξ ∀ξ ∈ R
nd\{0} and ∀x ∈ Ωe (13.16)
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Since the vector ξ independent of x and Ωe we can interchange the order of integration. This gives

us the following equation:

0 < γ1ξ · ξ ≤
1

meas(Ωe)
ξ · Φ[D(x)]ξ ≤ γ2ξ · ξ ∀ξ ∈ R

nd\{0} and ∀x ∈ Ωe (13.17)

this shows that Φ[D(x)] is a strictly positive linear map ofD(x) and indeed preserves its properties.

This completes the proof. �

Let us denote D̃ := 1
meas(Ωe)

Φ[D(x)], ǫ :=
D̃yy

D̃xx
, and η :=

D̃xy

D̃xx
. Note that the matrix components

of D̃ are constants. From Theorem 13.7 and Lemma 13.5, it is evident that D̃xx > 0, D̃yy > 0, and

D̃xxD̃yy > D̃2
xy. So from equation (13.12c), we have η ∈ (−√ǫ,√ǫ). These two non-dimensional

quantities ǫand η govern the mesh restrictions that we impose on the coordinates (a, b). From

equations (13.3) and (13.4), the stiffness matrix for anisotropic diffusivity tensor is given as follows:

Ke =









D̃xxb2−2D̃xyb(a−1)+D̃yy(a−1)2

2b − D̃xxb2+D̃xy(b−2ab)+D̃yya(a−1)
2b

−D̃xyb+D̃yy(a−1)
2b

− D̃xxb2+D̃xy(b−2ab)+D̃yya(a−1)
2b

D̃xxb2−2D̃xyab+D̃yya2

2b
D̃xyb−D̃yya

2b
−D̃xyb+D̃yy(a−1)

2b
D̃xyb−D̃yya

2b
D̃yy

2b









(13.18)

We now present the sufficient conditions so that the matrix Ke is weakly diagonally dominant:

Condition-4: Positive diagonal entries: (Ke)ii > 0 ∀i = 1, 2, 3, gives the following rela-

tions:

(Ke)ii =















(Ke)11 =
D̃xxb2−2D̃xyb(a−1)+D̃yy(a−1)2

2b > 0

(Ke)22 =
D̃xxb2−2D̃xyab+D̃yya2

2b > 0

(Ke)33 =
D̃yy

2b > 0

As D̃yy > 0, from (Ke)33 > 0 we need to have b > 0. So rearranging the above relations

we have the following restrictions:

(Ke)11 =

(

b

√

D̃xx − |a− 1|
√

D̃yy

)2

+ 2b|a− 1|
(
√

D̃xx

√

D̃yy − Sgn [|a− 1|] D̃xy

)

> 0 (13.19a)

(Ke)22 =

(

b

√

D̃xx − |a|
√

D̃yy

)2

+ 2b|a|
(
√

D̃xx

√

D̃yy − Sgn [|a|] D̃xy

)

> 0 (13.19b)

(Ke)33 =
D̃yy

2b
> 0 (13.19c)

where Sgn[•] is the standard signum function. From Lemma 13.5, it is evident that
√

D̃xx

√

D̃yy > D̃xy. Hence equations (13.19a)-(13.19c) are trivially satisfied for b > 0

and for any abscissa a.

Condition-5: Non-positive off-diagonal entries: (Ke)ij ≤ 0 ∀i 6= j where i = 1, 2, 3 and

j = 1, 2, 3. This restriction gives the following relations:

(Ke)ij =















(Ke)12 = − D̃xxb2+D̃xy(b−2ab)+D̃yya(a−1)
2b ≤ 0

(Ke)13 =
−D̃xyb+D̃yy(a−1)

2b ≤ 0

(Ke)23 =
D̃xyb−D̃yya

2b ≤ 0
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using the paramters ǫ, η, and the fact that ordinate b > 0 we have the following inequalities:
(

a− 1

2

)2

+

(

b√
ǫ

)2

− 2b
(η

ǫ

)

(

a− 1

2

)

≥
(

1

2

)2

(13.20a)

a− 1

b
≤ η

ǫ
(13.20b)

a

b
≥ η

ǫ
(13.20c)

these inequalities dictate the feasible region for coordinates (a, b). For a given ǫ and by

varying η which lies between −√ǫ and
√
ǫ, we get different feasible regions for (a, b).

Herein, we have choosen ǫ = 10 and η ∈ {−1, 0, 1}. For these values, we have plotted the

feasible region based on the inequalities (13.20a)-(13.20c). From figures 17, 18, and 19,

the following can be inferred based on the feasible region:

• If η = 0 the possible T3 elements are either acute angled or right angled triangles.

• If either η < 0 or η > 0 then there is no restriction on the angles of the triangle.

Condition-6: Weak diagonal dominance of rows: | (Ke)ii | ≥
∑

i 6=j

| (Ke)ij | ∀i, j where

i = 1, 2, 3 and j = 1, 2, 3. This gives the following relations:
(

b2 − 2ηb(a− 1) + ǫ(a− 1)2
)

≥
(

b2 + η(b− 2ab) + ǫa(a− 1)
)

+ (ηb− ǫ(a− 1)) (13.21a)
(

b2 − 2ηab+ ǫa2
)

≥
(

b2 + η(b− 2ab) + ǫa(a− 1)
)

(ǫa− ηb) (13.21b)

ǫ ≥ (ηb− ǫ(a− 1)) + (ǫa− ηb) (13.21c)

if Condition-1 and Condition-2 are satisfied then this condition is trivially satisfied.

14. CONCLUDING REMARKS

We have shown that a well-centered mesh (or acute-angled triangle) need not be sufficient or

in some cases too restrictive to satisfy maximum principles and the non-negative constraint for

anisotropic diffusion equation. This work will invaluable in two respects:

(i) It will give guide the existing users on the restrictions to be placed on the mesh to meet the

maximum principles.

(ii) The presented study has clearly shown that placing restrictions on computational grids is not a

viable approach to achieve physically meaningful non-negative solutions for highly anisotropic

medium. We hope that this research note will motivate researchers to develop new method-

ologies to satisfy maximum principles and the non-negative constraint without any restricts

on the mesh.
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Mesh element

Actual element

Reference element

(0, 0)

(0, 0)

(0, 0)
X

Y

P

R
Q

v1

v2

v3

α

α

γ

γ

β

β

x

y

A B

C

u1

u2u3

(1, 0)

(1, 0)

(a, b)

ξ1

ξ2

(0, 1)

Figure 15. T3 element: A pictorial description of the mesh element, actual element, and

reference element. The mesh element PQR corresponds to an arbitrary T3 element of the

computational mesh in (X,Y ) coordinate system. This mesh element PQR is transformed

to an actual element ABC which is given in (x, y) coordinate system. Analysis is performed

on the actual element ABC such that one obtains restrictions on coordinates (a, b). This

is accomplished via imposing conditions on local stiffness matrix to be weakly diagonally

dominant. Finally, after one obtains the coordinates (a, b), the actual element is transformed

back to the original mesh element.
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x

y

(0, 0) (12 , 0) (1, 0)

Feasible region

Acute-angled triangle

Right-angled triangle

Figure 16. T3 element for heterogeneous isotropic diffusivity: A pictorial description of

the feasible region (left figure) is shown in lightblue color. The right figure indicates that

the point (a, b) can lie either on the circle with center (1
2
, 0) and radius 1

2
or outside the

circular region. The points within the circular region are unfeasible. This results in two

possibilities for choosing a T3 element in the realm of the feasible region, which is either a

right-angled triangle or a acute-angled triangle.

(a) Feasible region for (a, b)

Right-angled triangle

Acute-angled triangle

(b) Possible T3 elements when D̃xy = 0

Figure 17. T3 element for anisotropic diffusivity when D̃xy = 0: A pictorial description

of the feasible region (left figure) for the coordinates (a, b) is indicated in lightblue color.

Analysis has been performed for the case when D̃xy = 0. The numerical values for the two

parameters which decide the feasible region are chosen to be ǫ = 10 and η = 0. In this

case, the right figure indicates that acute-angled and right-angled triangles are possible. As

ǫ increases the coordinate b has to increase proportionally to satisfy the inequality given

by the equation (13.20a). For higher values of ǫ, it is very difficult to find a suitable T3

element.
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(a) Feasible region for (a, b)

Acute-angled triangle

Right-angled triangle

Obtuse-angled triangle

(b) Possible T3 elements when D̃xy < 0

Figure 18. T3 element for anisotropic diffusivity when D̃xy < 0: The left figure indicates

the feasible region for the coordinates (a, b) in lightblue color. The right figure indicates

that when D̃xy < 0, angles in the T3 element can be acute-angle or right-angle or even

obtuse-angle. In this case, we have chosen ǫ = 10 and η = −1. For a fixed η as ǫ increases

the value of coordinate b also increases. So it is a daunting task to find a viable T3 element.

(a) Feasible region for (a, b)

Obtuse angled triangle

Right angled triangle

Acute angled triangle

(b) Possible T3 elements when D̃xy > 0

Figure 19. T3 element for anisotropic diffusivity when D̃xy > 0: The left figure indicates

the feasible region for the coordinates (a, b) in lightblue color. The right figure indicates

that when D̃xy > 0, angles in the T3 element can be acute-angle or right-angle or even

obtuse-angle. In this case, we have chosen ǫ = 10 and η = 1. For a fixed η as ǫ increases the

value of coordinate b also increases. Finding a T3 element in such cases is nearly impossible.
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(a) ǫ = 2 and η = −1 (b) ǫ = 10 and η = −1

(c) ǫ = 50 and η = −1 (d) ǫ = 100 and η = −1

(e) ǫ = 200 and η = −1 (f) ǫ = 500 and η = −1

Figure 20. T3 element for fixed η and varying ǫ: A pictorial description of the feasible

region (lightblue color) for a fixed η and varying ǫ. Analysis is performed for η = −1 and

ǫ = {2, 10, 50, 100, 200, 500}. It is evident there is a drastic variation in the feasible region as

ǫ increases. Note that for higher values of ǫ it is very difficult to find a suitable T3 element

which can mesh a given computational domain.
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(a) ǫ = 100 and η = −2 (b) ǫ = 100 and η = 2

(c) ǫ = 100 and η = −4 (d) ǫ = 100 and η = 4

(e) ǫ = 100 and η = −8 (f) ǫ = 100 and η = 8

Figure 21. T3 element for fixed ǫ and varying η: A pictorial description of the feasible

region (lightblue color) for a fixed ǫ and varying η. Analysis is performed for ǫ = 100 and

η = {−8,−4,−2, 2, 4, 8}. It is evident there is considerable variation in the feasible region

as η changes. Also there is no fixed pattern on this variation about η.
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SUMMARY & PLANS

The following are the completed research tasks.

(I) Deriving mesh restrictions to meet maximum principles: We completely finished

this aspect of the research in the second year, which was started towards the end of the first

year. This research is about deriving mesh restrictions to meet maximum principles and the

non-negative constraint for advection-diffusion and linear reactions. [Status: Finished. The

paper is available on arXiv.]

(II) Numerical methodology for transient diffusion equation to meet maximum prin-

ciples and the non-negative constraint: One of main tasks on the numerical modeling

front is to the develop numerical methodologies for satisfying maximum principles and the

non-negative constraint for transient problems.

(a) We finished the development of a robust methodology for linear transient diffusion equa-

tions. The research is also submitted for review to an international journal. [Status:

Finished. The paper will soon be placed on arXiv.]

(b) In the second year, we started developing non-negative methodologies for semi-linear

diffusion-type equations. We completed the theoretical aspects, and we are in process

of generating numerical results. This will be finished in the first quarter of third year,

and will be submitted to a journal. For sake of brevity of the yearly report, we did not

include these results in this report.

(c) In the third year, we will develop non-negative formulations for steady-state and transient

quasilinear diffusion-type equations.

(III) On achieving element-wise species balance and enforcing maximum principles for

advection-diffusion-reaction equations: This is research is one of the main ingredients

of the computational modeling of degradation of materials. A robust predictive framework for

advective-diffusive-reactive systems is vital to predict the various degradation mechanisms.

This part of the research has been started in the first year, and will continue to the early

part of the third year. We are currently working on to numerical challenges posed by choatic

advection, which can arise in, for example, moisture degradation mechanism. The duration

of the research topic should be a reflection of the transformative nature of the research. This

will also be completed by the end of first quarter in the third year.

(IV) A chemo-thermal-deformation model for degradation of materials/structures:

We have been developing a hierarchy of mathematical models to model various mechanisms

of degradation. The models will account for coupled chemo-thermal-deformation response,

which is crucial for mathematical modeling of degradation of materials. As discussed in our

proposal, this mathematical model in consistently derived using mechanics and thermody-

namics principles. In particular, the model will satisfy the second law of thermodynamics,

which is not the case with some of the current models for degradation. In the fourth quarter

of second year, the effect of degradation on stress concentration is studied. To this end, a

plate with a circular hole subjected to uniaxial tension is considered. This problem is classical

and well-studied in the absence of degradation. However, it not addressed in the literature

how degradation affects the stress concentration, and the distribution of stresses and strains.

In the next quarter, we will calibrate the model using the hygrothermal data published in

the literature on concrete.



Invited Talks

I1. Rice University: “Importance of non-negative solutions in degradation modeling, ground-

water modeling, and reactive transport,” Graduate seminar, Department of Civil and En-

vironmental Engineering, February 7, 2014.

I2. M.K. Mudunuru, and K.B. Nakshatrala, “Why need physics-compatible numerical formu-

lations for flow and transport in subsurface and material modeling?,” Indian Institute

of Science (IISc), July 30, 2014.

I3. J. Chang, and K.B. Nakshatrala, “A locally conservative finite element formulation and

its parallel implementation in PETSc,” Los Alamos National Laboratory, August 4,

2014.

Conferences Talks

C1. S. Karimi, and K. B. Nakshatrala, “Monolithic multi-time-step coupling methods

for second-order transient systems,” 17th US National Congress of Theoretical and

Applied Mechanics, Michigan State University, June 15–20, 2014.

C2. M. K. Mudunuru, and K. B. Nakshatrala, “On mesh restrictions for mixed formula-

tions for mixed formulations for anisotropic diffusion equation in high contrast

heterogeneous media,” 17th US National Congress of Theoretical and Applied Mechan-

ics, Michigan State University, June 15–20, 2014.

C3. J. Chang, and K. B. Nakshatrala, “Computational performance of locally conser-

vative methods for large-scale flow and transport through porous media,” 17th

US National Congress of Theoretical and Applied Mechanics, Michigan State University,

June 15–20, 2014.

C4a. S. Karimi, and K.B. Nakshatrala, “On the development and performance of multi-

time-step coupling methods for transient multi-scale problems,” Experimental

and Computational Nonlinear Dynamics session, 51st SES Annual Technical Meeting, Pur-

due University, October 1–3, 2014. [Student poster competition ]

C4b. S. Karimi, and K.B. Nakshatrala, “Monolithic multi-time-step coupling methods

for transient problems in solid mechanics and transport,” Experimental and Com-

putational Nonlinear Dynamics session, 51st SES Annual Technical Meeting, Purdue Uni-

versity, October 1–3, 2014. [Oral presentation ]

C5. J. Chang, and K.B. Nakshatrala, “A methodology to ensure local mass conser-

vation for porous media models under finite element formulations based on

convex optimization,” AGU Fall Meeting, December 15–19, 2014. [Poster presenta-

tion ]

C6. S. Karimi, and K.B. Nakshatrala, “A monolithic multi-time-step computational

framework for transient advective-diffusive-reactive,” AGU Fall Meeting, Decem-

ber 15–19, 2014. [Poster presentation ]

C7. S. Karra, J. Chang, and K.B. Nakshatrala, “On the performance of maximum-

principle enforcing methods applied to large-scale subsurface problems,” AGU

Fall Meeting, December 15–19, 2014. [Poster presentation ]

C8. K.B. Nakshatrala, “On enforcing maximum principles, comparison principles,

monotone property, and the non-negative constraint for linear/nonlinear steady-

state/transient diffusion-type equations,” AGU Fall Meeting, December 15–19, 2014.
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Peer-Reviewed Conference Papers/Extended Abstracts

P1. M. K. Mudunuru, and K. B. Nakshatrala, “On mesh restrictions for mixed formula-

tions for mixed formulations for anisotropic diffusion equation in high contrast

heterogeneous media,” 17th US National Congress of Theoretical and Applied Mechan-

ics, abstract number C-06-703, 2014.

P2. J. Chang, and K. B. Nakshatrala, “Computational performance of locally conser-

vative methods for large-scale flow and transport through porous media,” 17th

US National Congress of Theoretical and Applied Mechanics, abstract number C-06-523,

2014.

P3. S. Karimi, and K. B. Nakshatrala, “Monolithic multi-time-step coupling methods

for second-order transient systems,” 17th US National Congress of Theoretical and

Applied Mechanics, abstract number C-06-840, 2014.

Awards / Honors

A1. Saeed Karimi (a Ph.D. student under Dr. Kalyana B. Nakshatrala) got travel grant from

the prestigious Society of Industrial and Applied Mathematics to attend 2015 SIAM Con-

ference on Computational Science and Engineering (CSE15). He won the award based on

the conference talk abstract on “Monolithic multi-time-step coupling methods for transient

systems,” S. Karimi, and K. B. Nakshatrala. The award consists of $650 and waiver of

conference registration fee.

Mini-symposia organization at national/international conferences

M1. “Continuum scale modeling of flow and reactive transport in porous media,” Organizers: S.

Karra, and K.B. Nakshatrala, American Geophysical Union Fall Meeting, San Francisco,

December 9–13, 2013.

M2. “Continuum scale modeling of flow and reactive transport in porous media,” Organizers: S.

Karra, and K.B. Nakshatrala, American Geophysical Union Fall Meeting, San Francisco,

December 15–19, 2014.

M3. “Modeling flow and transport in heterogeneous porous media,” Organizers: K.B. Nakshatrala

(Chair), S. Karra, and H. Viswanathan, 13th US National Congress on Computational Me-

chanics, San Diego, California, July 26–30, 2014.

M4. “Mathematical and numerical modeling of degradation of materials and structures,” Or-

ganizers: K.B. Nakshatrala (Chair), D.Z. Turner, K.J. Willam, and R. Ballarini, 13th US

National Congress on Computational Mechanics, San Diego, California, July 26–30, 2014.
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On modeling of material degradation due to moisture

Abstract

In this paper, we derive a chemical degradation model under small strain and isothermal con-

ditions by appealing to the maximization of entropy production. In this process, we shall provide a

thermodynamic status of the degradation model recently proposed by Mudunuru and Nakshatrala

(IJNME, DOI: 10.1002/nme.3282, 2012). In order to illustrate the advantage of this model, the

results obtained from this framework will be compared with that of metric-based meshes based on

the standard Galerkin method. Furthermore, we shall study the behavior of degrading slabs under

self-weight, which is a 3D problem. To crystalize ideas, we shall assume the degradation is due

to moisture, which is a predominant degradation mechanism in slabs and nuclear containments.

Employing this model, we shall solve various representative boundary value problems pertaining

to moisture degradation, which provide valuable information on the structural response of build-

ing materials. We shall compare the behavior of an infinite degrading slab with the behavior of

a finite-sized degrading slab. We shall highlight the limitations of typical semi-inverse solutions,

which are commonly employed in practice. We shall also discuss the implication of the results from

our study on degradation of slabs with respect to better design codes.

1. INTRODUCTION AND MOTIVATION

A robust infrastructure is vital for economic growth. Modeling infrastructural materials and

the ability to predict their response in severe environmental conditions is of great importance to

the infrastructure industry. Most of the well-known manifestations, such as “wear out ” and “frac-

ture”, are related with a phenomenon called degradation of materials [7]. Degradation is a major,

widespread, and an important engineering problem. There is a recent surge in research activities

to develop new infrastructural materials that have better resistance to various degradation mech-

anisms. There is also a growing research interest to understand the general behavior of degrading

structural members. For various types of infrastructure (e.g., transportation infrastructure, res-

idential and commercial buildings), slab is one of the essential load bearing structural members.

To give specific examples, slabs are used as the building blocks for highway pavements, floors and

roofs of buildings, decks in bridges, and as walls in water tanks. Therefore, this paper will simulate

one of the most typical degradation phenomenons, two-way coupled chemical degradation problem.

Especially, we shall study the behavior of slabs subjected to degradation.

1.1. Main contributions and outline of the paper. The main contributions of this paper

are as follows:

(i) We derived a chemical degradation model under small strain and isothermal conditions by

appealing to the maximization of rate of entropy production. Many exisiting models (some

of them not necessarily degradation models) will be special cases of the proposed degradation

model. In this process, we shall provide a thermodynamic status of the degradation model

proposed by [30].

(ii) We illustrated the performance of metric-based meshes in solving coupled deformation-diffusion

problems in terms of matrix condition number, and the overall quality of solutions.

(iii) We illustrated that material degradation gives rise to secondary effects like bulging, which

play an important in design considerations.
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(iv) We illustrated the deficiencies of commonly employed semi-inverse methods in the prediction

of deformations of degrading slabs. We showed that the behavior of an infinite slab (which is a

common idealization made in obtaining analytical solutions) is qualitatively and quantitatively

different from that of a finite-sized slab, especially in the presence of degradation.

(v) We are currently developing a computational framework to model unsteady motions of struc-

tures subject to matrial degradation. This research will be reported in the next quarter.

2. MATHEMATICAL MODELS FOR DEGRADATION AND THEIR

THERMODYNAMIC STATUS

Let Ω ⊂ R
nd be a bounded open domain, where “nd” denotes the number of spatial dimensions.

Let ∂Ω denote the boundary of the domain, and a spatial point in Ω is denoted by x. As we are

concerned with linearized theory of degradation models, the unit outward normal to the boundary

is denoted as n̂(x) (instead of n̂(x, t)). The gradient and divergence operators with respect to x

are, respectively, denoted as grad[·] and div[·]. We shall denote the time by t ∈ [0,I], where I is

the length of the time interval. In the view that degradation of a material will involve multiple

coupled processes. We shall now define various physical and chemical quantities that are need to

document the relevant balance laws and constitutive models.

Denote the temperature by ϑ(x, t) and the specific entropy by η(x, t). The mass concentration

of the chemical species [10] is denoted by c(x, t), which is also referred to as mass fraction in

some books [38]. The corresponding chemical potential is denoted by κ(x, t). The displacement,

velocity, and acceleration of the solid are respectively, denoted by u(x, t), v(x, t), and a(x, t). The

temperature, concentration, entropy, and chemical potential are scalar fields, while the displace-

ment, velocity, and acceleration are all vector fields.

For the deformation problem, the boundary is divided into ΓD
u and ΓN

u such that ΓD
u ∪ΓN

u = ∂Ω

and ΓD
u ∩ ΓN

u = ∅. ΓD
u is that part of the boundary on which displacement is prescribed and ΓN

u

is part of the boundary on which traction is prescribed. Similarly, for the transport problem, the

boundary is divided into ΓD
c and ΓN

c such that ΓD
c ∪ ΓN

c = ∂Ω and ΓD
c ∩ ΓN

c = ∅. ΓD
c is that part

of the boundary on which concentration is prescribed and ΓN
c is part of the boundary on which

transport flux is prescribed. As for the thermal problem, the boundary is divided into ΓD
ϑ and ΓN

ϑ

such that ΓD
ϑ ∪ ΓN

ϑ = ∂Ω and ΓD
ϑ ∩ ΓN

ϑ = ∅. ΓD
ϑ is that part of the boundary on which temperature

is prescribed and ΓN
ϑ is part of the boundary on which heat flux is prescribed.

2.1. Balance laws for chemo-mechano degradation. In chemo-mechano degradation prob-

lems, several balance laws should be obeyed. The following summarizes different balance laws in

homogenized sense:

• Balance of mass and linear momentum for solid in the degrading body can be stated as

follows:

ρ̇+ ρdiv[v] = 0 (2.1)

ρv̇ = div[T] + ρb (2.2)

where (̇) denotes the material time derivative [18], ρ is the density of the solid, b(x, t) is

the specific body force, and T(x, t) is the Cauchy stress in the solid.
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• As the system under consideration is open and the chemical species cannot taken partial

stresses, we only have balance of mass for chemical species in the degrading body. This is

given as follows:

ρċ+ div[h] = h (2.3)

where h(x, t) is the diffusive flux vector and h(x, t) is the volumetric source of the chemical

species.

• The balance of energy for the degrading body takes the following form:

ρ

(

∂A

∂El
· Ėl + ϑη̇

)

= T · Ėl − div[q]− grad[κ] · h+ q (2.4)

where A is the specific Helmholtz potential, El is the linearized strain, η is the specific

entropy, κ(x, t) is the chemical potential, q(x, t) is the heat flux vector, and q(x, t) is the

volumetric heat source.

• Finally, the second law of thermodynamics in its reduced form is given as follows:

ρ

(

∂A

∂El
· Ėl

)

= T · Ėl −
1

ϑ
grad[ϑ] · q− grad[κ] · h− ζ (2.5)

where ζ is the rate of dissipation functional, which is always non-negative. Additionally,

we have the following relations for chemical potential and specific entropy:

κ :=
∂A

∂c
(2.6)

η := −∂A

∂ϑ
(2.7)

2.2. A linearized two-way coupled chemical degradation model. We shall appeal to

the axiom of maximization of rate of entropy production [46] to derive constitutive relations that

satisfy the second law of thermodynamics aprior. To this end, we need to prescribe two scalar

functionals: A functional to describe how the material stores energy and a functional to describe

how the material dissipates energy. In our case, we shall specify ‘Â(El, c, ϑ)’ the specific Helmholtz

potential and ‘ζ̂(El, ϑ, c, Ėl, grad[ϑ], grad[κ])’ the rate of dissipation functional. Our model will

be restricted to case when the degradation process is taking place very close to the equilibrium.

Mathematically, this assumption takes the following form:

ǫ :=

(

‖grad[u]‖2 +
(

ϑ− ϑref

ϑref

)2

+
l2‖grad[ϑ]‖2

ϑ2
ref

+
l2‖grad[c]‖2

c2ref

)1/2

≪ 1 (2.8)

where ϑref and cref are, respectively, the reference temperature and reference concentration, which

will be problem specific. From the above near equilibrium assumption (based on equation (2.8)),

it is evident that strain in the solid is linear and is defined as follows:

El :=
1

2

(

grad[u] + grad[u]T
)

(2.9)
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Correspondingly, the specific Helmholtz potential for a linearized chemical degradation model is

given as follows:

A = Â(El, c, ϑ) =
1

2ρ
El · C(c)El −

1

2

cp
ϑref

(ϑ− ϑref)
2 +

1

ρ
(ϑ− ϑref)MϑEl

· El

+
1

ρ
(c− cref)McEl

·El +
1

2
Rsϑref(c− cref)

2 (2.10)

where Rs =
R
M . Rs and R are,respectively, the specific gas constant and the universal gas constant.

M is the molecular mass of chemical species, cp is the coefficient of heat capacity, MϑEl
is the

anisotropic coefficient of thermal expansion (which is assumed to be independent of temperature,

concentration, and strain), and McEl
is the anisotropic coefficient of chemical expansion due to

concentration (which is assumed to be independent of temperature, concentration, and strain).

Remark 2.1. In chemoelasticity and in modeling degradation of materials due to transport and

reaction of chemical species, coefficient of chemical expansion McEl
plays a vital role. It should

be noted that induced-strains due to chemical expansivity will be significant in harsh environmental

conditions and cannot be neglected [39]. Considerable inquest has been made in literature to ex-

perimentally measure McEl
in ceramics [6,8,29], laminated and polymer composites [9,12,39],

elastomers and biological materials [19,24,31], and concrete structures [40,41,43]. But seldom

progress has been accomplished to develop constitutive models and computational frameworks for

such chemoelastic materials or materials undergoing chemical-induced degradation. Herein, we

shall take a step forward to address this issue.

Furthermore, the rate of dissipation functional for a linearized chemical degradation model is

taken as follows:

ζ = ζ̂(El, ϑ, c, Ėl, grad[ϑ], grad[κ])

=
1

ϑ
grad[ϑ] ·Dϑϑgrad[ϑ] +

c

Rϑref
grad[κ] ·Dκκgrad[κ] (2.11)

where Dϑϑ is the anisotropic heat conduction, and Dκκ is the anisotropic diffusivity tensor.

2.2.1. Maximization of rate of entropy production. Among various methodologies to derive

constitutive relations [28], axiom of maximization of rate of entropy production put-forth by

Ziegler [46] is an attractive and simple procedure. Using this procedure, constitutive equations

can be generated by specifying Â(El, c, ϑ) and ζ̂(El, ϑ, c, Ėl, grad[ϑ], grad[κ]). Accordingly, the

mathematical statement of the maximization of rate of entropy production can be written as fol-

lows:

maximize
Ėl,grad[ϑ],grad[κ]

ζ̂(El, ϑ, c, Ėl, grad[ϑ], grad[κ]) (2.12a)

subject to ρ

(

∂A

∂El
· Ėl

)

= T · Ėl −
1

ϑ
q · grad[ϑ]− grad[κ] · h− ζ (2.12b)

Based on the method of Lagrange multipliers, the above constrained optimization problem can be

written as follows :

extremize
Ėl,grad[ϑ],grad[κ],λ

ζ̂(El, ϑ, c, Ėl, grad[ϑ], grad[κ])

+λ

(

ρ

(

∂A

∂El
· Ėl

)

−T · Ėl +
1

ϑ
q · grad[ϑ] + grad[κ] · h+ ζ

)

(2.13)
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where λ is the Lagrange multiplier enforcing the constraint of (2.12b). Compute the partial deriv-

ative of this problem with respect to each variable, we can have the following equations:

∂Ėl : T = ρ
∂A

∂El
+

(

1 + λ

λ

)

∂ζ

∂Ėl

(2.14a)

∂grad[ϑ] :
1

ϑ
q = −

(

1 + λ

λ

)

∂ζ

∂grad[ϑ]
(2.14b)

∂grad[κ] : h = −
(

1 + λ

λ

)

∂ζ

∂grad[κ]
(2.14c)

∂λ : ρ

(

∂A

∂El
· Ėl

)

−T · Ėl +
1

ϑ
q · grad[ϑ] + grad[κ] · h+ ζ = 0 (2.14d)

The Lagrange multiplier can be obtained from these above equations:

λ =





ζ
∂ζ

∂Ėl

· Ėl +
∂ζ

∂grad[ϑ] · grad[ϑ] +
∂ζ

∂grad[κ] · grad[κ]
− 1





−1

(2.15)

If we assume that the rate of dissipation functional is a homogenous function of order 2, (2.15) can

be rewritten as follows.

∂ζ

∂Ėl

· Ėl +
∂ζ

∂grad[ϑ]
· grad[ϑ] + ∂ζ

∂grad[κ]
· grad[κ] = 2ζ (2.16)

Since λ = −2, the constitutive relations take the following form:

T = ρ
∂A

∂El
+

1

2

∂ζ

∂Ėl

= C(c)El + (ϑ− ϑref)MϑEl
+ (c− cref)McEl

(2.17a)

q = −ϑ

2

∂ζ

∂grad[ϑ]
= −Dϑϑgrad[ϑ] (2.17b)

h = −1

2

∂ζ

∂grad[κ]
= − c

Rsϑref
Dκκgrad[κ] (2.17c)

2.3. Status of the degradation model in [30]. The balance laws in this model should be

checked. The specific entropy, Cauchy stress,chemical potential under the assumption of equation

(2.8) can be written as follows:

η = −∂A

∂ϑ
=

cp
ϑref

{ϑ− ϑref}+
1

ρ
MϑEl

· El (2.18)

T = ρ
∂A

∂El
= C(c)El + (c− cref)McEl

(2.19)

κ =
∂A

∂c
=

1

ρ
McEl

· El +Rsϑref(c− cref) (2.20)

Since the solid is linear elastic, the balance of mass for solid (2.1) stands automatically in steady

state. The balance of linear momentum can be written as follows:

ρv̇ = div[C(c)El + (c− cref)McEl
] + ρb (2.21)

The balance of species (2.3) can be written as follows:

ρċ+ div[h] = h (2.22)
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The balance of energy can be written as follows under the assumption of equation (2.8) :

ρϑ
cp
ϑref

ϑ̇+ ϑMϑEl
· Ėl − cgrad[c] ·Dκκgrad[κ] = q (2.23)

The isothermal assumption can be taken based on the equation (2.24), that is:

q = −cgrad[c] ·Dκκgrad[κ] (2.24)

Therefore, the steady-state governing equation for this model can be written as follows:

div[C(c)El] + ρb(x) = 0 (2.25)

div[h(x)] = h(x) (2.26)

2.4. Constitutive specifications in the model [30]. The first and second invariants of the

strain tensor are defined as follows.

IEl
= tr[El] (2.27a)

IIEl
=

√

2

3
(3tr[E2

l]− (tr[El])2) (2.27b)

Since the solid is assumed to be linear elastic, the Cauchy stress, which depends on the concentration

and position, takes the following form:

Tc = λ(x, c)IEl
I+ 2µ(x, c)El (2.28)

where I is the second-order tensor, and the Lamé parameters are given by the following expressions:

λ(x, c) = λ0(x)−−λ1(x)
c

cref
(2.29a)

µ(x, c) = µ0(x) −−µ1(x)
c

cref
(2.29b)

where λ0 and µ0 are the lamé parameters of materials with cref . λ1 and µ1 are the parameters that

account for the effect of diffusion on deformation. Since this is a degradation model, λ1 and µ1are

all positive.

The effect of deformation on diffusivity is modeled as follows.

When tensile strain is predominant:

D = D0 + (DT −D0) (1− exp[ηT IEl
]) + (DS −D0) (1− exp[ηSIIEl

]) (2.30)

where ηT and ηS are non-negative parameters, D0, DT and DS are, respectively, the reference

diffusivity tensors under no, tensile, and shear strains.

When compression is predominant:

D = D0 + (DC −D0) (1− exp[ηCIEl
]) + (DS −D0) (1− exp[ηSIIEl

]) (2.31)

where ηC is a non-negative parameter and DC is the reference diffusivity tensor under compressive

strains.
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3. ON THE PERFORMANCE OF METRIC-BASED MESHES AND

NON-NEGATIVE FORMULATIONS IN DEGRADATION MODELING

In solving chemical degradation problem, Newton Raphson and standard Galerkin method can

produce negative concentration values, since the diffusivity tensor is anisotropic. Usually, there are

two methods can be used to avoid this situation. The first one is to design a proper numerical

scheme, and the other is to build a proper mesh [25]. In this section, several case studies will be

done to show the performance of all these methods: the Newton Raphson method and the Galerkin

method using the regular mesh and the metric-based mesh, as well as the non-negative formulation.

3.1. Plate with a square hole. The first case study is a bi-unit square plate with a hole of

length 1
9 under self-weight. The boundary condition for deformation subproblem is that the internal

boundary is fixed, and external is traction free. For the diffusion subproblem, the concentration at

the hole is maintained at 1, whereas at the boundary of the plate is 0. The tensile strain is assumed

to be predominant, therefore equation (2.30) will be applied. D0, DT , and DS have been chosen

as follows.

D0 =

(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)(

d1 0

0 d2

)(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

(3.1a)

DT =

(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)(

dT1 0

0 dT2

)(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

(3.1b)

DS =

(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)(

dS1 0

0 dS2

)(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

(3.1c)

The parameters are assumed as follows.

θ =
π

4
, ηT = 1, ηS = 1, d1 = 10000, d2 = 1, dT1 = 20000, dT2 = 5, dS1 = 15000, dS2 = 2,

ρ = 103, g = 10, cref = 1, λ0 = 1010, µ0 = 2× 1010, λ1 = 9× 1010, µ1 = 1.8× 1010 (3.2)

Two different kinds of mesh has been shown in Figure 1. The restriction on the metric-based mesh

should be the inverse of the diffusivity tensor. However, the diffusivity tensor varies from element

to element, since it depends on the strain, which is different for each element. Since it is difficult

(or impossible) to apply the corresponding diffusivity tensor to each element, the mesh is generated

based on the inverse of D0.

For the Newton Raphson method, the residual variations have been shown in Figure 4. It can

be found that only the regular mesh can be used to solve this problem, since the metric-based

mesh leads to high condition numbers. The concentration distribution results have been depicted

in Figure 2. Table 1 shows the number of elements and nodes, the condition number of stiffness in

both deformation and diffusion subproblems, the healing index, and the minimum concentration in

all four methods. The healing index is the percentage of nodes with negative values. The variation

of condition number of stiffness in deformation and diffusion subproblems with the iteration number

have been described in Figure 3.

From above results, we can find out that, for the diffusion subproblem, although the healing index is

reduced by the metric-based mesh, negative concentration values still exist. Moreover, the adapted

mesh does not simulate the deformation problem very well. Not only the maximum displacement

cannot be captured, but also the condition number of stiffness in deformation subproblem is much

higher than the other methods.
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Table 1. Square plate with hole: Comparison of four methods

Method Mesh type
Number of

elements

Number

of nodes

Condition number of stiffness Healing

index

Minimum

concentrationDeformation

subproblem

Diffusion

subproblem

Newton

Raphson

Regular 1868 998 5504194221.99 29.46 -0.035

Standard

Galerkin

Regular 1868 998 402360.54 807.06 29.75 -0.035

Standard

Galerkin

Metric-

based

2502 1395 5813905.18 1005.15 18.99 -0.02

Non-negative

formulation

Regular 1868 998 400934.66 807.07 0 0

3.2. Plate with a circle hole. This is a very classical problem in material’s mechanics. A

bi-unit square plate with a circular hole with radius 0.2. For the deformation subproblem, the

top and the bottom surfaces are subjected to uniaxial tension. For the diffusion subproblem, the

concentration at the circular hole is maintained at 1, whereas at the boundary of the square plate

is 0.

The tensile strain is assumed to be predominant, and then all the parameters are assumed as

follows.

θ =
π

3
, ηT = 10, ηS = 1, d1 = 2× 105, d2 = 1, dT1 = 1× 106, dT2 = 2, dS1 = 5× 105,

dS2 = 2, ρ = 1× 103, g = 10, cref = 1, λ0 = µ0 = 1× 106, λ1 = µ1 = 9× 105 (3.3)

The regular mesh and metric-based mesh for the plate have been depicted in 5. The restriction

on the metric-based mesh is still the inverse of D0. Newton Raphson method cannot solve this

problem using either regular mesh or metric-based mesh. The concentration distribution results

have been described in Figure 6.

3.3. Concrete beam with cracks. Since there is always several cracks in the concrete beam

in practice, we will study the behavior of a cantilever beam with several random generated cracks

under self-weight. The length of the beam is 5.0 and the height is 2.0. For the beam, the boundary

condition for deformation subproblem is that the left end of beam is fixed, and other edges are

traction free. For the diffusion subproblem, the concentration at the left edge is maintained at 1,

whereas at other sides of the beam is 0. As for the cracks, all the surfaces are traction free and

diffusion flux free.

The tensile strain is assumed to be predominant, and then all the parameters are assumed as

follows.

θ =
π

3
, ηT = 10, ηS = 10, d1 = 1× 1012, d2 = 1, dT1 = 2× 1012, dT2 = 5,

dS1 = 1.5 × 1012, dS2 = 2, ρ = 2.4× 103, g = 10, cref = 1,

λ0 = 1010, µ0 = 2× 1010, λ1 = 9× 1010, µ1 = 1.8 × 1010 (3.4)

The regular mesh and metric-based mesh for the beam have been depicted in 8. The restriction

on the metric-based mesh is still the inverse of D0. Newton Raphson method cannot solve this
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problem using either regular mesh or metric-based mesh. The concentration distribution results

have been described in Figure 9.

Table 2. Concrete beam with cracks: Comparison of three methods

Method
Number of

elements

Number

of nodes

Condition number of stiffness Healing

index

Minimum

concentrationDeformation

subproblem

Diffusion

subproblem

Standard

Galerkin

924 514 736183.57 9472.80 49.22 -0.0645

Metric-based

mesh

10506 5863 115979203.94 12726536.93 16.60 -0.0249

Non-negative

formulation

924 514 741879.48 9472.80 0 0

From the above results, we can see that: first, the negative concentration area in the Galerkin

method using regular mesh is extended in this case. Although the metric-based mesh reduced the

area effectively, the negative concentration values still exist. Second, the maximum displacements

in Galerkin method using metric-based mesh are smaller than those obtained by non-negative

formulation. Last but not least, the number of elements and nodes in metric-based mesh is much

bigger than the regular mesh, which implies the computational complexity of Galerkin method

using the metric-based mesh.

4. CONCLUDING REMARKS

In this paper, a chemical degradation under small strain and isothermal condition is derived,

which provides a thermodynamic status of the degradation model proposed by Mudunuru and

Nakshatrala. Since there are two methods to avoid the negative concentration generated by the

standard Galerkin method, we compare the performance of this non-negative formulation with the

Galerkin method based on metric-based mesh. Furthermore, we extend the non-negative formula-

tion to 3D problem. The behavior of degrading slabs under self-weight is analyzed. The analytical

solution has been obtained by semi-inverse method for an infinite degrading slab, whereas the nu-

merical solution has been obtained for a finite-sized slab. The comparison between them has been

conducted. From the results, we can conclude as follows.

(i) The metric-based mesh can reduce the negative concentration values effectively, however, they

still exist.

(ii) The Galerkin method based on metric-based mesh cannot simulate the deformation subprob-

lem very well.

(iii) The analytical solution can not simulate the materials with isotropic or anisotropic diffusivity

appropriately.

(iv) The assumption of zero displacement in x and y directions is another significant limitation of

the semi-inverse method. For large structures in reality, especially the anisotropic materials,

the deformations along x and y directions can not be ignored.

(v) The deformation in z direction is not uniformly distributed on the plane, as the analytical

solution assumed. Moreover, the maximum deformation can occur on the edge of the slab.
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(a) The regular mesh.
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(b) The metric-based mesh.

Figure 1. Square plate with a hole: This figure shows the computational meshes employed

in the numerical simulation. The regular mesh is a Delaunay-type mesh generated using

Gmsh [1]. The metric-based mesh is generated using FreeFem++ corresponding to the

diffusivity tensor given by equation (3.1a).
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(a) Newton Raphson method using the regular

mesh.

(b) Newton Raphson method using the metric-

based mesh.
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(c) Galerkin formulation using the regular

mesh.
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(d) Galerkin formulation using the metric-

based mesh.
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(e) Non-negative formulation using the regular

mesh.

Figure 2. Square plate with a hole: This figure compares the concentration profiles ob-

tained using the Newton Raphson method, Galerkin formulation and the non-negative for-

mulation. The computational meshes (the regular and metric-based meshes) are shown in

Figure 1. 15
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(b) Diffusion subproblem

Figure 3. Square plate with a hole: The variation of condition number with iterations

for deformation and diffusion subproblems under the Galerkin formulation and the non-

negative formulation. From this figure, it evident that metric-based meshed give rise to

matrices with large condition numbers, particularly for the deformation subproblem. This

substantiates one of the main conclusions of this paper: metric-based meshes, which work

well for anisotropic diffusion equations, may not produce accurate results for the deformation

subproblem.
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(b) Square plate with circle hole.

1 2 3
Iteration number

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

R
es

id
ua

l

Regular Mesh
Metric-based Mesh

(c) Concrete beam with cracks.

Figure 4. This figure compares the residual obtained using the Newton Raphson method.

The computational meshes (the regular and metric-based meshes) are shown in Figure 1,

Figure 5, and Figure 8.
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(a) The regular mesh.

(b) The metric-based mesh.

Figure 5. Plate with a circular hole: This figure shows the computational meshes employed

in the numerical simulation. The regular mesh is a Delaunay-type mesh generated using

Gmsh [1]. The metric-based mesh is generated using FreeFem++ corresponding to the

diffusivity tensor given by equation (3.1a).
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(a) Newton Raphson method using the regular

mesh.

(b) Newton Raphson using the metric-based

mesh.
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(c) Galerkin formulation using the regular

mesh.

(d) Galerkin formulation using the metric-

based mesh.
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(e) Non-negative formulation using the regular

mesh.

Figure 6. Plate with a circular hole: This figure compares the concentration profiles ob-

tained using the Galerkin formulation and the non-negative formulation. The computational

meshes (the regular and metric-based meshes) are shown in Figure 5.
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(a) Strain: Without degradation.
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(b) Stress: Without degradation.
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(c) Strain: Galerkin formulation using the reg-

ular mesh.
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(d) Stress: Galerkin formulation using the reg-

ular mesh.

(e) Strain: Galerkin formulation using the

metric-based mesh.

(f) Stress: Galerkin formulation using the

metric-based mesh.
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(g) Strain: Newton Raphson method using the

regular mesh.
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(h) Stress: Newton Raphson method using the

regular mesh.

(i) Strain: Newton Raphson using the metric-

based mesh.

(j) Stress: Newton Raphson using the metric-

based mesh.
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(k) Strain: Non-negative formulation using the

regular mesh.
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(l) Stress: Non-negative formulation using the

regular mesh.

Figure 7. Plate with a circular hole: This figure compares the contours of trace of stress

obtained using the Galerkin formulation and the non-negative formulation. The computa-

tional meshes (the regular and metric-based meshes) are shown in Figure 5.
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(a) The regular mesh.

(b) The metric-based mesh.

Figure 8. Concrete beam with cracks: This figure shows the computational meshes em-

ployed in the numerical simulation. The regular mesh is a Delaunay-type mesh generated

using Gmsh [1]. The metric-based mesh is generated using FreeFem++ corresponding to

the diffusivity tensor given by equation (3.1a).
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(a) Newton Raphson method using the regular

mesh.
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(b) Galerkin formulation using the metric-

based mesh.
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(c) Galerkin formulation using the regular

mesh.
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(d) Galerkin formulation using the metric-

based mesh.
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(e) Non-negative formulation using the regular

mesh.

Figure 9. Concrete beam with cracks: This figure compares the concentration profiles ob-

tained using the Galerkin formulation and the non-negative formulation. The computational

meshes (the regular and metric-based meshes) are shown in Figure 8.
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On mesh restrictions to satisfy maximum principles, comparison
principles, and the non-negative constraint for a general linear

second-order elliptic equation

Research highlights

• Various versions of discrete comparison principles and their relationship to discrete maxi-

mum principles and non-negative constraint are discussed.

• Necessary and sufficient conditions on stiffness matrix K to satisfy discrete weak and

strong comparison principles for a general linear uniformly elliptic partial differential equa-

tion are constructed.

• A general relationship between various discrete comparison principles, discrete maximum

principles, and non-negative constraint within the context of mesh restrictions, numerical

formulations, and post-processing methods are discussed.

• Various important aspects of numerical solution spaces pertinent to different discrete prop-

erties are provided.

• Pros and cons of using nonobtuse, acute, well-centered triangulations for heterogeneous

isotropic diffusivity and anisotropic M-uniform meshes (which are constructed based on a

Riemannian metric tensor depending on the components of anisotropic diffusivity tensor)

for heterogeneous anisotropic diffusivity to satisfy various discrete properties are discussed

in detail.

• Finally, two different methodologies are proposed to extend the numerical framework of a

general linear second-order elliptic partial differential equation to a general semilinear and

quasilinear second-order elliptic partial differential equations of monotone type.

Abstract

In this research report, we derive restrictions for three-node triangular (T3) element and a

four-node quadrilateral (Q4) element to satisfy comparison principles, maximum principles, and

the non-negative constraint for a general linear second-order elliptic equation under the standard

single-field Galerkin formulation. It is well-known that an acute-angled triangle or (in some cases)

a right-angled triangle is sufficient to satisfy the discrete weak maximum principle for isotropic

diffusion. Herein, we show that this condition can be either too restrictive or not sufficient to

satisfy various discrete maximum principles, discrete comparison principles, and the non-negative

constraint for a general linear second-order elliptic equation. We shall also pictorially show that

the feasible region for T3 and Q4 elements to satisfy various discrete principles is based on a metric

tensor whose components are a function of anisotropic diffusivity tensor, velocity field, and linear

reaction coefficient with respect to a suitable coordinate system. Finally, we critically review some

of the recent developments in the field of discrete maximum principles, derive new results, and shed

light on to the possible future developments on this research area.

5. INTRODUCTION AND MOTIVATION

Diffusion-type equations are commonly encountered in various branches of engineering, sciences,

and even in economics [14]. These equations have been well-studied in Applied Mathematics, and

several properties and estimates have been derived [15,35]. Numerous numerical formulations have

been proposed and their performance has been analyzed both theoretically and numerically (e.g.,
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see [17]). Several sophisticated software packages, such as ABAQUS [2], ANSYS [3], COMSOL [4],

and MATLAB’s PDE Toolbox [5], have been developed to solve these types of equations. This report

is concerned with numerical solutions for anisotropic advection-diffusion-reaction equations. De-

spite the aforementioned advances, it should be noted that a numerical solution always loses some

mathematical properties that the exact solution possesses. In particular, the aforementioned soft-

ware packages and popular numerical formulations do not satisfy the so-called discrete comparison

principles (DCP), discrete maximum principles (DMP), and the non-negative constraint (NC).

5.1. Mesh restrictions and time step constraints. The first approach is to place restric-

tions on the mesh to meet maximum principles and the non-negative constraint. For isotropic

homogeneous diffusivity, Ciarlet and Raviart [13] have shown that numerical solutions based on

the single-field Galerkin finite element formulation, in general, does not converge uniformly. It

should however be noted that the single-field Galerkin formulation is a converging scheme. Ciarlet

and Raviart have also shown that a sufficient condition for single-field Galerkin formulation to

converge uniformly for isotropic diffusion is to employ a well-centered three-node triangular ele-

ments with low-order interpolation. The obvious advantage of this approach is that one can use the

single-field Galerkin formulation without any modification. The drawback is that an appropriate

computational mesh may not exist because of the required restrictions on the shape and size of

the finite element. For example, it is a herculean task (sometimes impossible) to generate a well-

centered triangular mesh for any given two-dimensional domain [42]. Note that requiring a mesh

to be well-centered is a more stringent requirement than requiring the mesh to be Delaunay. In the

scientific literature one can find numerous commercial and open-source mesh generators that pro-

duce premium quality structured and unstructured meshes for various complicated domains. For

example, see the survey report by Owen [34], which accounts for more than 70 unstructured mesh

generation software products. However, the use of these mesh generators in the area of numerical

analysis and engineering, in particular, to construct mesh restrictions for diffusion-type equations

to satisfy DCPs, DMPs, and NC is hardly known.

5.2. Non-negativity, monotone, and monotonicity preserving numerical formula-

tions. The second approach is mainly concerned with developing new innovative numerical method-

ologies based on certain physical and variational principles so that they satisfy DCPs, DMPs, and

NC. Broadly, these methods can be classified into the following three categories:

• Non-negative formulations: A numerical method belongs to the class of non-negative

formulations if the resulting numerical solution satisfies certain DMPs and NC.

• Monotone formulations: A numerical method is said to be monotone if the resulting

numerical solution satisfies certain DMPs, DCPs, and NC.

• Monotonicity preserving formulations: A numerical formulation is said to monotonicity

preserving if the resulting numerical solution does not exhibit spurious oscillations within

itself.

It is evident from the above set of definitions that a non-negative formulation need not satisfy a

monotone condition and a monotone numerical method may not be monotonicity preserving. A

general relationship between non-negative formulations, monotone formulations, and monotonicity

preserving formulations is pictorially described in Figure 10.
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Non-negativity Monotone

Monotonicity

preserving

Figure 10. Non-negativity, monotone, and monotonicity preserving numerical formula-

tions: A pictorial description of various class of numerical formulations satisfying certain

discrete properties. The shaded region in the Venn diagram represents a set of formulations

for which the numerical solutions obeys all the three important properties. Typically, de-

signing a numerical methodology so that it falls in to the shaded region category is still an

open problem.

5.3. Post-processing methods. The third approach is post-processing (PP) based methods.

In literature, there are various types of PP methods which can be used to recover certain discrete

properties for diffusion type equations. Some of the research works in this direction include

• Local and global remapping/repair methods (e.g., see [23]

• Constrained monotonic regression based methods [11].

• Cutoff methods (also known as the clipping methods) [22,27].

• A combination of remapping/repair methods and cutoff methods [44,45].

It needs to be emphasized that a posterior cutoff analysis is a serious variational crime. In

general, this method is neither conservative nor satisfies DMPs and DCPs. The primary objective

of this method is to cutoff the values of a numerical solution if it is less than a given number

(which is the cutoff value). Hence, it is called as the cutoff method. In case of highly anisotropic

diffusion problems and for distorted meshes this method predicts erroneous numerical results [32,

33]. By specifying the cutoff value to be zero, it is always guaranteed to satisfy NC through this

methodology. In addition, if nature of the solution is known aprior, then one can also prevent

undershooting and overshooting of the numerical solution by chopping off those values.

Herein, we shall focus on the first approach. In particular, we shall derive sufficient conditions

for restrictions on the three-node triangle finite elements to meet comparison principles, maxi-

mum principles, and the non-negative constraint in the case of heterogeneous anisotropic advection-

diffusion-reaction equations.

6. LINEAR SECOND-ORDER ELLIPTIC EQUATION AND ASSOCIATED

MATHEMATICAL PRINCIPLES

Let Ω ⊂ R
nd be a open bounded domain, where “nd” denotes the number of spatial dimen-

sions. The boundary of the domain is denoted by ∂Ω, which is assumed to be piecewise smooth.

Mathematically, ∂Ω := Ω − Ω, where a superposed bar denotes the set closure. A spatial point

is denoted by x ∈ Ω. The gradient and divergence operators with respect to x are, respectively,
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denoted by grad[·] and div[·]. Let c(x) denote the concentration field. We shall assume that Dirich-

let boundary condition is prescribed (i.e., the concentration is prescribed) on the entire boundary.

The remainder of this paper deals with the following boundary value problem, which is written in

terms of a general linear second-order differential operator in divergence form:

L[c] := −div [D(x)grad[c(x)]] + v(x) · grad[c(x)] + α(x)c(x) = f(x) in Ω (6.1a)

c(x) = cp(x) on ∂Ω (6.1b)

where L denotes the second-order linear differential operator, f(x) is the prescribed volumetric

source, α(x) is the linear reaction coefficient, v(x) is the velocity vector field, D(x) is the anisotropic

diffusivity tensor, and cp(x) is the prescribed concentration. Physics of the problem demands that

the diffusivity tensor (which is a second-order tensor) be symmetric. That is,

DT(x) = D(x) ∀x ∈ Ω (6.2)

Remark 6.1. In mathematical analysis, the divergence form is a suitable setting for energy

methods. However, some studies on maximum principles do employ the nondivergence form, which

can be written as follows:

L[c] =
nd
∑

i,j=1

(P)ij
∂2c

∂xi∂xj
+

nd
∑

i=1

(q)i
∂c

∂xi
+ r(x)c (6.3)

where the coefficient (P)ij , (q)i, and r(x), which can be related to the physical quantities such as

the diffusivity tensor, velocity field, and linear reaction coefficient. It should be, however, noted

that the nondivergence form exists irrespective of differentiability of the diffusivity tensor. If D(x)

is continuously differentiable, then there exists a one-to-one correspondence between the divergence

form and the nondivergence form. In such cases, the operator L in the divergence form given by

equation (6.1a) can be put into the following nondivergence form [15, Chapter 6]:

L[c] = −D(x) · grad [grad[c(x)]] + (v(x)− div [D(x)]) · grad[c(x)] + α(x)c(x) (6.4)

where we have used the following identity in combination with equation (6.2) to obtain equation

(6.4)

div
[

DT(x)grad[c(x)
]

= D(x) · grad [grad[c(x)]] + div [D(x)] · grad[c(x)] (6.5)

Based on the nature of the coefficients and connectedness of the physical domain, different

versions of maximum and comparison principles exist in the mathematical literature [15,16,36,37].

As stated earlier in this paper, we shall restrict ourselves to the boundary value problem given by

the equations (6.1a)–(6.1b). Further analysis pertaining to Neumann boundary conditions and

mixed boundary conditions within the context of maximum principles, comparison principles, and

the non-negative constraint is beyond the scope of this paper.

We shall say that the operator L is elliptic at a point x ∈ Ω if

0 < λmin(x)ξ · ξ ≤ ξ ·D(x)ξ ≤ λmax(x)ξ · ξ ∀ξ ∈ R
nd\{0} (6.6)

where λmin(x) and λmax(x) are, respectively, the minimum and maximum eigenvalues of D(x). The

operator L is said to be strictly elliptic if there exists a constant λ0 such that

0 < λ0 ≤ λmin(x) ∀ x ∈ Ω (6.7)
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and uniformly elliptic if

0 <
λmax(x)

λmin(x)
< +∞ ∀ x ∈ Ω (6.8)

In the studies on maximum principles, it is common to impose the following restrictions on the

velocity field v(x) and the reaction coefficient α(x):

α(x) ≥ 0 ∀ x ∈ Ω (6.9a)

α(x) − 1

2
div [v(x)] ≥ 0 ∀ x ∈ Ω (6.9b)

0 ≤ |(v(x))i|
λmin(x)

≤ β0 < +∞ ∀ x ∈ Ω and ∀ i = 1, · · · , nd (6.9c)

where β0 is a bounded non-negative constant. If (D)ij and (v)i are continuous in Ω, then the

operator L is uniformly elliptic for any bounded subdomain Ω
′ ⊂⊂ Ω (which means that Ω

′

is

compactly embedded in Ω) and the condition given in equation (6.9c) holds. The restrictions given

in equation (6.9b) can be relaxed in some situations (e.g., see references [21,26]). But the constraint

on α(x) given by equation (6.9a) cannot be relaxed. If α(x) < 0 then equation (6.1a) is referred

to as Helmholtz-type equation, which does not posses a maximum principle. From the theory of

partial differential equations, it is well-known that the aforementioned boundary value problem

given by equations (6.1a)–(6.1b) satisfies the so-called (weak and strong) comparison principles,

(weak and strong) maximum principles, and the non-negative constraint. For future reference and

for completeness, we shall briefly outline the main results. For a more thorough mathematical

treatment, one could consult references [15,16,35].

Theorem 6.2 (Continuous weak and strict weak maximum principles). Let L be a uni-

formly elliptic operator satisfying the conditions given by equations (6.9a)–(6.9c). In addition, let

D(x) be continuously differentiable. Suppose that c(x) ∈ C2(Ω) ∩ C0(Ω) satisfies the differential

inequality L[c] ≤ 0 in Ω, then the maximum of c(x) in Ω is obtained on ∂Ω. That is, c(x) possesses

the weak maximum principle (wMP), which can be written as follows:

max
x∈Ω

[c(x)] ≤ max

[

0, max
x∈∂Ω

[c(x)]

]

(6.10)

Moreover, if α(x) = 0, then we have the strict weak maximum principle (WMP):

max
x∈Ω

[c(x)] = max
x∈∂Ω

[c(x)] (6.11)

Proof. For a proof see references [15,16]. �

Several results pertaining to mesh restrictions are provided in the next set of figures. More

results can found in the forthcoming paper.
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(a) Delaunay-Voronoi mesh: Nv = 539 and Nele = 906

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

(b) v = (0, 0) and α = 0

(c) v = (0.1, 1.0) and α = 0 (d) v = (0.1, 1.0) and α = 1.0

Figure 11. Test problem # 1: The top left figure shows a coarse triangulation used in the

numerical study. The top right figure and the bottom two figures show the concentration

profiles obtain for various values of velocity field and linear-reaction coefficient using this

mesh. The white region in the figures indicate the area in which the value of concentration

is negative and also violated the maximum constraint. The coarse Delaunay-Voronoi mesh

obtained using the open source mesh generator Gmsh [1], satisfies NC and DMPs in case of

pure diffusion. But this is not true for AD and ADR cases. In such scenarios, it produces

unphysical values for concentration field. Moreover, the % of nodes that have violated the

NC and maximum constraint is also very high.
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60 70 79 89 98 108 118 127 137 146 156

(a) Element maximum angles: Nv = 539 andNele = 906

0.00 0.30 0.60 0.91 1.21 1.51 1.81 2.11 2.42 2.72 3.02

(b) Delaunay-type condition: v = (0, 0) and α = 0

-0.44 -0.15 0.14 0.42 0.71 1.00 1.29 1.58 1.86 2.15 2.44

(c) Delaunay-type condition: v = (0.1, 1.0) and α = 0 (d) Delaunay-type condition: v = (0.1, 1.0) and α = 1.0

Figure 12. Test problem # 1: The top left figure shows the maximum angle possible in

each element of the mesh. The top right figure and the bottom two figures show the element

maximum generalized Delaunay-type condition, which is a weaker condition as compared to

the element maximum anisotropic nonobtuse angle condition.
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cp(x) = 0.0
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p(x
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=

0.0

cp(x) = 0.0
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(x
)
=
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Figure 13. Test problem # 2: The computational domain under consideration is a bi-

unit square with one of its vertices at origin O = (0, 0). Homogeneous Dirichlet boundary

conditions are prescribed on all sides of the square. The volumetric source f(x) is zero

inside the domain except for the square region (including the boundaries) at vertex H =

(0.375, 0.375). In this region, f(x) is equal to unity. Herein, we assume that the velocity

vector field and linear reaction coefficient are equal to zero everywhere in the computational

domain.

(a) Background mesh: Nv = 47 and Nele = 68 (b) Anisotropic triangulation: Nv = 593 and Nele =

1088

Figure 14. Test problem # 2: The left figure shows the background mesh on which BAMG

operates to give an anisotropic triangulation, which is shown in the right figure. As the ratio

of the minimum eigenvalue of anisotropic diffusivity tensor to its maximum is 0.1, which

is not very high, so the resulting triangulation consists of a mixture of skinny and normal

triangles.
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(a) Background mesh: v = (0, 0) and α = 0
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(b) Anisotropic triangulation: v = (0, 0) and α = 0

Figure 15. Test problem # 2: This figure shows the concentration profile for pure

anisotropic diffusion. Numerical simulations are performed based on the background mesh

and anisotropic triangulation as shown in the Figure 14. The white region in the figures

depicts the area in which the value of concentration is negative. As the mesh generator

BAMG did not converge in MaxIters, the resulting mesh still violates the non-negative con-

straint. The minimum concentration and the percentage of nodes that have violated the

non-negative constraint on the background mesh is about −4.8 × 10−5 and 2.13%. Corre-

spondingly, these values on the anisotropic triangulation is around −1.35×10−8 and 0.34%.

But it should be noted that this violation based on the anisotropic triangulation is very low

as compared to that of the numerical results obtained using the background mesh.
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O
rh

rd

cp(x) = 1.0

cp(x) = 0.0

Figure 16. Test problem # 3: A pictorial description of the computational domain with

relevant boundary conditions. The circular hole and the circular domain are centered at

origin O = (0, 0). The radius of the circular hole and the circular domain are given by rh =

0.1 and rd = 1.0. Numerical simulations are performed for four different cases of velocity

field and linear reaction coefficient, which are given by v(x) = (0.0, 0.0) and α(x) = 0.0,

v(x) = (1.5, 1.0) and α(x) = 1.0, v(x) = (5.0, 0.5) and α(x) = 1.0, and v(x) = (0.0, 0.0)

and α(x) = 1000.

(a) Background mesh: Nv = 5079 and Nele = 9918 (b) Anisotropic triangulation: Nv = 297 and Nele = 436

Figure 17. Test problem # 3: The left figure shows the background mesh and the right

figure shows the anisotropic triangulation obtained using BAMG for all the four cases. For

this test problem, we obtain skinny triangles as the ratio of the minimum eigenvalue of D(x)

to its maximum is 0.001, which is related to the aspect ratio of the sides of the triangle in

the anisotropic mesh. Moreover, it is evident that the triangles in the mesh are aligned and

oriented along the principal axis of the eigenvectors of the diffusivity tensor.
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(a) Background mesh: v = (0, 0) and

α = 0
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(b) Anisotropic triangulation: v = (0, 0)

and α = 0
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(c) Anisotropic triangulation: v =

(1.5, 1.0) and α = 1.0
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(d) Anisotropic triangulation: v =

(5.0, 0.5) and α = 1.0
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(e) Anisotropic triangulation: v = (0, 0)

and α = 1000

Figure 18. Test problem #3: This figure shows the concentration profiles for four different

cases based on the background and anisotropic meshes shown in Figure 17. The white

region in the figures (circular annulus) shows the area in which the value of concentration

is negative. The minimum concentration and the percentage of nodes that have violated

the non-negative constraint for the background mesh is about −1.67 × 10−2 and 30.28%.

As the anisotropic mesh is coarse and the Algorithm did not converge in MaxIters for the

advection-dominated advection-diffusion-reaction and reaction-dominated diffusion-reaction

problems, the resulting mesh not only violates the non-negative constraint and but also

produces spurious oscillations. The minimum concentration and the percentage of nodes

that have violated the non-negative constraint for the case when v = (5.0, 0.5) and α = 1.0

is about −1.78× 10−1 and 13.47%, where as for the case when v = (0.0, 0.0) and α = 1000

is around −2.79× 10−1 and 20.54%. From these values, it is evident that the extent of this

violation is very high for the reaction-dominated diffusion-reaction problems.
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[38] P. A. C. Raats. Rational Thermodynamics, chapter Applications of the theory of mixtures in soil physics, Ap-

pendix 5D, pages 326–343. Springer, 1984.

[39] G. C. Sih, J. G. Michopoulos, and S. C. Chou. Hygrothermoelasticity. Martinus Nijhoff Publishers, Dordrecht,

The Netherlands, 1986.

[40] R. N. Swamy, editor. The Alkali–Silica–Reaction in Concrete. CRC Press, New York, USA, 2003.

[41] J. F. Ulm, O. Coussy, L. Kefei, and C. Larive. Thermo–chemo–mechanics of ASR expansion in concrete struc-

tures. Journal of Engineering Mechanics, 126:233–242, 2000.

[42] E. Vanderzee, A. N. Hirani, D. Guoy, and E. A. Ramos. Well-centered triangulation. SIAM Journal on Scientific

Computing, 31:4497–4523, 2010.
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C1b. S. Karimi, and K.B. Nakshatrala, “Monolithic multi-time-step coupling methods

for transient problems in solid mechanics and transport,” Experimental and Com-

putational Nonlinear Dynamics session, 51st SES Annual Technical Meeting, Purdue Uni-
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C2. J. Chang, and K.B. Nakshatrala, “A methodology to ensure local mass conser-

vation for porous media models under finite element formulations based on

convex optimization,” AGU Fall Meeting, December 15–19, 2014. [Poster presenta-
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C3. S. Karimi, and K.B. Nakshatrala, “A monolithic multi-time-step computational
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ods for first and second-order transient systems,” SIAM Conference on Computa-

tional Science & Engineering (CSE15), March 14–18, 2015. [Poster presentation ]
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sentation ]
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non-negative finite element formulation for anisotropic advective-diffusive-reactive

systems,” AGU Fall Meeting, December 14-18, 2015. [Poster presentation ]
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M1. “Continuum scale modeling of flow and reactive transport in porous media,” Organizers: S.

Karra, and K.B. Nakshatrala, American Geophysical Union Fall Meeting, San Francisco,

December 15–19, 2014.

M2. “Modeling flow and transport in heterogeneous porous media,” Organizers: K.B. Nakshatrala

(Chair), S. Karra, and H. Viswanathan, 13th US National Congress on Computa-

tional Mechanics, San Diego, California, July 26–30, 2015.

M3. “Mathematical and numerical modeling of degradation of materials and structures,” Or-

ganizers: K.B. Nakshatrala (Chair), D.Z. Turner, K.J. Willam, and R. Ballarini, 13th

US National Congress on Computational Mechanics, San Diego, California, July

26–30, 2015.

M4. “Advances in forward and inverse modeling of coupled Thermo-Hydro-Geomechanical-

Chemical processes in porous media,” Organizers: D. Bau, S. Karra, S. Teatini, and

K.B. Nakshatrala, American Geophysical Union Fall Meeting, San Francisco, De-

cember 14–18, 2015. [AGU executive committee has accepted our proposal for the mini-
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Accepted / published peer-reviewed papers

P1. M. K. Mudunuru(s,∗), and K. B. Nakshatrala, “On enforcing maximum principles

and achieving element-wise species balance for advection-diffusion-reaction

equations under the finite element method,” Accepted in the Journal of Computa-

tional Physics, 2015. [An e-print of the paper is available on arXiv: 1506.06099.]

P2. K. B. Nakshatrala, H. Nagarajan, and M. Shabouei, “A numerical methodology for enforc-

ing maximum principles and the non-negative constraint for transient diffusion equations,”

Accepted in Communications in Computational Physics, 2015. [An e-print is available on

arXiv.]

P3. M.K. Mudunuru(s,∗), M. Shabouei(s), and K.B. Nakshatrala, “On local and global species

conservation errors for nonlinear ecological models and chemical reacting flows,”

Paper number IMECE2015-52760, ASME International Mechanical Engineering Congress

& Exposition Conference, 2015.

Journal papers under review

P4. M. K. Mudunuru(s,∗), and K. B. Nakshatrala, “On mesh restrictions to satisfy com-

parison principles, maximum principles, and the non-negative constraint: Re-

cent developments and new results,” under review, 2015. [An e-print of the paper is

available on arXiv: 1502.06164.]

Journal papers close to submission

P5. C. Xu(s), M. K. Mudunuru(s), and K. B. Nakshatrala, “Material degradation due to

moisture and temperature. Part 1: Mathematical model, analysis, and analyt-

ical solutions,” under preparation, 2015.
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P6. C. Xu(s), and K. B. Nakshatrala, “Material degradation due to moisture and tem-

perature. Part 2: Computational framework, and numerical solutions,” under

preparation, 2015.

P7. M. K. Mudunuru(s,∗), and K. B. Nakshatrala, “Numerical formulations for steady-

state and transient semi-linear reaction-diffusion equations, and their structure

preserving properties,” under preparation, 2015.

A summary of the research accomplishments

(1) Mesh restrictions to meet the non-negative constraint: This part of the research

work has been completed entirely. A complete report has also been written on this topic,

and submitted to a journal. An e-print of the report is available on arXiv: 1502.06164.

(2) An optimization-based methodology to meet maximum principles and the non-

negative constraint: This part of the work has been completed entirely. A complete

report has also been written on this topic, and submitted to a journal, which has been

accepted in the prestigious Journal of Computational Physics. An e-print of the report is

available on arXiv: 1506.06099.

(3) Quantifying conservation errors under numerical formulations for nonlinear

reactions: This part of the research is also complete. This work has been accepted for

publication as a conference paper in ASME 2015 International Mechanical Engineering

Congress & Exposition conference.

(4) Non-negative formulations for nonlinear transport-reactions equations: We are

currently extending the non-negative formulations that we have developed for diffusion-

type and advection-diffusion equations to nonlinear transport-reactions equations.

(5) A thermomechanics-based constitutive model for thermal and moisture degra-

dation: We have split this research into two parts. The first part of the research deals

with Mathematical model, analysis, and analytical solutions. The second part deals with

Computational framework, and numerical solutions. We have made lot of progress on this

topic. Some preliminary results have also been reported in couple of earlier quarterly re-

ports. In the next few months, we will finish both the parts. Two manuscripts are under

preparation.
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Material degradation due to moisture and temperature: Mathematical model,

analysis, and analytical solutions

Abstract. The mechanical response, serviceability, and load bearing capacity of materials and

structural components can be adversely affected due to external stimuli, which include exposure to

a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing),

cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several

branches of engineering – ranging from aerospace engineering, civil engineering to biomedical engi-

neering – to have a fundamental understanding of degradation of materials, as the materials in these

applications are often subjected to adverse environments. Due to recent advancements in material

science, new materials like fiber-reinforced polymers and multi-functional materials that exhibit

high ductility have been developed and have been widely used; for example, as infrastructural ma-

terials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these

materials will not be adequate. In this paper, we study degradation of materials due to an expo-

sure to chemical species and temperature under large-strain and large-deformations. In the first

part of our research work, we present a consistent mathematical model with firm thermodynamic

underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate

the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

1. INTRODUCTION AND MOTIVATION

Material and structural degradation is a major wide-spread problem in infrastructure and var-

ious other real-life applications. Most of the well-known manifestations, such as “wear out” and

“fracture” are related to the phenomenon of degradation [Batchelor et al., 2003]. Virtually, every

material degrades when subjected to hostile environment and external stimuli. Importance of this

phenomena has triggered a surge in research to develop more resistible materials. Consequently,

understanding the general behavior of degrading materials has attracted the interest of researchers.

A fundamental study of degradation is crucial to several branches of engineering: aerospace, me-

chanical, civil, and biomedical. Due to recent advancements in material science, new materials

like fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been

developed. They have been widely used; for example, as infrastructural materials or in medical

devices (e.g., stents). Traditional small-strain assumption to model these materials will not be

adequate.

Herein, we develop a coupled continuum mathematical model for thermal and chemical-induced

degradation of hyperelastic solids. It should be emphasized that elasticity is an idealization. There

is no material whose response is perfectly elastic. But there are situations in which the response

of certain materials under normal conditions can be idealized to be hyperelastic. For example,

large blood arteries, and rock. Many of these materials function in hostile environments, and are

constantly subjected to adverse external stimuli. One often is interested in the unsteady response

of the bodies made of hyperelastic materials subject to degradation/healing and/or aging. The

application areas in mind are the response of high performance cementitious materials (which

undergo large strains and large deformations) and several important coupled deformation-transport

processes in biomechanics and biomedicine.

1.1. Degradation mechanisms. The reason that more and more research has been con-

ducted on degradation is that Degradation not only reduces the durability of materials but also
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alters material properties. For instance, material damage can induce anisotropy in thermal con-

ductivity and diffusivity. Some degradation factors and consequence of concrete structures have

been listed in the following table.

Table 1. Primary degradation factors that can impact safety- related concrete structures

[Naus, 2007]

Degradation factor Primary manifestation

Physical processes

cracking reduced durability

salt crystallization cracking/loss material

freezing and thawing cracking/scaling/disintegration

abrasion/erosion/cavitation section loss

thermal exposure/thermal cycling cracking/spalling/strength loss

vibration cracking

settlement cracking/spalling/misalignment

Chemical processes

efflorescence/leaching increased porosity

sulfate attack volume change/cracking

delayed ettringite formation volume change/cracking

acids/bases disintegration/spalling/leaching

alkali-aggregate reactions disintegration/cracking

aggressive water disintegration/loss material

phosphate surface deposits

There are many mechanisms that can result in the degradation of materials. In general, the

degradation mechanisms can be divided into four catalogs: mechanical processes, chemical re-

actions, biological degradation [Gu et al., 1998], and radiation [Kaplan, 1989]. For mechanical

processes, the performance of materials can be affected adversely by fatigue [Jung et al., 2000],

pressure loading [Rajagopal et al., 2007], and swelling of solid mixtures [Buonsanti et al., 2011].

Examples of chemical degradation include humid and alkaline effects [Björk et al., 2003], exposure

to chlorides and carbon-dioxide [Glasser et al., 2008], and calcium leaching [Gawin et al., 2009].

The coupling effects between these mechanisms can have a significant impact on the rate of dete-

rioration of materials and structures. Therefore, developing an appropriate and general model of

material degradation is very useful to predict the life span of a given structure. A comprehensive

understanding degradation of materials not only plays a pivotal role in improving the reliability of

existing infrastructure, but also has a tremendous impact on the economy. We shall assume that

predominant degradation mechanisms are moisture and temperature. To this end, we propose a

general three-way strongly coupled degradation model based on a thermodynamic framework. The

three-way coupling is between mechanical, thermal and transport phenomena.

A material is said to be undergoing thermal degradation at a spatial point x ∈ Ω if the available

isothermal density is lower than the reference available isothermal power at that particular point.

That is,

dA

dt

∣

∣

∣

∣

ϑ>ϑref

6
dA

dt

∣

∣

∣

∣

ϑ=ϑref

for x ∈ Ω (1.1)
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Similarly, the chemical/moisture degradation can be defined as follows.

dA

dt

∣

∣

∣

∣

c>cref

6
dA

dt

∣

∣

∣

∣

c=cref

for x ∈ Ω (1.2)

where A denotes the specific Helmholtz potential of the material.

Numerical research has been done on thermal degradation. Some of them focus on the effect

of thermal degradation on the performance of the materials, where the thermal conductivity is a

function only depends on temperature. For instance, the interaction of thermal and mechanical

damage processes in heterogeneous concrete materials has been examined in [Willam et al., 2005],

the behavior of one-way reinforced concrete slabs exposed to fire has been invested in [Allam et al.,

2013], and effective thermal properties has been predicted in particular composites in a micro

mechanical model [Khan and Muliana, 2010; Khan et al., 2011].

On the other hand, experiments have been done to show the effect of an environment of alka-

linity and humidity on concrete slabs of different components [Björk et al., 2003]. Several moisture

damage mechanisms occurring within asphalt pavement have been listed in [Cho and Kim, 2010],

and corresponding experiments have been done to show consequences. However, no model based on

thermodynamics or empiricism is proposed in [Björk et al., 2003; Cho and Kim, 2010]. The thermal

and moisture effects on structural stiffness and damping of laminated composites are investigated

in [Bouadi and Sun, 1990]. An empirical model is established, but the transferability is an issue.

A variety of experiments have been done to show the relation between the fluid-induced internal

damage and anomalous fluid absorption in polymeric composites [Weitsman and Guo, 2002; Weits-

man, 2006]. Analytical diffusion models based on equivalent diffusivity and capillary action have

been presented. The overall damage parameter is used to simulate the effect of micro-cracks on

diffusivity, which is hardly tell the effect of non-uniform deformation.

It is apparent that none of the mentioned paper of thermal or chemical degradation above have

a proper thermodynamic basis.

1.2. Thermodynamics of chemo-thermo-mechano degradation. Typically, there are

two approaches to build a thermodynamically-consistent degradation model. The first one is based

on the theory of the internal variable, such as micro-cracks [Weitsman, 1987], damage parameter

[Grasberger and Meschke, 2004]. A theoretical model is presented to investigate the mechano-

chemical coupling involved in the adhesion of thin-shell structures in [Springman and Bassani,

2009]. The adhesive traction is used to simulate the coupled effect between chemical and mechan-

ical problems. However, it cannot be a general case for other structures. Moreover, this model

involves the multi-scale modeling approach, which require attentions to more issues such as the

interdependence between the overall adhesive state and effective adhesive properties.

The other is to investigate the dependence of material properties on concentration of chemical

species. The main disadvantage of the first approach is that it is difficult (or sometimes impossible)

to measure the internal variables through experimentation. However, the second approach can

circumvent this drawback. Moreover, the degradation parameters based on the second approach

have a physical basis as compared to the first method. Therefore, we shall use the second approach

to construct a thermodynamically- consistent degradation model in which all the damage param-

eters can be measured in experiments. Several studies have been conducted for this approach.

The material moduli of linearized elastic bodies at a particular location is assumed to depend on

the concentration of fluid at the location in [Muliana et al., 2009; Darbha and Rajagopal, 2009].
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Others studies the effect of strain on thermal conductivity. Dating back to 1970s, people started

to study the thermal conductivity of polymer solid under large strain [Picot and Debeauvais, 1975;

Peng and Landel, 1975]. Bhowmick and Shenoy [Bhowmick and Shenoy, 2006] presented a method

to model the effect of uniform pressure on the thermal conductivity, Xiaobo Li et al. [Li et al.,

2010] studied the strain effects on the thermal conductivity of nano structures, and the thermal

conductivity of metal degradation due to torsional fatigue has been shown in [Naderi and Khonsari,

2011]. A deformation-dependent diffusion model in composite media at finite strains is developed in

[Klepach and Zohdi, 2014]. However, all of them are one-way coupled models. Some fully two-way

coupled chemical degradation models have been developed [Karra and Rajagopal, 2012; Mudunuru

and Nakshatrala, 2012]. The proposed model in this paper shall recover the model developed

by Mudunuru and Nakshatrala [Mudunuru and Nakshatrala, 2012] since the degradation problem

should be considered in an open system and not in a closed one [Karra and Rajagopal, 2012].

1.3. Objectives and scope of the paper. The main contributions of this paper are as

follows:

(i) We derive a general chemo-thermo-mechano degradation model by appealing to the maxi-

mization of dissipation, which is capable of providing a thermodynamic status of many ex-

isting models. It will be shown that many popular models are special cases of the proposed

mathematical model. For example, the small-strain moisture degradation model proposed in

[Mudunuru and Nakshatrala, 2012] will be shown to be a special case of the proposed model.

This also illustrates the thermodynamics basis of the degradation model in [Mudunuru and

Nakshatrala, 2012], which is not addressed earlier.

(ii) A systematic mathematical analysis is performed on the proposed model, which includes

showing that the unsteady solutions under the proposed degradation model are bounded. The

analysis will take into account large/finite deformations, and the stability will be established

in the sense of Lyapunov.

(iii) We will calibrate the proposed degradation model with existing experimental data sets. These

calibration and validation studies will illustrate that the proposed constitutive model can be

used with confidence in studying various brittle and quasi-brittle materials like ceramics, glass

fibers and concrete.

(iv) Last but not the least, semi-analytical solutions to several canonical problems are presented,

which can be valuable for developing better design and safety codes.

2. NOTATION, PRELIMINARIES, AND BALANCE LAWS

Let us consider a body B. The body occupies a reference configuration Ω0(B) ⊂ R
nd, where

“nd” denotes the number of spatial dimensions. A point in the reference configuration is denoted

by p ∈ Ω0(B). We shall denote the time by t ∈ [0,T ], where T is the length of the time interval

of interest. Due to motion, the body occupies different spatial configurations with time. We shall

denote the configuration occupied by the body at time t as Ωt(B) ⊂ R
nd. A corresponding spatial

point will be denoted as x ∈ Ωt(B). The gradient and divergence operators with respect to p are,

respectively, denoted by Grad[•] and Div[•]. Similarly, the gradient and divergence operators with

respect to x are, respectively, denoted by grad[•] and div[•].
The motion of the body is mathematically described by the following invertible mapping:

x = ϕ(p, t) (2.1)
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The displacement vector field can then be written as:

u = x− p = ϕ(p, t)− p (2.2)

The velocity vector field is defined as:

v = ẋ :=
∂ϕ(p, t)

∂t
(2.3)

where a superposed dot indicates the material/total time derivative, which is the derivative with

respect to time holding the reference coordinates fixed. The gradient of motion (which is also

referred to as the deformation gradient) is defined as:

F = Grad[x] ≡ ∂ϕ(p, t)

∂p
= I+Grad[u] (2.4)

where I denotes the second-order identity tensor. The corresponding right Cauchy-Green tensor is

denoted by:

C = FTF (2.5)

where (•)T denotes the transpose of a second-order tensor. The velocity gradient with respect to

x and the symmetric part of the velocity gradient are, respectively, defined as follows:

L := grad[v] ≡ ḞF−1 (2.6)

D :=
1

2

(

L+ LT
)

(2.7)

The Green-St. Venant strain tensor is defined as:

E =
1

2
(C− I) =

1

2

(

Grad[u] + Grad[u]T +Grad[u]TGrad[u]
)

(2.8)

In those situations in which the following assumption holds:

max
p∈Ω0(B),t∈R

√

‖ϕ(p, t)− p‖2 + ‖Grad[u]‖2 ≪ 1 (2.9)

one is justified to employ the following linearized strain tensor:

El =
1

2

(

Grad[u] + Grad[u]T
)

≈ 1

2

(

grad[u] + grad[u]T
)

(2.10)

where ‖ • ‖ denotes the Frobenius norm [Antman, 1995].

Since we will be dealing with processes in addition to the mechanical deformation, we need to

introduce quantities other than the ones that are associated with the kinematics. We will denote

the temperature by ϑ and the specific entropy by η. The mass fraction of the chemical species

is denoted by c and the corresponding chemical potential is denoted by κ. The temperature,

mass fraction of chemical species, entropy, and chemical potential are all scalar fields, while the

displacement, velocity, and acceleration are vector fields. In some situations, it may be needed to

explicitly indicate the functional dependence of these quantities. We employ a standard notation,

which will be illustrated through the temperature field. The temperature in terms of reference

coordinates and spatial coordinates will be denoted as follows:

ϑ = ϑ̃(p, t) = ϑ̂(x, t) (2.11)
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2.1. Balance laws. For our study, we shall consider the thermodynamic system to be the

entire degrading body. Moreover, we shall assume that this thermodynamic system to be an open

system. That is, heat and mass transfers can occur across the boundary of the system. We now

present the balance laws that govern the evolution of the chosen system.

The balance of mass of the solid in the degrading body takes the following form:

ρ̇+ ρdiv[v] = 0 (2.12)

where ρ is the density of the solid in the deformed configuration Ωt(B). The balance of a chemical

species, which is being transported in the degrading body, can be mathematically written as:

ρċ+ div[h] = h (2.13)

where h is the mass transfer flux vector in the deformed configuration, and h is the volumetric source

of the chemical species in the deformed configuration. We assume that the chemical species cannot

take partial stresses, which is a reasonable assumption in the degradation of materials due to small

concentrations of moisture. One can handle large moisture contents by introducing partial stresses

and using the theory of interacting continua (which is often referred to mixture theory) [Bowen,

1976]. We do not address such issues, as our focus is degradation due to small concentrations of

moisture or chemicals. The balance of linear momentum of the solid can be written as:

ρv̇ = div[T] + ρb (2.14)

where b is the specific body force, and T is the Cauchy stress in the solid. Assuming that there is

supply of internal couples, the balance of angular momentum of the solid reads:

T = TT (2.15)

Assuming that the balance of linear momentum (i.e., equation (2.14)) holds, the balance of energy

of the system (i.e., the first law of thermodynamics) can be written as:

ρ
d

dt
(A+ ϑη) = T •D− div[κh] + κh− div[q] + q (2.16)

where A is the specific Helmholtz potential, q is the heat flux vector in the deformed configuration,

and q is the volumetric heat source in the deformed configuration. In our study, we assume that

the Helmholtz potential A to depend on F, c, and ϑ. We also have the following relations for the

chemical potential and specific entropy:

κ := +
∂A

∂c
(2.17)

η := −∂A
∂ϑ

(2.18)

Assuming the balance of chemical species to hold, we then have the following:

ρ

(

∂A

∂F
FT •D+ ϑη̇

)

= T •D− div[q]− grad[κ] • h+ q (2.19)

The localized version of the second law of thermodynamics in the deformed configuration takes the

following form:

ρ

(

∂A

∂F
FT •D

)

= T •D− 1

ϑ
grad[ϑ] • q− grad[κ] • h− ρζ (2.20)

where ζ is the specific rate of dissipation functional, which is non-negative. The above equation is

a stronger version than the second law of thermodynamics, which is a global law and not a local
10



one. The second law of thermodynamics does not assert that the rate of entropy production be

non-decreasing at each and every point in the system/body.

2.2. The maximization of rate of dissipation. Among the various methodologies to de-

rive constitutive relations (e.g., see [Maugin, 1998]), the axiom of maximization of rate of dis-

sipation put-forth by Ziegler [Ziegler, 1983] is an attractive procedure. Herein, we extend this

procedure to the open thermodynamic system under consideration. We obtain the constitu-

tive relations using the maximization of dissipation hypothesis, which needs the prescription of

two functionals – the Helmholtz potential and the dissipation functional. We assume the func-

tional dependence of the Helmholtz potential and the dissipation functional to be Â(F, c, ϑ) and

ζ̂(D, grad[ϑ], grad[κ];F, ϑ, c).

The mathematical statement of maximization of rate of dissipation can be written as follows:

maximize
D,grad[ϑ],grad[κ]

ρζ = ρζ̂(D, grad[ϑ], grad[κ];F, ϑ, c) (2.21a)

subject to ρ

(

∂A

∂F
FT •D

)

= T •D− 1

ϑ
grad[ϑ] • q− grad[κ] • h− ρζ (2.21b)

Using the method of Lagrange multipliers, the above constrained optimization problem is equivalent

to the following unconstrained optimization problem:

extremize
D,grad[ϑ],grad[κ],Λt

ρζ̂(D, grad[ϑ], grad[κ];F, ϑ, c)

+Λt

(

ρ

(

∂A

∂F
FT •D

)

−T •D+
1

ϑ
grad[ϑ] • q+ grad[κ] • h+ ρζ

)

(2.22)

where Λt is the Lagrange multiplier enforcing the constraint (2.21b). The first-order optimal con-

ditions give rise to the following relations:

T = ρ
∂A

∂F
FT +

(

1 + Λt

Λt

)

ρ
∂ζ

∂D
(2.23a)

1

ϑ
q = −

(

1 + Λt

Λt

)

ρ
∂ζ

∂grad[ϑ]
(2.23b)

h = −
(

1 + Λt

Λt

)

ρ
∂ζ

∂grad[κ]
(2.23c)

ρ

(

∂A

∂F
FT •D

)

−T •D+
1

ϑ
grad[ϑ] • q+ grad[κ] • h+ ρζ = 0 (2.23d)

The above equations can be obtained by taking (Gâteaux) variation of the objective function

in equation (2.35) with respect to D, grad[ϑ], grad[κ] and Λt, respectively. By straightforward

manipulations on equations (2.23a)–(2.23d), the Lagrange multiplier Λt can be explicitly calculated

as follows:

Λt =

[

ζ
∂ζ
∂D •D+ ∂ζ

∂grad[ϑ] • grad[ϑ] +
∂ζ

∂grad[κ] • grad[κ]
− 1

]−1

(2.24)

If the rate of dissipation functional ζ is a homogeneous functional of order 2 with respect to D,

grad[ϑ] and grad[κ], we then have

∂ζ

∂D
•D+

∂ζ

∂grad[ϑ]
• grad[ϑ] + ∂ζ

∂grad[κ]
• grad[κ] = 2ζ (2.25)

11



which further implies that Λt = −2. The constitutive relations under Λt = −2 will simplify to:

T = ρ
∂A

∂F
FT +

1

2
ρ
∂ζ

∂D
(2.26a)

q = −ϑ
2
ρ

∂ζ

∂grad[ϑ]
(2.26b)

h = −1

2
ρ

∂ζ

∂grad[κ]
(2.26c)

Remark 2.1. It should be emphasized that the dissipation functional need not be a homogeneous

functional of order two in terms of F, c and ϑ. The maximization of the rate of dissipation certainly

does not require such an assumption. However, we shall make such an assumption, as it is conve-

nient and the resulting constitutive relations can still model the desired degradation mechanisms.

2.3. Governing equations in the reference configuration. Since we are also interested

in developing a computational framework and obtaining numerical solutions, it will be convenient

to write the balance laws in the reference configuration. To this end, we introduce:

J ≡ det[F] (2.27)

where det[•] denotes the determinant. The balance of mass in the reference configuration can be

written as:

ρ0 = Jρ (2.28)

where ρ0 is the density of the undeformed solid. The balance of chemical species in the reference

configuration can be rewritten as:

ρ0ċ+Div[h0] = h0 (2.29)

where h0 = JF−1h is the diffusive flux vector in the reference configuration and h0 = Jh is the

volumetric source in the reference configuration. The balance of linear momentum in the reference

configuration takes the following form:

ρ0v̇ = Div[P] + ρ0b (2.30)

where P = JTF−T is the first Piola-Kirchhoff stress. The balance of angular momentum in the

reference configuration takes the following form:

PFT = FPT (2.31)

In the reference configuration, the balance of energy can be written as:

ρ0

(

∂A

∂F
• Ḟ+ ϑη̇

)

= P • Ḟ−Div[q0]−Grad[κ] • h0 + q0 (2.32)

where q0 = JF−1q is the heat flux vector in the reference configuration and q0 = Jq is the

volumetric heat source in the reference configuration. In the reference configuration, the second

law can be rewritten as:

ρ0

(

∂A

∂F
• Ḟ
)

= P • Ḟ− 1

ϑ
Grad[ϑ] • q0 −Grad[κ] • h0 − ρ0ζ0 (2.33)

where ζ0 = ζ is the non-negative rate of dissipation functional in the reference configuration.
12



2.3.1. Maximization of rate of dissipation in the reference configuration. The mathematical

statement of maximization of rate of dissipation can be written as follows:

maximize
Ḟ,Grad[ϑ],Grad[κ]

ρ0ζ0 = ζ̃(Ḟ,Grad[ϑ],Grad[κ];F, ϑ, c) (2.34a)

subject to ρ0

(

∂A

∂F
• Ḟ
)

= P • Ḟ− 1

ϑ
Grad[ϑ] • q0 −Grad[κ] • h0 − ρ0ζ0 (2.34b)

Using the method of Lagrange multipliers, one can obtain the following equivalent unconstrained

optimization problem:

extremize
Ḟ,Grad[ϑ],Grad[κ],Λ0

ρ0ζ̃(Ḟ,Grad[ϑ],Grad[κ];F, ϑ, c)

+Λ0

(

ρ0

(

∂A

∂F
• Ḟ
)

−P • Ḟ+
1

ϑ
Grad[ϑ] • q0 +Grad[κ] • h0 + ρ0ζ0

)

(2.35)

where Λ0 is the Lagrange multiplier enforcing the constraint given by equation (2.34b). The first-

order optimality conditions give rise to the following constitutive relations:

P = ρ0
∂A

∂F
+

(

1 + Λ0

Λ0

)

ρ0
∂ζ0

∂Ḟ
(2.36a)

1

ϑ
q0 = −

(

1 + Λ0

Λ0

)

ρ0
∂ζ0

∂Grad[ϑ]
(2.36b)

h0 = −
(

1 + Λ0

Λ0

)

ρ0
∂ζ0

∂Grad[κ]
(2.36c)

ρ0

(

∂A

∂F
• Ḟ
)

−P • Ḟ+
1

ϑ
Grad[ϑ] • q0 +Grad[κ] • h0 + ρ0ζ0 = 0 (2.36d)

Similar to the derivation presented earlier in the context of current configuration, the Lagrange

multiplier Λ0 can be explicitly calculated as follows:

Λ0 =





ζ0
∂ζ̃

∂Ḟ
• Ḟ+ ∂ζ0

∂Grad[ϑ] •Grad[ϑ] + ∂ζ0
∂Grad[κ] •Grad[κ]

− 1





−1

(2.37)

If the rate of dissipation functional in the reference configuration ζ0 is a homogeneous functional

of order 2, we have

∂ζ0

∂Ḟ
• Ḟ+

∂ζ0
∂Grad[ϑ]

•Grad[ϑ] +
∂ζ0

∂Grad[κ]
•Grad[κ] = 2ζ0 (2.38)

which further implies that Λ0 = −2. The constitutive relations under Λ0 = −2 take the following

form:

P = ρ0
∂A

∂F
+

1

2
ρ0
∂ζ0

∂Ḟ
(2.39a)

q0 = −
ϑ

2
ρ0

∂ζ0
∂Grad[ϑ]

(2.39b)

h0 = −
1

2
ρ0

∂ζ0
∂Grad[κ]

(2.39c)
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3. A GENERAL CONSTITUTIVE MODEL FOR CHEMO-THERMO-MECHANO

DEGRADATION

We will develop the proposed constitutive model by appealing to the maximization of rate of

dissipation. Under the maximization of rate of dissipation hypothesis, the constitutive relations can

be obtained by prescribing two functional – the Helmholtz potential and the dissipation functional.

Philosophically, the Helmholtz potential quantifies the way in which the material stores energy,

whereas the dissipation functional quantifies the way in which the material dissipates energy. For

our proposed chemo-thermo-mechano degradation model, we prescribe the following functional

forms for the specific Helmholtz potential and the rate of dissipation functional:

A = Â(F, c, ϑ) =
1

ρ0
ψ − 1

2

cp
ϑref
{ϑ− ϑref}2 −

1

ρ0
{ϑ− ϑref}MϑE •E+ dϑc {ϑ− ϑref} {c− cref}

− 1

ρ0
{c− cref}McE •E+

Rsϑref
2
{c− cref}2 (3.1)

ζ = ζ̂(D, grad[ϑ], grad[κ];F, ϑ, c) =
cp
ϑ
grad[ϑ] •Dϑϑgrad[ϑ] +

1

ϑ
grad[ϑ] •Dϑκgrad[κ]

+
1

ϑ
grad[κ] •Dκϑgrad[ϑ] +

1

Rsϑref
grad[κ] •Dκκgrad[κ] (3.2)

where Rs = R/M . Rs and R denote the specific vapor constant and the universal vapor constant

respectively, M is the molecular mass of chemical species. ϑref and cref are the specified reference

temperature and reference mass concentration, which depend on the underlying boundary value

problem. We denote cp as the coefficient of heat capacity, dϑc as the thermo-chemo coupled parame-

ter, MϑE as the anisotropic coefficient of thermal expansion (which is assumed to be independent of

temperature, concentration, and strain), and McE as the anisotropic coefficient of chemical expan-

sion due to concentration (which is also assumed to be independent of temperature, concentration,

and strain). Both MϑE and McE are assumed to be symmetric. Dϑϑ is the anisotropic thermal con-

ductivity tensor and Dκκ is the anisotropic diffusivity tensor. Dϑκ corresponds to the anisotropic

Soret effect tensor, which characterizes the transport of chemical species caused by temperature

gradient. Similarly, Dκϑ is the Dufour effect tensor, which represents the heat flow caused by a

concentration gradient.

Remark 3.1. In chemo-thermo-elasticity and in modeling degradation of materials due to trans-

port and reaction of chemical species, coefficient of chemical expansion McE and thermo-chemo

coupling parameter dϑc play a vital role (see [Sih et al., 1986, Chapter-5] and references therein).

Induced-strains due to chemical expansivity will be significant in harsh environmental conditions

and cannot be neglected [Sih et al., 1986]. Considerable inquest has been made in literature to ex-

perimentally measure McE in ceramics [Adler, 2001; Morozovska et al., 2011; Blond and Richet,

2008], laminated and polymer composites [Sih et al., 1986; Bouadi and Sun, 1989; Cai and Weits-

man, 1994], elastomers and biological materials [Harper, 2002; Myers et al., 1984; Lai et al., 1991],

and concrete structures [Ulm et al., 2000; Černy and Rovnańıková, 2002; Swamy, 2003]. However,

adequate progress has not been made yet to develop constitutive models and computational frame-

works for such chemo-thermo-elastic materials or materials undergoing chemical-induced degrada-

tion. Herein, we shall take a step forward to address this issue.

Remark 3.2. It should be noted that in the absence of electrical and magnetic fields, all of the

above tensors are symmetric [Bowen, 1976; Coussy, 2004; Jarkova et al., 2001]. Moreover, from
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the Onsager reciprocal relations (which was put-forth by Onsager in 1930s [Onsager, 1931a,b]) we

have the following relationship between the Soret effect tensor and the Dufour effect tensor.

Dϑκ = Dκϑ (3.3)

Additionally, physics demands that the tensors Dϑϑ and Dκκ are positive definite.

Remark 3.3. Note that the specific Helmholtz potential and correspondingly the dissipation

functional for diffusion can also be modelled using the following expressions:

Ac = Rsϑrefc{ln[c]− 1} (3.4)

ζc =
c

Rsϑref
grad[κ] •Dκκgrad[κ] (3.5)

Both equations (3.1)–(3.2) and (3.4)–(3.5) result in similar partial differential equation structure

for modeling Fickian diffusion.

Under the proposed model, the specific entropy and chemical potential take the following form:

η = −∂A
∂ϑ

= − 1

ρ0

∂ψ

∂ϑ
+

cp
ϑref
{ϑ − ϑref}+

1

ρ0
MϑE •E− dϑc{c− cref} (3.6)

κ =
∂A

∂c
=

1

ρ0

∂ψ

∂c
+Rsϑref{c− cref} −

1

ρ0
McE •E+ dϑc{ϑ− ϑref} (3.7)

From equations 2.26a–2.26c, we have the constitutive relations in deformed configuration as:

T = ρ
∂A

∂F
FT =

1

J

∂ψ

∂F
FT − 1

J
{ϑ− ϑref}FMϑEF

T − 1

J
{c− cref}FMcEF

T (3.8a)

q = −ϑ
2
ρ

∂ζ̂

∂grad[ϑ]
= −ρcpDϑϑgrad[ϑ]−

ρ

2
Dϑκgrad[κ]−

ρ

2
Dκϑgrad[κ] (3.8b)

h = −1

2
ρ

∂ζ̂

∂grad[κ]
= − ρ

Rsϑref
Dκκgrad[κ]−

ρ

2ϑ
Dϑκgrad[ϑ]−

ρ

2ϑ
Dκϑgrad[ϑ] (3.8c)

The rate of dissipation functional for the degradation model in the reference configuration is taken

as follows:

ζ = ζ̃(Ḟ,Grad[ϑ],Grad[κ];F, ϑ, c)

=
cp
ϑ
Grad[ϑ] •DϑϑGrad[ϑ] +

1

ϑ
Grad[ϑ] •DϑκGrad[κ]

+
1

ϑ
Grad[κ] •DκϑGrad[ϑ] +

1

Rsϑref
Grad[κ] •DκκGrad[κ] (3.9)

where Dαβ = F−1DαβF
−T , α and β represent ϑ or κ. Correspondingly, the constitutive relations

in the reference configuration take the following form:

P = ρ0
∂A

∂F
=
∂ψ

∂F
− {ϑ− ϑref}FMϑE − {c− cref}FMcE (3.10a)

q0 = −
ϑ

2
ρ0

∂ζ̃

∂Grad[ϑ]
= −ρ0cpDϑϑGrad[ϑ]− ρ0

2
DϑκGrad[κ]− ρ0

2
DκϑGrad[κ] (3.10b)

h0 = −
1

2
ρ0

∂ζ̃

∂Grad[κ]
= − ρ0

Rsϑref
DκκGrad[κ]− ρ0

2ϑ
DϑκGrad[ϑ]− ρ0

2ϑ
DκϑGrad[ϑ] (3.10c)
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3.1. Constitutive specifications for the degradation model. The following hyperelastic

material models will be employed in this paper:

ψ =
λ

2
(tr[E])2 + µE •E St. Venant-Kirchhoff model (3.11a)

ψ =
κ

2
(ln[J ])2 + µE •E Modified St. Venant-Kirchhoff model (3.11b)

ψ =
µ

2
(tr[C]− 3) + µln[J ] +

λ

2
(ln[J ])2 Neo-Hookean model (3.11c)

where ψ is the stored strain energy density functional, λ and µ are the Lamé parameters, and

κ = λ + 2µ
3 is the bulk modulus. Recall that J = det[F]. The Lamé parameters in the degrading

model are given by the following expressions:

λ(x, c) = λ0(x)− λ1(x)
c

cref
− λ2(x)

ϑ

ϑref
(3.12a)

µ(x, c) = µ0(x) − µ1(x)
c

cref
− µ2(x)

ϑ

ϑref
(3.12b)

where λ0 and µ0 are the Lamé parameters of the virgin material. λ1 and µ1 are the parameters

that account for the effect of concentration of chemical species on degradation of solid. λ2 and µ2
are the parameters that account for the temperature effect on the degrading solid. It should be

noted that λ1, µ1, λ2, and µ2 are all positive. Furthermore, these parameters are constrained such

that the bulk modulus and shear modulus are strictly positive.

3.1.1. Deformation dependent diffusivity. The effect of deformation on diffusivity is modeled as

follows: When tensile and shear strains are predominant, we have the following constitutive model

Dκκ = D0 + (DT −D0)
(exp[ηT IE]− 1)

(exp[ηTErefT ]− 1)
+ (DS −D0)

(exp[ηSIIE]− 1)

(exp[ηSErefS ]− 1)

+ (DMS −D0)
(exp[ηMSIIIE]− 1)

(exp[ηMSErefMS]− 1)
(3.13)

where IE, IIE, and IIIE are the first, second, and third invariants of the Green–St-Venant strain

tensor. These are defined as follows:

IE := tr[E] (3.14a)

IIE :=
√

2 dev[E] • dev[E] =

√

2

3
(3tr[E2]− (tr[E])2) (3.14b)

IIIE := det

[

1

IIE
dev[E]

]

(3.14c)

where dev[E] := E − 1
3 tr[E]I is the deviatoric part of E. These invariants are used to model the

effect of dilation, magnitude of distortion, and mode of distortion on the diffusivity of the solid.

ηT , ηS , and ηMS are non-negative parameters. ErefT , ErefS , and ErefMS are reference measures of

the tensile strain, shear strain, and mode of shear strain respectively. D0, DT , DS , and DMS are,

respectively, the reference diffusivity tensors under no strain, tensile strain, and shear strain.
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When compression and shear strains are predominant, deformation dependent diffusivity is

modeled as follows:

Dκκ = D0 + (D0 −DC)
(exp[ηT IE]− 1)

(exp[ηTErefT ]− 1)
+ (DS −D0)

(exp[ηSIIE]− 1)

(exp[ηSErefS ]− 1)

+ (DMS −D0)
(exp[ηMSIIIE]− 1)

(exp[ηMSErefMS]− 1)
(3.15)

where ηC is a non-negative parameter, ErefC is a reference measure of the compression strain, and

DC is the reference diffusivity tensor under compressive strain.

Remark 3.4. In [Mudunuru and Nakshatrala, 2012], a constitutive model has been developed

for deformation dependent diffusivity based on small-strain assumption. However, it should be

noted that the model proposed by the authors is a special case and is obtained by linearizing the

equations (3.13) and (3.15). This model is developed based on the experimental evidence that the

relative diffusion rate varies exponentially with respect to the trace of strain [McAfee, 1958a,b].

In this paper, we will take a step further to calibrate these materials parameters according to the

experimental data for finite strains based on the model given by equations (3.13) and (3.15). It

should be noted that the model proposed in [Mudunuru and Nakshatrala, 2012] is a special case of

the model given by equations (3.13) and (3.15).

Remark 3.5. Note that deformation dependent diffusivity given by equations (3.13) and (3.15)

can be constructed using a different set of invariants of a given strain tensor. This invariants can

be either principal or Hencky type [Lurie, 1990; sek and Kruisová, 2006; Criscione et al., 2000]

based on the nature of material and associated experimental data. The proposed framework can

accommodate such models with minor modifications.

In case of transversely isotropic materials with fibers running along the direction Mtf , the fol-

lowing invariants are needed to model deformation dependent diffusivity in addition to the invariant

set given by equations (3.14a)–(3.14c)

IVE := Mtf •EMtf (3.16a)

VE := Mtf •E2Mtf (3.16b)

For more details on selection of invariants for transversely isotropic or orthotropic materials see

[Lurie, 1990; Holzapfel, 2000; Ogden, 1997].

3.1.2. Deformation dependent thermal conductivity. The effect of deformation of the solid on

thermal conductivity is modeled as follows [Bhowmick and Shenoy, 2006]:

Dϑϑ = K0ϑ(1 + IE)
−δ (3.17)

where δ is a non-negative parameter. K0ϑ is the reference conductivity tensors under no strain.

Based on molecular dynamics simulations, Bhowmick and Shenoy [Bhowmick and Shenoy, 2006]

suggested that δ to be 9.59 and K0ϑ = 4.61ϑ−1.45 (for certain brittle-type materials). For various

other ductile or brittle-type materials, these parameters can be determined by experiments or can

be constructed using Lennard-Jones potential in molecular dynamics.

Remark 3.6. Due to the lack of experimental data, we assume that Dufour and Soret tensors

do not depend on the deformation of solid. However, it should be noted that the proposed thermo-

dynamic and computational framework can accommodate deformation dependent Dufour and Soret

tensors with minor modifications (whenever such an experimental evidence is available).
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3.1.3. Status of the degradation model in [Mudunuru and Nakshatrala, 2012]. The small-strain

chemo-mechano degradation model proposed in [Mudunuru and Nakshatrala, 2012] is a special

case of the proposed chemo-thermo-mechano degradation, and can be obtained under a plethora

of assumptions. These assumptions include steady-state response, small strains, and isothermal

conditions with negative volumetric heat source in the entire degrading body. One also needs to

neglect chemo-thermo, chemo-mechano, and thermo-mechano couplings. Moreover, the functional

forms of the specific Helmholtz potential and rate of dissipation functional need to be:

A =
1

ρ0
ψ +

Rsϑref
2
{c− cref}2 (3.18)

ζ =
1

Rsϑref
grad[κ] •Dκκgrad[κ] (3.19)

where the stored strain energy density functional is given by:

ψ = ψ̂(El, c) =
λ(c)

2
tr[El]

2 + µ(c)El •El (3.20)

Under the small strain assumption given by equation 2.9, the Cauchy stress, chemical potential,

and mass transfer flux vector can be written as:

T = ρ0
∂A

∂El
= λ(c)tr[El]I+ µ(c)El (3.21)

κ =
∂A

∂c
= Rsϑref{c− cref} (3.22)

h = −1

2
ρ0

∂ζ̂

∂grad[κ]
= − ρ0

Rsϑref
Dκκgrad[κ] (3.23)

The balance of chemical species and the balance of linear momentum for the solid are given by

equations (2.13) and (2.14). Under the isothermal condition, the balance of energy simplifies to the

following expression:

q = − ρ0
Rsϑref

grad[κ] •Dκκgrad[κ] (3.24)

which means that q needs to be non-positive in order to maintain the isothermal condition.

3.2. Non-dimensional parameters to measure the strength of coupling. The evolution

equations for the linearized chemo-thermo-mechano non-degrading and degrading materials are

given follows:

ρ0v̇ = div[λ(c, ϑ)tr[El]I+ µ(c, ϑ)El − {ϑ− ϑref}MϑE − {c− cref}McE] + ρ0b (3.25a)

ρ0Rsϑref ċ = ρ0Rsϑrefdiv[Dκκgrad[c]] + ρ0div[(dϑcDκκ +RsDκϑ) grad[ϑ]] +Rsϑrefh (3.25b)

ρ0cpϑ̇ =
ρ0
Rs

div[
(

cpRsDϑϑ + 2RsdϑcDκϑ + d2ϑcDκκ

)

grad[ϑ]] + q + ϑrefdϑch

+ div[(ρ0ϑrefdϑcDκκ + ρ0RsϑrefDκϑ) grad[c]] − ϑrefMϑE • Ėl (3.25c)

where the Onsager reciprocal relation given by equation (3.3) has been used to obtain (3.25b) and

(3.25c). Based on equations (3.25a)–(3.25c), the measure of strength of thermomechanical, chemo-

mechanical, and chemo-thermomechanical coupling for non-degrading linearized elastic materials
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are given by the following non-dimensional parameters

Etm =
m2

ϑEϑref
ρ0cp(λ0 + 2µ0)

Thermomechanical coupling (3.26a)

Ecm =
m2

cE

ρ0Rsϑref(λ0 + 2µ0)
Chemomechanical coupling (3.26b)

Ect =
Rsdϑc +R2

sSϑ
d2ϑc + 2RsdϑcSϑ +RscpLe

Chemo-thermo coupling (3.26c)

Ectm =
Etm
Ecm

Chemo-thermomechanical coupling (3.26d)

where Le := Dϑϑ

Dκκ

is the standard Lewis number [Sih et al., 1986; Taylor and Krishna, 1993; Cussler,

2009]. Sϑ := D
κϑ

Dκκ

is called the Ludwig-Soret number [Platten and Legros, 1984; Platten, 2006].

Remark 3.7. Note that there are some materials which have high value of mcE. For instance,

in certain ceramics, mcE is 10 times higher than mϑE. In those cases, chemoelasticity play a

predominant role.

To derive these non-dimensional quantities, we have taken McE = mcEI and MϑE = mϑEI.

In addition, relevant transport and thermal coefficients are assumed to be constants, which is the

case for isotropic materials. Similar non-dimensional numbers can be constructed for anisotropic

materials by choosing an appropriate norm. In case of degradation, in addition to Etm, Ecm, Ect, and
Ectm, the following non-dimensional parameters determine which degradation process dominates

EϑEl
=
λ1 + 2µ1
λ0 + 2µ0

Thermo-mechano degradation (3.27a)

EκEl
=
λ2 + 2µ2
λ0 + 2µ0

Chemo-mechano degradation (3.27b)

EϑκEl
=
EϑEl

EκEl

Chemo-thermo-mechano degradation (3.27c)

It should be noted that these non-dimensional parameters are of paramount importance in deter-

mining whether the underlying problem is strongly coupled or weakly coupled. For instance, the

following provide the range of these parameters for various materials:

• For metals such as steel, we have Etm ∼ O(10−2).

• For infrastructural materials such as standard cementitious concrete mixtures, we have

Etm ∼ O(10−3), Ecm ∼ O(10−2), Ect ∼ O(101), and Ectm ∼ O(10−1).

• For brittle materials such as glass, Etm ∼ O(10−4).

• For epoxy-based polymeric composites, we have Etm ∼ O(10−3), Ecm ∼ O(10−4), Ect ∼
O(10−2), and Ectm ∼ O(101).

The order of the dimensionless parameters given by equations (3.26a)–(3.26d) are estimated based

on the values provided by Table 2.

Remark 3.8. It should be noted that the non-dimensional parameters given by equations (3.26a)–

(3.26d) and (3.27a)–(3.27c) provide a foundation for demarcating linearized and finite strain theo-

ries. If the non-dimensional numbers (which form the basis for chemo-thermo-mechanical coupling)

are small (generally in the order of 10−2 or less), then it is justified to use the linearized theory.
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Table 2. Summary of typical (average) material parameters for steel [Totten et al., 2002],

glass [Groza et al., 2007], concrete [Nawy, 2008], and epoxy-based polymer composites (EPC)

[Sih et al., 1986] at ϑref = 300K. The specific vapor constant Rs is equal to 461.5 J kg−1K−1

[Cussler, 2009].

Parameter Steel Concrete Glass EPC

ρ0 (kgm
−3) 7860 2400 2320 2700

cp (J kg
−1K−1) 420 880 840 1300

mϑE (Jm−3K−1) 8.56 × 106 1.22 × 106 0.52× 106 0.42 × 106

mcE (Jm−3) N/A 7.14 × 108 N/A 14× 106

λ0 (GPa) 185 14 26.2 1.4

µ0 (GPa) 79.3 21 26.2 1.4

Dϑϑ (m2s−1) 4.55× 10−6 0.8 × 10−7 4.58 × 10−7 2.53 × 10−5

Dκκ (m2s−1) 1× 10−12 4× 10−7 7.26 × 10−13 1.42 × 10−6

Dκϑ (m2s−1) N/A 3.32× 10−7 N/A 1.02 × 10−6

dϑc (J kg
−1K−1) N/A N/A N/A 1.37 × 103

Le 4.55 × 106 0.2 6.31× 105 17.82

Sϑ N/A 0.805 N/A 0.718

Etm 1.94× 10−2 3.78× 10−3 5.29 × 10−4 3.6 × 10−3

Ecm N/A 2.74× 10−2 N/A 1.25 × 10−4

Ect N/A 2.11 N/A 5.83 × 10−2

Ectm N/A 1.37× 10−1 N/A 2.88 × 101

In all other cases, finite strain chemo-thermo-mechano degradation model has to be used. In addi-

tion, it should be noted that within the context of thermoelasticity, we recover the non-dimensional

parameter proposed by Armero and Simo [Armero and Simo, 1992].

4. SEMI-ANALYTICAL SOLUTIONS TO CANONICAL PROBLEMS

In this section, we shall appeal to semi-inverse methods to obtain solutions to some popular

canonical boundary value problems [Ogden, 1997]. Incompressible neo–Hookean chemo-thermo-

mechano degradation model is consider here. Similar analysis can be performed for other com-

pressible and incompressible chemo-mechano, thermo-mechano, and chemo-thermo-mechano degra-

dation models. Coordinate system under consideration is either spherical or cylindrical. In all the

problems discussed below, we assume concentration and temperature are only a function of time

t and radius r (which is a current configuration variable). This assumption is often made because

the underlying problem has either cylindrical or spherical symmetry. We also assume that the vol-

umetric sources corresponding to temperature and concentration are equal to zero. In this paper,

as we are mainly interested in degradation of solid due to temperature and transport of chemical

species, we shall neglect Dufour effect, Soret effect, thermo-chemo coupling parameter dϑc, and

anisotropic coefficient of thermal and chemical expansions. In order to reduce the complexity of

finding solutions based on semi-inverse method for deformation sub-problem, we shall neglect the

inertial effects and body forces.
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Based on these assumptions, the governing equations for transport sub-problem reduce to the

following partial differential equations in r and t in cylindrical coordinates:

ρ
∂c

∂t
+

1

r

∂rhr
∂r

= 0 (4.1a)

c(r = ri, t) = ci (4.1b)

c(r = ro, t) = co (4.1c)

c(r, t = 0) = c0 (4.1d)

where hr is the mass transfer flux in the radial direction. Similarly, the governing equations for

thermal sub-problem in cylindrical coordinates are given as follows:

ρϑ
∂η

∂t
+

1

r

∂rqr
∂r

= −∂κ
∂r
hr (4.2a)

ϑ(r = ri, t) = ϑi (4.2b)

ϑ(r = ro, t) = ϑo (4.2c)

ϑ(r, t = 0) = ϑ0 (4.2d)

where qr is the heat flux in the radial direction.

In spherical coordinates, the governing equations for transport sub-problem are given as follows:

ρ
∂c

∂t
+

1

r2
∂r2hr
∂r

= 0 (4.3a)

c(r = ri, t) = ci (4.3b)

c(r = ro, t) = co (4.3c)

c(r, t = 0) = c0 (4.3d)

Similarly, the governing equations for thermal sub-problem in spherical coordinates are given as

follows:

ρϑ
∂η

∂t
+

1

r2
∂r2qr
∂r

= −∂κ
∂r
hr (4.4a)

ϑ(r = ri, t) = ϑi (4.4b)

ϑ(r = ro, t) = ϑo (4.4c)

ϑ(r, t = 0) = ϑ0 (4.4d)

Another quantity of interest in material degradation is the extent of damage at a particular location

or along the cross-section of the degrading body. In case of incompressible neo-hookean chemo-

thermo-mechano degradation model, this quantity can be defined as follows:

Dµ(x, t) :=
µ

µ0
= 1−

(

µ1c

µ0cref

)

−
(

µ2ϑ

µ0ϑref

)

(4.5)

For virgin material, Dµ = 1. If Dµ approaches zero, then the material has degraded the most. In

addition, equation (4.5) also provides the following information:

• Amount of degradation at a given location and time,

• The parts of the body that suffered extensive damage, and

• The effect of temperature and moisture (or concentration of chemical species) on the

mechanical properties of materials.
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4.1. Bending of a degrading beam. Herein, we shall consider pure bending of a degrading

beam. At time t = 0, a finite degrading beam is suddenly bent by an action of pure end moments.

For t > 0, the centerline of the beam becomes a sector of a circle of radius rc. This centerline

is held fixed for all the time. Subsequently, the stresses in the degrading beam are allowed to

relax. In addition, it is assumed that the material remains isotropic with respect to the reference

configuration throughout the degradation process. These assumptions enable us to employ the

counterpart of universal deformations (also known as semi-inverse method) [Ogden, 1997] to study

such degrading beams.

A pictorial description of the initial boundary value problem is shown in Figure 3. In the

reference configuration, the degrading beam is defined as follows:

−L ≤ X ≤ L, −W ≤ Y ≤W, −H ≤ Z ≤ H (4.6)

where (X,Y,Z) are the Cartesian coordinates in the reference configuration. We assume that the

deformation in the current configuration is described as follows:

r =

√

2X

α
+ β θ =

Y

γ
z = Z (4.7)

where (r, θ, z) are the cylindrical polar coordinates in the current configuration. When X = 0, we

have β = r2c . It should be noted that α and γ are all unknown time-dependent parameters. These

unknowns are evaluated from the incompressibility constraint, traction boundary conditions, and

pure end moments. To reduce the complexity in finding semi-analytical solutions, we shall assume

rc is given. The faces X = −L and X = L are subjected to ambient atmospheric pressure ‘patm’.

Upon deformation, the corresponding deformed faces ri and ro are maintained at patm, where

ri =
√

r2c − 2γL and ro =
√

r2c + 2γL are the inner and outer radius of the degrading beam. This

gives the following traction boundary conditions:

Trr(X = −L, t) = Trr(X = L, t) = patm (4.8)

The deformation gradient F, right Cauchy-Green tensor C, and left Cauchy-Green tensor B for

the degrading beam are given as follows:

F =







1
αr 0 0

0 r
γ 0

0 0 1






C = B =







1
α2r2

0 0

0 r2

γ2 0

0 0 1






(4.9)

Using the condition of incompressibility, we have αγ = 1. The Cauchy stress tensor for incompress-

ible neo–Hookean chemo-thermo-mechano degradation model is given as follows:

T = −pI+ µ(c, ϑ)B (4.10)

The governing equations (balance of linear momentum) in cylindrical coordinates for deformation

sub-problem are given as follows:

∂Trr
∂r

+
1

r

∂Tθr
∂θ

+
∂Tzr
∂z

+
Trr − Tθθ

r
= 0 (4.11a)

∂Trθ
∂r

+
1

r

∂Tθθ
∂θ

+
∂Tzθ
∂z

+
2Trθ
r

= 0 (4.11b)

∂Trz
∂r

+
1

r

∂Tθz
∂θ

+
∂Tzz
∂z

+
Trz
r

= 0 (4.11c)
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For incompressible degrading neo-Hookean material, the non-zero components of the Cauchy stress

tensor are given as follows:

Trr = −p+
µ(c, ϑ)γ2

r2
= −p+ µ(c, ϑ)γ2

2γX + r2c
(4.12a)

Tθθ = −p+
µ(c, ϑ)r2

γ2
= −p+ µ(c, ϑ)

(

2γX + r2c
)

γ2
(4.12b)

Tzz = −p+ µ(c, ϑ) (4.12c)

The balance of linear momentum given by equation (4.11a)–(4.11c) reduces to the following

∂Trr
∂r

+
Trr − Tθθ

r
= 0 (4.13)

∂p

∂θ
= 0 (4.14)

∂p

∂z
= 0 (4.15)

From (4.14) and (4.15), we have p = p(r, t). Using equations (4.13), (4.7), (4.8), (4.12a), and

(4.12b), we have the following non-linear equation in γ

Trr(X = −L, t)− Trr(X = L, t) =

L
∫

−L

µ(c(X, t), ϑ(X, t))
(

γ4 −
(

2γX + r2c
)2
)

γ (2γX + r2c)
2 dX = 0 (4.16)

where c(X, t) and ϑ(X, t) are evaluated from the values of c(r, t) and ϑ(r, t). From (4.16), γ|t=0 is

given as follows:

γ|t=0 =

√

−2L2 +
√

4L4 + r4c (4.17)

which is the case for homogeneous neo-Hookean material. Once c, ϑ, and γ are known, the Lagrange

multiplier p = p(r, t) enforcing the incompressibility constraint can evaluated from (4.13) and (4.8)

as follows:

p(r, t) = patm +
µ(c, ϑ)γ2

r2
−

r
∫

ri

µ(c, ϑ)
(

γ4 − r4
)

γ2r3
dr (4.18)

where ri =
√

r2c − 2γL. The bending moment in the deformation sub-problem can be evaluated

based on the following formula:

Mbeam(t) =

∫

Across

Tθθ(r − rneu)dA

= 2H

L
∫

−L

Tθθ(−
√

r2c + 2γXneu +
√

r2c + 2γX)
γ

√

r2c + 2γX
dX (4.19)

where dA = 2Hdr. rneu =
√

r2c + 2γXneu is the neutral axis location, and Xneu is the value at

which Tθθ = 0. As rc is given, the parameter γ is bounded above and below as follows:

−r2c
2L

< γ <
r2c
2L

(4.20)
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which can be used in finding the solution for the non-linear equation given by (4.16). It should be

noted that γ|t=0 satisfies the inequality given by (4.20).

The chemical potential and specific entropy are given as follows:

κ =
1

ρ0

∂ψ

∂c
+Rsϑref{c− cref} = −

µ1
2ρ0cref

(

γ2

r2
+
r2

γ2
− 2

)

+Rsϑref{c− cref} (4.21a)

η = − 1

ρ0

∂ψ

∂ϑ
+

cp
ϑref
{ϑ− ϑref} =

µ1
2ρ0ϑref

(

γ2

r2
+
r2

γ2
− 2

)

+
cp
ϑref
{ϑ − ϑref} (4.21b)

From equations (4.21a)–(4.21b) and appealing to incompressibility condition, the mass transfer and

heat transfer fluxes in radial direction can be written as follows:

hr = −
ρ0

Rsϑref
Dκκ

∂κ

∂r
=

µ1Dκκ

Rsϑrefcref

(

r

γ2
− γ2

r3

)

− ρ0Dκκ

∂c

∂r
(4.22a)

qr = −ρ0cpDϑϑ
∂ϑ

∂r
(4.22b)

From equation (4.1a) and (4.2a), the final form for the governing equations for transport and

thermal sub-problems for degrading beam are given as follows:

ρ0
∂c

∂t
−
(

ρ0Dκκ

r
+ ρ0

∂Dκκ

∂r

)

∂c

∂r
− ρ0Dκκ

∂2c

∂r2
= ω

∂Dκκ

∂r

(

γ2

r3
− r

γ2

)

− 2ωDκκ

(

1

γ2
+
γ2

r4

)

(4.23)

(

ρ0cpϑ

ϑref

)

∂ϑ

∂t
−
(

ρ0cpDϑϑ

r
+ ρ0cp

∂Dϑϑ

∂r

)

∂ϑ

∂r
− ρ0cpDϑϑ

∂2ϑ

∂r2
= ρ0RsϑrefDκκ

(

∂c

∂r

)2

+
RsϑrefDκκω

2

ρ0

(

γ2

r3
− r

γ2

)2

+ 2RsϑrefωDκκ

(

γ2

r3
− r

γ2

)

∂c

∂r
(4.24)

where ω = µ1

Rsϑrefcref
. In deriving (4.24), we have assumed that ∂r

∂t ≪ ∂ϑ
∂t (in order to reduce

the complexity in finding semi-analytical solutions). We take ρ0, rc, Rs, ϑref , cref , and D0 as the

reference quantities. These reference quantities give rise to the following non-dimensional quantities:

r =
r

rc
, X =

X

rc
, γ =

γ

rc
, Dκκ =

Dκκ

D0
, Dϑϑ =

Dϑϑ

D0
(4.25)

µ1 =
µ1

ρ0Rsϑref
, µ0 =

µ0
ρ0Rsϑref

, c =
c

cref
, ϑ =

ϑ

ϑref
, t =

D0t

r2c
(4.26)

The above non-dimensionalization introduces the following non-dimensional parameters:

ω =
ω

ρ0cref
(4.27)

τ =
Rsc

2
ref

cp
(4.28)

Correspondingly, the non-dimensionalized governing equations for transport and thermal sub-

problems for degrading beam are given as follows:

∂c

∂t
−
(

Dκκ

r
+
∂Dκκ

∂r

)

∂c

∂r
−Dκκ

∂2c

∂r2
= ω

∂Dκκ

∂r

(

γ2

r3
− r

γ2

)

− 2ωDκκ

(

1

γ2
+
γ2

r4

)

(4.29)
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ϑ
∂ϑ

∂t
−
(

Dϑϑ

r
+
∂Dϑϑ

∂r

)

∂ϑ

∂r
−Dϑϑ

∂2ϑ

∂r2
= τDκκ

(

∂c

∂r

)2

+ 2τωDκκ

(

γ2

r3
− r

γ2

)

∂c

∂r

+ τDκκω
2

(

γ2

r3
− r

γ2

)2

(4.30)

where ∂Dκκ

∂r and ∂Dϑϑ

∂r are given as follows:

∂Dκκ

∂r
= ηT

(

DT −D0

) (exp[ηT IE]− 1)

(exp[ηTErefT ]− 1)

∂IE
∂r

+ ηS
(

DS −D0

) (exp[ηSIIE]− 1)

(exp[ηSErefS ]− 1)

∂IIE
∂r

(4.31)

∂Dϑϑ

∂r
= −

(

δK0ϑ(1 + IE)
−δ−1

) ∂IE
∂r

(4.32)

where the first and second invariants, IE and IIE, are given as follows:

IE =
1

2

(

γ2

r2
+
r2

γ2
− 2

)

(4.33)

IIE =

√

√

√

√

1

6

(

(

γ2

r2
− 1

)2

+

(

r2

γ2
− 1

)2

+

(

γ2

r2
− r2

γ2

)2
)

(4.34)

The partial derivative of the first and second invariants with respect to r are given as follows:

∂IE
∂r

=
r

γ2
− γ2

r3
(4.35)

∂IIE
∂r

=
1

3IIE

(−γ2
r3

(

γ2

r2
− 1

)

+
r

γ2

(

r2

γ2
− 1

)

−
(

γ2

r3
+

r

γ2

)(

γ2

r2
− r2

γ2

))

(4.36)

Correspondingly, the non-dimensional equation to obtain γ at each time is given as follows:

L/rc
∫

−L/rc

µ(c(X, t), ϑ(X, t))
(

γ4 −
(

2γX + 1
)2
)

γ
(

2γX + 1
)2 dX = 0 (4.37)

The non-linear equation (4.37) enables us to find γ at various t given c(X, t) and ϑ(X, t). However,

it should be noted that c(X, t) and ϑ(X, t) are also a function of γ in case of strong coupling. This

is because diffusivity and thermal conductivity depend on the invariants of strain E. Hence, the

integral equation (4.37) and partial differential equations (4.29) and (4.30) are strongly coupled.

4.1.1. Steady-state analysis for beam degradation. In case of steady-state, we have hrr = C1

and qrr + κhrr = C2, where C1 and C2 are integration constants. Equations (4.29) and (4.30)

imply that c and ϑ are the solutions of the following ODEs:

Dκκr
dc

dr
−Dκκω

(

γ2

r2
− r2

γ2

)

+ C1 = 0 (4.38a)

Dϑϑr
dϑ

dr
+ τ

(

w

2

(

γ2

r2
+
r2

γ2
− 2

)

− c+ 1

)

C1 + C2 = 0 (4.38b)
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Assuming Dϑϑ is independent of ϑ, the analytical solutions to the above set of ODEs are given as

follows:

c =

∫
(

ω

(

γ2

r3
− r

γ2

)

− C1

rDκκ

)

dr (4.39a)

ϑ =

∫
(

− τC1

Dϑϑ

(

w

2

(

γ2

r3
+

r

γ2
− 2

r

)

− c− 1

r

)

− C2

rDϑϑ

)

dr (4.39b)

where the integration constants C1 and C2 are determined from the respective boundary conditions

for the transport and thermal sub-problems. In case of weak coupling (where Dϑϑ and Dκκ are

constants), a simplified form for c and ϑ is given as follows:

c = −ω
2

(

γ2

r2
+
r2

γ2

)

+B1ln[r] +A1 (4.40a)

ϑ = −τB
2
1Dκκ

2Dϑϑ

ln[r]2 + Z1ln[r] + Y1 (4.40b)

where the constants A1, B1, Y1, and Z1 are given in terms of the boundary conditions ci, co, ϑi,

and ϑo as follows:

A1 = ci −B1ln[ri] +
ω

2

(

γ2

r2i
+
r2i
γ2

)

(4.41a)

B1 =
1

ln[ro]− ln[ri]

(

co − ci −
ω

2

(

γ2

r2i
+
r2i
γ2
− γ2

r2o
− r2o
γ2

))

(4.41b)

Y1 = ϑi +
τB2

1Dκκ

2Dϑϑ

ln[ri]
2 − Z1ln[ri] (4.41c)

Z1 =
1

ln[ro]− ln[ri]

(

ϑo − ϑi −
τB2

1Dκκ

2Dϑϑ

(

ln[ri]
2 − ln[ro]

2
)

)

(4.41d)

4.1.2. Quasistatic analysis for beam degradation. Herein, we shall use the method of horizontal

lines [Rothe, 1930; Picard and Leis, 1980] and shooting method [Heath, 2005] to obtain numerical

solutions to equations (4.29) and (4.30). In the method of horizontal lines, the time is discretized

first followed by spatial discretization. The time interval of interest [0,I ] is divided into N non-

overlapping subintervals such that ∆t = I
N and tn = n∆t. tn is called the integral time level, where

n = 0, 1, 2, · · · , N . ∆t is the time-step, which is assumed to be uniform. Employing the method of

horizontal lines with backward Euler time-stepping scheme, we obtain the following ODEs at each

time-level for equations (4.29) and (4.30)

d2c(n+1)

dr2
+

(

1

r(n)
+

(

1

D
(n)
κκ

)

dDκκ

dr

∣

∣

∣

∣

∣

t=tn

)

dc(n+1)

dr
− c(n+1)

D
(n)
κκ∆t

= 2ω

(

1
(

γ(n)
)2 +

(

γ(n)
)2

(

r(n)
)4

)

− c(n)

D
(n)
κκ∆t

−
(

ω

D
(n)
κκ

)(

dDκκ

dr

∣

∣

∣

∣

∣

t=tn

)(

(

γ(n)
)2

(

r(n)
)3 −

r(n)
(

γ(n)
)2

)

(4.42)
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d2ϑ
(n+1)

dr2
+

(

1

r(n)
+

(

1

D
(n)
ϑϑ

)

dDϑϑ

dr

∣

∣

∣

∣

∣

t=tn

)

dϑ
(n+1)

dr
− ϑ

(n)
ϑ
(n+1)

D
(n)
ϑϑ∆t

= −τD
(n)
κκ

D
(n)
ϑϑ

(

dc

dr

∣

∣

∣

∣

∣

t=tn

)2

−

(

ϑ
(n)
)2

D
(n)
ϑϑ∆t

− 2τωD
(n)
κκ

D
(n)
ϑϑ

(

(

γ(n)
)2

(

r(n)
)3 −

r(n)
(

γ(n)
)2

)

dc

dr

∣

∣

∣

∣

∣

t=tn

− τD
(n)
κκω

2

D
(n)
ϑϑ

(

(

γ(n)
)2

(

r(n)
)3 −

(

r(n)
)

(

γ(n)
)2

)2

(4.43)

where c(n) = c(r, t = tn), ϑ
(n)

= ϑ(r, t = tn), and r
(n) =

√

2γ(n)X + r2c . Algorithm 1 describes a

procedure to determine c(r, t), ϑ(r, t), and γ at various times using an iterative non-linear numerical

solution strategy. The following values are assumed for the non-dimensional parameters in the

strong coupling simulations:

L = 1, rc = 1, ∆t = 0.1, t = 2, ω = 0.05, τ = 0.5, ci = 0,
ϑ0
ϑref

= 0.5

co = 1, ϑi = 0.5, ϑo = 1, µ0 = 1, µ1 = µ2 = 0.4, D0 = 1, DT = 2.0,

DS = 1.5, ηT = ηS = 1, ErefT = ErefS = 1, K0 = 1, δ = 10 (4.44)

In case of weak coupling, we have D0 as D
(n)
κκ and K0 as D

(n)
ϑϑ , respectively. It should be noted

that these values are constructed based on the (brittle-type) material parameters such as glass,

ceramics, and concrete.

Figure 4 shows the profile of T θθ as a function of the reference location of the cross-section at

various instants of time (due to the application of bending moment). In Figure 5, the plot of bending

moment at various instants of time for both three-way strong and weak coupling degradation model

is shown. Figure 6 shows the plot of chemical potential as a function of the reference location of

the cross-section at various instants of time. The extent of damage at various instants of time is

shown in Figure 7. Initially at time t = 0 and when there is no degradation, the response is that

of a homogeneous neo-Hookean material. On the onset of degradation, the material ceases to be

homogeneous. As degradation progress, one can see that the tensile and compressive parts of the

beam relax at a much faster rate than that of the material closer to the neutral axis. Furthermore,

the region in the tension and compression relax faster in case of strong coupling as compared to

weak coupling. In addition, from Figure 4 one can see that T θθ for strong coupling is considerably

different from the weak coupling. This is because the degradation progress is dependent on the

deformation, concentration of the diffusing chemical species, and temperature of the body.

As Figure 5 shows, moment relaxation is observed for both cases. However, in weak coupling

the moment declines more than that in strong coupling case. Moreover, as moment decreases,

the chemical potential increases. From Figure 7, it is apparent that for both strong and weak

coupling, the beam has degraded considerably in the tensile region as compared to the compression

region. Quantitatively, extent of damage towards the tension side is three times greater than that

of the compressive side of the beam. Furthermore, Dµ across the cross section is not monotonic

for strongly coupled problem. However, in case of weakly coupled problem (for time t > 0.1), we

observe that the extent of damage is monotonic. Herein, the main observation is that neutral axis

shifts further to the left, similar to the phenomenon observed in viscoelastic solids [Kolberg and

Wineman, 1997]. Moreover, in case of weak coupling for some instants of time the maximum stress

does not occur at either tensile or compressive sides of the beam after the onset of degradation.

This is of primal importance in regards to the calculation of failure loads/moments due to material
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damage. Hence, a simple approach based on strength of materials or a more complex finite elasticity

theory to calculate stresses without accounting for degradation will lead to erroneous results.

Algorithm 1 Pure bending of degrading beam (numerical methodology to find γ, c, and ϑ)

1: INPUT: Non-dimensional material parameters, non-dimensional boundary conditions, and non-

dimensional initial conditions, MaxIters, tolerances ǫ
(γ)
tol , ǫ

(c)
tol, and ǫ

(ϑ)
tol .

2: Evaluate γ at t = 0 based on equation (4.17). Use this as an initial guess for solving nonlinear

equation given by (4.37) or guess γ based on equation (4.20).

3: for n = 1, 2, · · · , N do

4: for i = 1, 2, · · · do
5: if i > MaxIters then

6: Solution did not converge in specified maximum number of iterations. EXIT.

7: end if

8: Diffusion sub-problem: Given γ(i), solve equation (4.42) to obtain c(i+1). Herein, we use

shooting method to solve the ODEs.

9: Heat conduction sub-problem: Given γ(i) and c(i+1), solve equation (4.43) to obtain

ϑ
(i+1)

. Similarly, we use shooting method to solve the ODEs.

10: Deformation sub-problem: Given c(i+1) and ϑ
(i+1)

, solve for γ(i+1) given by equation

(4.37) using bisection method.

11: if ‖γ(i+1) − γ(i)‖ < ǫ
(γ)
tol , ‖c(i+1) − c(i)‖ < ǫ

(c)
tol , and ‖ϑ

(i+1) − ϑ(i)‖ < ǫ
(ϑ)
tol then

12: OUTPUT: γ(i+1), c(i+1), and ϑ
(i+1)

. EXIT the inner loop.

13: else

14: Update the guess: γ(i) ← γ(i+1).

15: end if

16: end for

17: end for

Remark 4.1. Based on a semi-inverse approach, [Rajagopal et al., 2007] have shown that pure

bending of a polymer beam stress relaxes under degradation. However, their model is based on

internal variables, which is difficult to calibrate experimentally. On the other hand, the proposed

(and calibrated) chemo-thermo-mechano degradation model is able to predict stress relaxation and

shift of neutral axis without appealing to internal variable framework.

4.2. Inflation of a degrading spherical shell. Herein, we shall consider degradation of

a spherical shell subjected to pressure loading. A pictorial description of the boundary value

problem is similar to the one shown in Figure 1. The shell is subjected to an inner pressure pi
and an outer pressure po. Due to the spherical symmetric associated with the problem, spherical

coordinates are used to analyze the inflation of degrading spherical shell. It should be noted that the

problem under consideration has relevance to safety, reliability, and defect monitoring of degrading

spherical structures (such as a tank shell and bearing structure) due to a pressure process system

[Pietraszkiewicz and Szymczak].

In the reference configuration, consider a spherical body of inner radius Ri and outer radius Ro

defined as follows:

Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ π, 0 ≤ Φ ≤ 2π (4.45)

28



where (R,Θ,Φ) are the spherical polar coordinates in the reference configuration. The surfaces

R = Ri and R = Ro are subjected to different pressures pi and po. Under inflation, the deformation

in the current configuration is described as follows:

ri ≤ r = m(R) ≤ ro, θ = Θ, φ = Φ (4.46)

where (r, θ, φ) are the spherical polar coordinates, ri is the inner radius, and ro is the outer radius

in the current configuration. The deformation gradient, the left Cauchy-Green tensor, and the right

Cauchy-Green tensor have the following matrix representations:

F =





dm
dR 0 0

0 m
R 0

0 0 m
R



 C = B =







(

dm
dR

)2
0 0

0 m2

R2 0

0 0 m2

R2






(4.47)

Using the condition of incompressibility, we have r = 3

√

R3 + r3i −R3
i such that ri ≤ r ≤ ro,

where ro = 3

√

R3
o + r3i −R3

i . The governing equations (balance of linear momentum) in spherical

coordinates for deformation sub-problem are given as follows:

∂Trr
∂r

+
1

r

∂Tθr
∂θ

+
1

r sin(θ)

∂Tφr
∂φ

+
2Trr − Tθθ − Tφφ

r
= 0 (4.48a)

∂Trθ
∂r

+
1

r

∂Tθθ
∂θ

+
1

r sin(θ)

∂Tφθ
∂φ

+
2Trθ + Tθr + (Tθθ − Tφφ) cot(θ)

r
= 0 (4.48b)

∂Trφ
∂r

+
1

r

∂Tθφ
∂θ

+
1

r sin(θ)

∂Tφφ
∂φ

+
2Trφ + Tφr + (Tθφ + Tφθ) cot(θ)

r
= 0 (4.48c)

From equation (4.47), the non-zero components of the Cauchy stress are given as follows:

Trr = −p+ µ(c, ϑ)

(

dm

dR

)2

= −p+ µ(c, ϑ)

(

R2

r2

)2

(4.49a)

Tθθ = −p+ µ(c, ϑ)
r2

R2
(4.49b)

Tφφ = −p+ µ(c, ϑ)
r2

R2
(4.49c)

The balance of linear momentum given by equation (4.48a)–(4.48c) reduces to the following:

∂Trr
∂r

+
2Trr − Tθθ − Tφφ

r
= 0,

∂p

∂θ
= 0,

∂p

∂φ
= 0 (4.50)

From the above equations, we have p = p(r, t). Using equations (4.50), (4.46), (4.49a), (4.49b), and

(4.49c), we have the following non-linear equation in ri:

Trr(R = Ri, t)− Trr(R = Ro, t) = po − pi =
Ro
∫

Ri

2µ(c(R, t), ϑ(R, t))
(

R6 −
(

R3 + r3i −R3
i

)2
)

(

R3 + r3i −R3
i

) 7

3

dR

(4.51)
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Once c, ϑ, and ri are known, the Lagrange multiplier p = p(r, t) enforcing the incompressibility

constraint can evaluated from (4.50) as follows:

p(r, t) = pi + µ(c, ϑ)

(

R2

r2

)2

−
R
∫

Ri

2µ(c, ϑ)
(

R6 −
(

R3 + r3i −R3
i

)2
)

(

R3 + r3i −R3
i

)
7

3

dR (4.52)

The chemical potential, specific entropy, heat transfer flux, and mass transfer flux in radial direction

for the degrading shell are given as follows:

κ =
1

ρ0

∂ψ

∂c
+Rsϑref{c− cref} = −

µ1
2ρ0cref

(

R4

r4
+ 2

r2

R2
− 3

)

+Rsϑref{c− cref} (4.53a)

η = − 1

ρ0

∂ψ

∂ϑ
+

cp
ϑref
{ϑ − ϑref} =

µ1
2ρ0ϑref

(

R4

r4
+ 2

r2

R2
− 3

)

+
cp
ϑref
{ϑ − ϑref} (4.53b)

hr = −
ρ0

Rsϑref
Dκκ

∂κ

∂r
=

2µ1Dκκ

Rsϑrefcref

(

r

R2
− R4

r5

)

− ρ0Dκκ

∂c

∂r
(4.53c)

qr = −ρ0cpDϑϑ
∂ϑ

∂r
(4.53d)

From equation (4.3a) and (4.4a), the final form for the governing equations for transport and

thermal sub-problems for degrading shell is given as follows:

ρ0
∂c

∂t
−
(

2ρ0Dκκ

r
+ ρ0

∂Dκκ

∂r

)

∂c

∂r
− ρ0Dκκ

∂2c

∂r2
= 2ω

∂Dκκ

∂r

(

R4

r5
− r

R2

)

− 6ωDκκ

(

1

R2
+
R4

r6

)

(4.54)

(

ρ0cpϑ

ϑref

)

∂ϑ

∂t
−
(

2ρ0cpDϑϑ

r
+ ρ0cp

∂Dϑϑ

∂r

)

∂ϑ

∂r
− ρ0cpDϑϑ

∂2ϑ

∂r2
= ρ0RsϑrefDκκ

(

∂c

∂r

)2

+
4RsϑrefDκκω

2

ρ0

(

r

R2
− R4

r5

)2

− 4RsϑrefωDκκ

(

r

R2
− R4

r5

)

∂c

∂r
(4.55)

Most of the non-dimensional quantities are same as that of the beam bending problem except for

the following:

r =
r

Ro
, R =

R

Ro
, t =

D0t

R2
o

(4.56)

The non-dimensionalized governing equations for transport and thermal sub-problems for degrading

shell are given as follows:

∂c

∂t
−
(

2Dκκ

r
+
∂Dκκ

∂r

)

∂c

∂r
−Dκκ

∂2c

∂r2
= 2ω

∂Dκκ

∂r

(

R
4

r5
− r

R
2

)

− 6ωDκκ

(

1

R
2 +

R
4

r6

)

(4.57)

ϑ
∂ϑ

∂t
−
(

2
Dϑϑ

r
+
∂Dϑϑ

∂r

)

∂ϑ

∂r
−Dϑϑ

∂2ϑ

∂r2
= τDκκ

(

∂c

∂r

)2

− 4τωDκκ

(

r

R
2 −

R
4

r5

)

∂c

∂r

+ 4τω2Dκκ

(

r

R
2 −

R
4

r5

)2

(4.58)
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The first and second invariants of E for degrading shell are given as follows:

IE =
1

2

(

R
4

r4
+ 2

r2

R
2 − 3

)

=
1

2

(

R
2

r2
− 2

r2

R
2 + 1

)(

R
2

r2
− 1

)

≥ 0 (4.59)

IIE =

√

√

√

√

√

1

3





(

R
4

r4
− 1

)2

+

(

r2

R
2 − 1

)2

− 2

(

R
4

r4
− 1

)

(

r2

R
2 − 1

)



 (4.60)

The partial derivative of the first and second invariants with respect to r are given as follows:

∂IE
∂r

= 2

(

r

R
2 −

R
4

r5

)

(4.61)

∂IIE
∂r

=
1

3IIE

(

4R
4

r5
+

2r

R
2

)(

r2

R
2 −

R
4

r4

)

(4.62)

Correspondingly, the non-dimensional equations to obtain ri at each time is given as follows:

po − pi =
Ro
∫

Ri

2µ(c(R, t), ϑ(R, t))

(

R
6 −

(

R
3
+ r3i −R

3
i

)2
)

(

R
3
+ r3i −R

3
i

) 7

3

dR (4.63)

Algorithm 2 describes a procedure to determine c(r, t), ϑ(r, t), and ri at various times using an

iterative non-linear numerical strategy.

4.2.1. Steady-state analysis for degrading shell. In case of steady-state, we have hrr
2 = C3 and

qrr
2 + κhrr

2 = C4, where C3 and C4 are constants. This implies that c and ϑ are the solutions of

the following ODEs:

Dκκr
2 ∂c

∂r
− 2Dκκω

(

r3

R
2 −

R
4

r3

)

+ C1 = 0 (4.64a)

Dϑϑr
2∂ϑ

∂r
+ τ

(

w

2

(

R
4

r4
+ 2

r2

R
2 − 3

)

− c+ 1

)

C1 + C2 = 0 (4.64b)

Correspondingly, the analytical solution to the above set of ODEs are given as follows:

c =

∫

2ω

(

r

R
2 −

R
4

r5

)

− C1

r2Dκκ

dr (4.65a)

ϑ =

∫

− τC1

Dϑϑ

(

w

2

(

R
4

r6
+ 2

1

R
2 −

3

r2

)

− c− 1

r2

)

− C2

rDϑϑ

dr (4.65b)

For weak coupling (where Dϑϑ and Dκκ are constants), a simplified form of the analytical solutions

for c and ϑ is given as follows:

c = ω

(

r2

R
2 +

R
4

2r4

)

+
B2

r
+A2 (4.66a)

ϑ = −τB
2
2Dκκ

2Dϑϑr
2

+
Z2

r
+ Y2 (4.66b)

where A2, B2, Y2, and Z2 are constants, which can be decided by the boundary conditions.
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A2 = ci −
B2

ri
− ω

(

r2i

R
2 +

8R
4

r4i

)

(4.67a)

B2 =
riro
ri − ro

(

co − ci − ω
(

r2o

R
2 +

8R
4

r4o
− r2i

R
2 −

8R
4

r4i

))

(4.67b)

Y2 = ϑi +
τB2

2Dκκ

2Dϑϑr
2
i

− Z2

ri
(4.67c)

Z2 =
ri − ro
riro

(

ϑo − ϑi −
τB2

2Dκκ

2Dϑϑ

(

1

r2i
− 1

r2o

))

(4.67d)

4.2.2. Quasistatic analysis for degrading shell. Employing method of horizontal lines with back-

ward Euler time-stepping scheme, we obtain the following ODEs at each time-level for equations

(4.57) and (4.58)

d2c(n+1)

dr2
+

(

2

r(n)
+

(

1

D
(n)
κκ

)

dDκκ

dr

∣

∣

∣

∣

∣

t=tn

)

dc(n+1)

dr
− c(n+1)

D
(n)
κκ∆t

= 6ω







1
(

R
(n)
)2 +

(

R
(n)
)4

(

r(n)
)6







− c(n)

D
(n)
κκ∆t

−
(

2ω

D
(n)
κκ

)(

dDκκ

dr

∣

∣

∣

∣

∣

t=tn

)







(

R
(n)
)4

(

r(n)
)5 −

r(n)
(

R
(n)
)2






(4.68)

d2ϑ
(n+1)

dr2
+

(

2

r(n)
+

(

1

D
(n)
ϑϑ

)

dDϑϑ

dr

∣

∣

∣

∣

∣

t=tn

)

dϑ
(n+1)

dr
− ϑ

(n)
ϑ
(n+1)

D
(n)
ϑϑ∆t

= −τD
(n)
κκ

D
(n)
ϑϑ

(

dc

dr

∣

∣

∣

∣

∣

t=tn

)2

−

(

ϑ
(n)
)2

D
(n)
ϑϑ∆t

+
4τωD

(n)
κκ

D
(n)
ϑϑ







(

r(n)
)

(

R
(n)
)2 −

(

R
(n)
)4

(

r(n)
)5







dc

dr

∣

∣

∣

∣

∣

t=tn

− 4τω2Dκκ

D
(n)
ϑϑ







(

r(n)
)

(

R
(n)
)2 −

(

R
(n)
)4

(

r(n)
)5







2

(4.69)

The boundary conditions for diffusion and heat conduction problems are the same as the beam

bending problem. The other parameters are assumed in the strongly coupling simulations as follows:

Ro = 1, Ri = 0.5, ∆t = 0.01, t = 2, ω = 0.05, τ = 0.2, µ0 = 1, µ1 = 0.3, µ2 = 0.4,

D0 = 1, DT = 1.5, DS = 1.2, ηT = ηS = 1, ErefT = ErefS = 1, K0 = 1, δ = 10 (4.70)

In weakly coupling problem, we use D0, K0 as D
(n)
κκ and D

(n)
ϑϑ , respectively.

4.2.3. A discussion on the behavior of degrading spherical shell. Figure 8 shows the plot of

ri as a function of the inner pressure pi for strongly and weakly coupled chemo-thermo-mechano

degradation problem. For a given pi, one can see that ri for weak coupling is larger than strong

coupling. This is because in the weakly coupled problem degradation happens at a much faster rate

as compared to the strongly coupled problem. The hoop stress ‘T θθ’ as a function of the reference

location t = 1 due to various inner pressures pi is shown in Figure 9. Analysis is performed for a

strongly coupled chemo-thermo-mechano degradation problem. As the pressure increases the hoop

stress change sign. Furthermore, T θθ magnitude increases as the pressure loading increases. Figure
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10 shows the chemical potential as a function of the reference location t = 0.1 due to various inner

pressures pi. One can see that chemical potential increases with pi.

Figure 11 shows the extent of damage as a function of the reference location at various in-

stants of time due to inner pressure pi = 0.5. Analysis is performed for strongly coupled chemo-

thermo-mechano degradation problem. At initial times, we have variable heat sinks in the entire

body.Additionally, as IE ≥ 0 the thermal conductivity decreases due to increase in IE. Hence for

initial times, as ϑ ≤ ϑ0 the material damage is less than that of at time t = 0. The extent of damage

as a function of the reference location at t = 1 for various inner pressures ‘pi’ is shown in Figure 12.

As the pressure increases, for the weakly coupled problem, the extend of damage decreases. This

means that the body degrades faster as one increases the inflation pressure pi. However, this is not

the case for the strongly coupled problem. One can see that the material degrades slowly in case of

strong coupling as compared to weak coupling. In this particular case, thermo-mechano coupling

dominates and play a vital role. As IE ≥ 0, the strain-dependent thermal conductivity decreases

as the pressure loading increases. Hence, there is less damage in the material due to decrease in

temperature values as compared to weakly coupled chemo-thermo-mechano degradation problem.

Algorithm 2 Inflation of a degrading spherical shell (numerical methodology to find ri, c, and ϑ)

1: INPUT: Non-dimensional material parameters, non-dimensional boundary conditions, and non-

dimensional initial conditions, MaxIters, tolerances ǫ
(r)
tol , ǫ

(c)
tol , and ǫ

(ϑ)
tol .

2: Evaluate ri at t = 0 based on equation (4.63).

3: for n = 1, 2, · · · , N do

4: for j = 1, 2, · · · do
5: if j > MaxIters then

6: Solution did not converge in specified maximum number of iterations. EXIT.

7: end if

8: Diffusion sub-problem: Given r
(j)
i , solve equation (4.68) to obtain c(j+1). Herein, we

use shooting method to solve the ODEs.

9: Heat conduction sub-problem: Given r
(j)
i and c(j+1), solve equation (4.69) to obtain

ϑ
(j+1)

. Similarly, we use shooting method to solve the ODEs.

10: Deformation sub-problem: Given c(j+1) and ϑ
(j+1)

, solve for r
(j+1)
i given by equation

(4.63) using bisection method.

11: if ‖r(j+1)
i − r(j)i ‖ < ǫ

(r)
tol , ‖c(j+1) − c(j)‖ < ǫ

(c)
tol , and ‖ϑ

(j+1) − ϑ(j)‖ < ǫ
(ϑ)
tol then

12: OUTPUT: r
(j+1)
i , c(j+1), and ϑ

(j+1)
. EXIT.

13: else

14: Update the guess: r
(j)
i ← r

(j+1)
i .

15: end if

16: end for

17: end for

4.3. Torsional shear of a degrading cylinder. A pictorial description of the degrading

cylindrical annulus of finite length is shown in Figure 13. The bottom of the cylinder is fixed

and just after time t = 0, a twisting moment is applied. We analyze the material degradation and

corresponding structural response due to the torsional shear for a prescribed angle of twist. Initially,
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the body is a homogeneous neo-Hookean material and there is no transport of chemical species in

the body. For time t > 0, the outer boundary of the cylinder is always exposed to moisture (or

a diffusing chemical species). The inner surface of the degrading annular cylinder is held at zero

concentration. This can be achieved by constructing a mechanism which continuously removes the

moisture (or diffusing chemical species) from the inner boundary of the degrading cylinder. Hence,

one can control the concentration of the moisture at both inner and outer surfaces. Similar type

of initial and boundary conditions are enforced for the thermal counter part.

In a reference configuration, consider a closed cylindrical body of inner radius Ri, outer radius

Ro, and height L defined as follows:

Ri ≤ R ≤ Ro 0 ≤ Θ ≤ 2π 0 ≤ Z ≤ L (4.71)

where (R,Θ, Z) are the cylindrical polar coordinates in reference configuration. Under torsional

shear, the deformation in the current configuration is described as follows:

r = R θ = Θ+ g(Z, t) z = ΛZ (4.72)

The deformation gradient F for the degrading cylinder is given as follows:

F =





1 0 0

0 1 rg′

0 0 Λ



 (4.73)

where g′ := ∂g(Z,t)
∂Z . Using the condition of incompressibility we have Λ = 1. The right Cauchy-

Green tensor C and left Cauchy-Green tensor B for the degrading cylinder are given as follows:

C =





1 0 0

0 1 rg′

0 rg′ 1 + (rg′)2



 B =





1 0 0

0 1 + (rg′)2 rg′

0 rg′ 1



 (4.74)

The non-zero components of the Cauchy stress T are given as follows:

Trr = −p+ µ(c, ϑ) (4.75a)

Tθθ = −p+ µ(c, ϑ)
(

1 +
(

rg′
)2
)

(4.75b)

Tzz = −p+ µ(c, ϑ) (4.75c)

Tθz = Tzθ = µ(c, ϑ)rg′ (4.75d)

The balance of linear momentum given by equation (4.11a)–(4.11c) reduces to the following

−∂p
∂r

+ µ(c, ϑ)r
(

g′
)2

= 0 (4.76)

−1

r

∂p

∂θ
+ µ(c, ϑ)rg′′ = 0 (4.77)

−∂p
∂z

= 0 (4.78)

Assuming periodicity, we have ∂p
∂θ = 0. This implies g′′ = 0. Hence, g(Z, t) takes the following

form:

g(Z, t) = Ψ1(t)Z +Ψ2(t) (4.79)
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where Ψ1 and Ψ2 are evaluated based on the input data. As the bottom of the cylinder is fixed, we

have g(Z = 0, t) = 0, which implies Ψ2(t) = 0. Correspondingly, the twisting moment to generate

the required change in angle of twist per unit length given by equation (4.79) is evaluated as follows:

M(t) = 2π

Ro
∫

Ri

µ(c(R, t), ϑ(R, t))Ψ1(t)R
3dR (4.80)

The chemical potential, specific entropy, mass transfer flux, and heat transfer flux in radial direction

are given as follows:

κ =
1

ρ0

∂ψ

∂c
+Rsϑref{c− cref} = −

µ1r
2Ψ2

1

2ρ0cref
+Rsϑref{c− cref} (4.81a)

η = − 1

ρ0

∂ψ

∂ϑ
+

cp
ϑref
{ϑ − ϑref} =

µ1r
2Ψ2

1

2ρ0ϑref
+

cp
ϑref
{ϑ− ϑref} (4.81b)

hr = −
ρ0

Rsϑref
Dκκ

∂κ

∂r
=
µ1DκκrΨ

2
1

Rsϑrefcref
− ρ0Dκκ

∂c

∂r
(4.81c)

qr = −ρ0cpDϑϑ
∂ϑ

∂r
(4.81d)

From equations (4.1a) and (4.2a), the final form of the governing equations for transport and

thermal sub-problems for degrading cylinder is given as follows:

ρ0
∂c

∂t
−
(

ρ0Dκκ

r
+ ρ0

∂Dκκ

∂r

)

∂c

∂r
− ρ0Dκκ

∂2c

∂r2
= −ωΨ2

1

(

2Dκκ + r
∂Dκκ

∂r

)

(4.82)

(

ρ0cpϑ

ϑref

)

∂ϑ

∂t
−
(

ρ0cpDϑϑ

r
+ ρ0cp

∂Dϑϑ

∂r

)

∂ϑ

∂r
− ρ0cpDϑϑ

∂2ϑ

∂r2
= ρ0RsϑrefDκκ

(

∂c

∂r

)2

+
RsϑrefDκκω

2

ρ0
r2Ψ4

1 − 2RsϑrefωDκκrΨ
2
1

∂c

∂r
(4.83)

Correspondingly, the non-dimensionalized governing equations for transport and thermal sub-

problems are given as follows:

∂c

∂t
−
(

Dκκ

r
+
∂Dκκ

∂r

)

∂c

∂r
−Dκκ

∂2c

∂r2
= −ωΨ2

1

(

2Dκκ + r
∂Dκκ

∂r

)

(4.84)

ϑ
∂ϑ

∂t
−
(

Dϑϑ

r
+
∂Dϑϑ

∂r

)

∂ϑ

∂r
−Dϑϑ

∂2ϑ

∂r2
= τDκκ

(

∂c

∂r

)2

− 2τωDκκrΨ
2
1

∂c

∂r
+ τDκκω

2r2Ψ
4
1 (4.85)

where IE, IIE,
∂IE
∂r , and ∂IIE

∂r are given as follows:

IE =
1

2
r2Ψ

2
1 (4.86)

IIE =

√

1

6

(

3r2Ψ
2
1 + 2r4Ψ

4
1

)

(4.87)

∂IE
∂r

= rΨ
2
1 (4.88)

∂IIE
∂r

=
1

3IIE

(

3rΨ
2
1 + 4r3Ψ

4
1

)

(4.89)

35



where most of the non-dimensional quantities remain the same as that of the previous initial

boundary value problems except the following:

R =
R

Ro
, ψ = ψRo, t =

D0t

R2
o

(4.90)

Correspondingly, the non-dimensional twisting moment M(t) is given as follows:

M(t) = 2π

Ro
∫

Ri

µ(c(R, t), ϑ(R, t))Ψ1R
3
dR (4.91)

Algorithm 3 describes a numerical solution procedure to determine c(r, t), ϑ(r, t), and M(t) at

various times for a given angle of twist per unit length.

4.3.1. Steady-state and quasistatic response of degrading cylinder under torsional shear. In case

of steady-state, c and ϑ are the solutions of the following ODEs:

Dκκr
2 dc

dr
−DκκωrΨ

2
1 + C1 = 0 (4.92a)

Dϑϑr
dϑ

dr
+ τ

(

ω

2
r2Ψ

2
1 − c+ 1

)

C1 + C2 = 0 (4.92b)

where C1 and C2 are integration constants. Correspondingly, the analytical solutions to the above

set of ODEs are given as follows:

c =

∫
(

ωrΨ
2
1 −

C1

rDκκ

)

dr (4.93a)

ϑ =

∫
(

− τC1

Dϑϑ

(

ω

2
rΨ

2
1 −

c− 1

r

)

− C2

rDϑϑ

)

dr (4.93b)

For weak coupling (where Dϑϑ and Dκκ are constants), a simplified form of the analytical solutions

for c and ϑ is given as follows:

c =
ω

2
r2Ψ

2
1 +B3ln[r] +A3 (4.94a)

ϑ = −τB
2
3Dκκ

2Dϑϑ

ln[r]2 + Z3ln[r] + Y3 (4.94b)

where A3, B3, Y3, and Z3 are constants, which are obtained by the corresponding boundary condi-

tions for thermal and diffusion sub-problem. These are given as follows:

A3 = ci −B3ln[ri]−
ω

2
r2iΨ

2
1 (4.95a)

B3 =
1

ln[ro]− ln[ri]

(

co − ci −
ω

2

(

r2oΨ
2
1 − r2iΨ

2
1

)

)

(4.95b)

Y3 = ϑi +
τB2

3Dκκ

2Dϑϑ

ln[ri]
2 − Z3ln[ri] (4.95c)

Z3 =
1

ln[ro]− ln[ri]

(

ϑo − ϑi −
τB2

3Dκκ

2Dϑϑ

(

ln[ri]
2 − ln[ro]

2
)

)

(4.95d)
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For quasistatic analysis, method of horizontal lines with backward Euler time-stepping scheme

is employed. This gives the following ODEs at each time-level:

d2c(n+1)

dr2
+

(

1

r(n)
+

(

1

D
(n)
κκ

)

dDκκ

dr

∣

∣

∣

∣

∣

t=tn

)

dc(n+1)

dr
− c(n+1)

D
(n)
κκ∆t

= 2ω
(

Ψ
(n)
1

)2

+ ω
(

Ψ
(n)
1

)2 r(n)

D
(n)
κκ

(

dDκκ

dr

∣

∣

∣

∣

∣

t=tn

)

− c(n)

D
(n)
κκ∆t

(4.96)

d2ϑ
(n+1)

dr2
+

(

1

r(n)
+

(

1

D
(n)
ϑϑ

)

dDϑϑ

dr

∣

∣

∣

∣

∣

t=tn

)

dϑ
(n+1)

dr
− ϑ

(n)
ϑ
(n+1)

D
(n)
ϑϑ∆t

= −τD
(n)
κκ

D
(n)
ϑϑ

(

dc

dr

∣

∣

∣

∣

∣

t=tn

)2

−

(

ϑ
(n)
)2

D
(n)
ϑϑ∆t

+
2τωD

(n)
κκ

D
(n)
ϑϑ

r(n)
(

Ψ
(n)
1

)2 dc

dr

∣

∣

∣

∣

∣

t=tn

− τD
(n)
κκω

2

D
(n)
ϑϑ

(

r(n)
)2 (

Ψ
(n)
1

)4
(4.97)

The boundary conditions for diffusion and heat conduction problems are same as that of the previous

boundary value problems. For numerical simulations, the non-dimensional parameters are assumed

as follows:

Ro = 1, Ri = 0.5, ∆t = 0.1, t = 2, ω = 0.05, τ = 0.8, µ0 = 1, µ1 = 0.5, µ2 = 0.2,

D0 = 1, DT = 1.5, DS = 1.2, ηT = ηS = 0.1, ErefT = ErefS = 1, K0 = 1, δ = 10 (4.98)

Figure 14 shows the twisting moment at various instants of time due to constant Ψ1, which

is equal to 0.75. Analysis is performed for strongly coupled chemo-thermo-mechano degradation

model. The concentration degradation material parameter µ1 is varied from 0.1 to 0.5 while the

thermal degradation parameter µ2 is held fixed at 0.4. From this figure it is evident that as µ1
increases the twisting moment required to keep the angle of twist unchanged, decreases. Reiterating,

the torsional shear stress required to maintain a prescribed angular displacement decreases. To

maintain a given angular displacement, lesser twisting moment is required if the material degrades

at a faster pace. That is, we observe moment relaxation due to material degradation and the body

creep until a steady state is reached. In addition, one can see that moment relaxation depends on

the geometry of the specimen. This aspect differentiates the stress relaxation due to degradation

from the stress relaxation due to viscoelasticity. Similar type of behaviour is observed when µ1 is

kept constant and µ2 is varied. Figure 15 shows the chemical potential as a function of the reference

location at t = 1.0 for various values of Ψ1. One can see that as Ψ1 increases, chemical potential,

however, decreases, which is different from the degrading shell problem.

Figure 16 shows the extent of damage as a function of the reference location at t = 1.0 for

various values of Ψ1. Based on the chosen set of non-dimensional parameters, thermal degradation

dominates. As Ψ1 increases, the extent of damage near the inner radius Ri is not as profound as

that of the outer radius Ro. Furthermore, as IE ≥ 0, and IE at Ro is greater than IE at Ri, Dµ

is much smaller at Ro as compared to Ri. This is because the thermal conductivity decreases as

R −→ Ro. It should be noted that for low values of Ψ1, Dµ is monotonic. However, for higher

values of Ψ1, Dµ ceases to be monotonic. Figure 17 shows the extent of damage as a function of

the reference location at various instants of time for a given value of Ψ1. To perform numerical

simulations, the values of µ1 and µ2 are taken to be equal to 0.5 and 0.2. Analysis is performed

for strongly coupled chemo-thermo-mechano degradation model. From this figure it is clear that
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for initial times, in certain locations, the material damage is less than that of at time t = 0. This

is because of the variable heat sinks in the entire body and decreasing thermal conductivity (due

to increase in IE). Similar type of behaviour is observed in degrading spherical shell problem.

However, such a behavior lasts for a short time (t > 0.01) as compared to the degrading shell

problem. This is because the degradation due to moisture (or chemical concentration) dominates

in this problem after t > 0.01.

Algorithm 3 Torsional shear of a degrading cylinder (numerical methodology to find M , c, and

ϑ)

1: INPUT: Non-dimensional material parameters, non-dimensional boundary conditions, and non-

dimensional initial conditions.

2: for n = 1, 2, · · · , N do

3: Diffusion sub-problem: Given Ψ1, solve equation (4.96) to obtain c(n). Herein, we use

shooting method to solve the ODEs.

4: Heat conduction sub-problem: Given Ψ1 and c(n), solve equation (4.97) to obtain ϑ
(n)

.

Similar to diffusion sub-problem, we use shooting method to solve the non-linear ODEs.

5: Deformation sub-problem: Given c(n) and ϑ
(n)

, solve for M
(n)

given by equation (4.91).

6: end for
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Figure 1. Calibration with experimental data: A pictorial description of the boundary value

problem used for calibrating the proposed model with the experimental data.
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Figure 2. Calibration with experimental data: This figure compares the experimental data

reported in [McAfee, 1958a,b] with the proposed constitutive model. The sample size is

taken to be 3. The strain invariants are given by (3.14a)–(3.14b). A good agreement has

been observed between the experimental data and the proposed constitutive model for the

diffusivity under tensile, compressive, and shear strains.
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Figure 3. Bending of a degrading beam: A pictorial description of degrading beam in both

reference and current configurations. Bending moment is applied at the two ends of the

beam just after time t = 0. Oref and Ocurr correspond to origin (0, 0) in their respective

configurations.
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(a) Weak coupling: Chemo-thermo-mechano degradation

-1 -0.5 0 0.5 1
X

-8

-6

-4

-2

0

2

4

6

T
θθ

No degradation
t = 0.0
t = 0.1
t = 0.2
t = 0.5
t = 1.0

(b) Strong coupling: Chemo-thermo-mechano degradation

Figure 4. Bending of a degrading beam: This figure shows the plot of T θθ as a function of

the reference location of the cross-section at various instants of time. The stress distribution

is not linear, which is the case for finite deformation beam bending problem. Herein, we

observe stress-relaxation for both weak and strong coupling. As degradation progress, one

can see that neutral axis shifts further to the left. Furthermore, the tensile and compressive

parts of the beam relax at a much faster rate than that of the material closer to the neutral

axis.
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Figure 5. Bending of a degrading beam: This figure shows the plot of bending moment at

various instants of time for both three-way strong and weak coupling degradation. Moment

relaxation is observed for both cases, however, in weak coupling the moment declines more

than that in strong coupling case.

-1 -0.5 0 0.5 1
X

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

C
he

m
ic

al
 p

ot
en

tia
l

t = 0.0, M = 4.30
t = 0.1, M = 4.14
t = 0.2, M = 3.83
t = 0.5, M = 4.00
t = 1.0, M = 3.94

Figure 6. Bending of a degrading beam: This figure shows the plot of chemical potential as

a function of the reference location of the cross-section at various instants of time. One can

see that the chemical potential increases over time.
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(a) Strong coupling: Chemo-thermo-mechano degradation
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(b) Weak coupling: Chemo-thermo-mechano degradation

Figure 7. Bending of a degrading beam: This figure shows the extent of damage as a

function of the reference location of the cross-section at various instants of time (due to

the application of bending moment). Note that analysis is performed for both strongly

coupled and weakly coupled chemo-thermo-mechano degradation. One can see that a virgin

beam which is initially homogeneous after degradation is not homogeneous anymore. In

addition, the extent of damage in tension side is higher than that of the compressive side of

the beam.
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Figure 8. Inflation of a degrading spherical shell: This figure shows the plot of ri as a

function of the inner pressure pi for strongly and weakly coupled chemo-thermo-mechano

degradation problem. For a given pi, one can see that ri for weak coupling is larger than

strong coupling. This is because in the weakly coupled problem degradation happens at a

much faster rate as compared to the strongly coupled problem.
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Figure 9. Inflation of a degrading spherical shell: This figure shows the hoop stress ‘T θθ’

as a function of the reference location t = 0.1 due to various inner pressures pi. Analysis

is performed for a strongly coupled chemo-thermo-mechano degradation problem. As the

pressure increases the hoop stress change sign. Furthermore, T θθ magnitude increases as

the pressure loading increases.
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Figure 10. Inflation of a degrading spherical shell: This figure shows the chemical potential

as a function of the reference location t = 0.1 due to various inner pressures pi. One can see

that chemical potential increases with pi.

0.5 0.6 0.7 0.8 0.9 1.0
R

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
xt

en
t o

f 
da

m
ag

e 
(µ

/µ
0)

No degradation
t = 0.00
t = 0.01
t = 0.05
t = 0.10

Figure 11. Inflation of a degrading spherical shell: This figure shows the extent of damage

as a function of the reference location at various instants of time due to inner pressure

pi = 0.5. Analysis is performed for strongly coupled chemo-thermo-mechano degradation

problem. At initial times, we have variable heat sinks in the entire body. Additionally, as

IE ≥ 0 the thermal conductivity decreases due to increase in IE. Hence for initial times, as

ϑ ≤ ϑ0 the material damage is less than that of at time t = 0.
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(a) Weak coupling: Chemo-thermo-mechano degradation
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(b) Strong coupling: Chemo-thermo-mechano degradation

Figure 12. Inflation of a degrading spherical shell: This figure shows the extent of damage as

a function of the reference location at t = 1 for various inner pressures ‘pi’. As the pressure

increases, for the weakly coupled problem, the extend of damage decreases. This means

that the body degrades faster as one increases the inflation pressure pi. However, this is not

the case for the strongly coupled problem. One can see that the material degrades slowly

in case of strong coupling as compared to weak coupling. In this particular case, thermo-

mechano coupling dominates and play a vital role. As IE ≥ 0, the strain-dependent thermal

conductivity decreases as the pressure loading increases. Hence, there is less damage in

the material due to decrease in temperature values as compared to weakly coupled chemo-

thermo-mechano degradation problem.
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Figure 13. Torsional shear of a degrading cylinder: A pictorial description of the degrading

cylinder under torsion in both reference and current configuration. Ri and Ro are the

respective inner and outer radius of the cylinder. X , Y , and Z are the corresponding

Cartesian coordinates in the reference configuration. The bottom of the cylinder is fixed

and for t ≥ 0 a twisting moment is applied.
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Figure 14. Torsional shear of a degrading cylinder: This figure shows the twisting moment

at various instants of time due to a given angle of twist per unit length of the cylinder,

Ψ1 = 0.75. One can see that as µ1 increases the twisting moment required to keep Ψ1

unchanged, decreases. Similar type of behaviour is observed when µ1 is kept constant and

µ2 is varied. Herein, the main observation is that moment relaxation not only depends on

material degradation but also on the geometry of the degrading body.
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Figure 15. Torsional shear of a degrading cylinder: This figure shows the chemical potential

as a function of the reference location at t = 1.0 for various values of Ψ1. As Ψ1 increases,

chemical potential, however, decreases.
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Figure 16. Torsional shear of a degrading cylinder: This figure shows the extent of damage

as a function of the reference location at t = 1.0 for various values of Ψ1. Herein, thermal

degradation dominates. The extent of damage near the inner radius Ri is not as high as

that of the outer radius Ro. It should be noted that for low values of Ψ1, Dµ is monotonic.

However, for higher values of Ψ, Dµ ceases to be monotonic.
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Figure 17. Torsional shear of a degrading cylinder: This figure shows the extent of damage

as a function of the reference location at various instants of time for Ψ1 = 0.75. µ1 = 0.5

and µ2 = 0.2 are used in this case to for numerical simulations. Analysis is performed for

strongly coupled chemo-thermo-mechano degradation. Note that IE ≥ 0. One can see that

for initial times, the material damage is less than that of at t = 0 in certain locations. This

is because of the variable heat sinks in the entire body and decreasing thermal conductivity

(due to increase in IE). Similar type of behaviour is observed in degrading spherical shell

problem. However, such a behavior lasts for a short while (t > 0.01) as compared to the

degrading shell problem. This is because the degradation due to moisture (or chemical

concentration) dominates in this problem after t > 0.01.
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