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The objective of this project is to develop a new class of multifunctional concrete
materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which
combine ultra-high damage resistance through strain-hardening behavior with
distributed multi-dimensional damage self-sensing capacity. The beauty of
multifunctional concrete materials is two-fold: First, it serves as a major material
component for the SNF pool, dry cask shielding and foundation pad with greatly
improved resistance to cracking, reinforcement corrosion, and other common
deterioration mechanisms under service conditions, and prevention from fracture
failure under extreme events (e.g. impact, earthquake). This will be achieved by
designing multiple levels of protection mechanisms into the material (i.e., ultra-
high ductility that provides thousands of times greater fracture energy than
concrete and normal fiber reinforced concrete; intrinsic cracking control,
electrochemical properties modification, reduced chemical and radionuclide
transport properties, and crack-healing properties). Second, it offers capacity for
distributed and direct sensing of cracking, strain, and corrosion wherever the
material is located. This will be achieved by establishing the changes in electrical
properties due to mechanical and electrochemical stimulus. The project will
combine nano-, micro- and composite technologies, computational mechanics,
durability characterization, and structural health monitoring methods, to realize
new MSCs for very long-term (greater than 120 years) SNF storage systems.
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EXECUTIVE SUMMARY

A micromechanics-based framework and rheology design methodology was established in this
project for developing ductile strain-hardening cementitious materials (SHCs) that feature strain-hardening
behavior with optimized tensile ductility. The framework links measurable parameters at nano- and micro-
scales to composite strain-hardening behavior. The framework also took into account the random
distribution of flaws and “effective volume” of polymeric fibers, in addition to the interface nanoscale
tailoring and matrix microstructure manipulation. According to this analytical framework, we successfully
designed and processed SHC materials with tensile ductility two orders higher than SNF concrete and fiber-
reinforced concrete, as well as intrinsic crack width control capacity. Through tuning the chemical and
physical parameters of SHC at microstructure scales, the “spring law” (fiber bridging stress vs. crack
opening relation) of each individual crack was modified to achieve a significant change in the crack width
distribution during SHC strain-hardening stage. By this means, the mean crack width was further reduced
to 12.5 um while the tensile strain capacity was increased to above 5%.

The new SHC materials offer great advantage over normal concrete materials, in terms of improved
damage resistance and reduced transport properties for SNF storage. The large tensile ductility of SHC
overcomes the inherent brittleness of cementitious materials, leading to extraordinary damage tolerance
under service loading (e.g. cracking induced deterioration, corrosion-induced concrete spalling and
fracture) and extreme loading conditions (e.g. impact, earthquake, accidental loading during transportation).
The fracture energy of SHC is two orders higher than current concrete used in SNF storage systems, and
one order higher than most FRCs. The intrinsically controlled micro-crack width (mean crack width of 30.0
um for SHC-1, mean crack width of 12.5 um for SHC-2) during strain-hardening stage was independent of
reinforcing ratio, structural member geometry, applied deformation and loading condition. The tight crack
width provides high resistance to chloride diffusion and water permeation, compared to conventional
concrete at the cracked stage. It is far below the maximum allowable crack width at the tensile face of
reinforced concrete structures as 150 pm for exposure conditions of seawater, seawater spray, wetting, and
drying, and 180 um for deicing chemical exposure, specified by ACI 224R. This indicates that steel
reinforcement is not required to control crack width in SHC even for the most stringent allowable crack
width requirement.

The newly developed SHCs were further encoded with a robust self-sensing capacity. The self-
sensing SHC is called multifunctional strain-hardening cementitious materials (MSC). The fundamental
understanding of the electrical, electro-chemical, and electro-mechanical behavior of cementitious was
obtained. Electrical impedance spectroscopy and equivalent circuit analysis on various mixtures with

different binder ingredients, water/binder ratios, hydration chemistry, incorporation of conductive nano-
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materials, age effects, and damage levels were conducted. The results shed light on the age-dependent
material electrical properties at composite, component and ingredient levels, which laid the groundwork for
the systematic development of MSCs for SNF storage applications. Furthermore, in order to correlate MSC
material mechanical behavior (e.g. strain and damage) with electrical response, four-point probing
piezoresistivity test method was established. The results revealed the effect of nanomaterials on the electro-
mechanical properties of MSC composite material systems.

A new generation of multifunctional strain-hardening cementitious materials was successfully
developed in this project. The beauty of MSC is two-fold: First, it serves as a major material component
for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking,
reinforcement corrosion, and other common deterioration mechanisms under service conditions, and
prevention from fracture failure under extreme events (e.g. impact, earthquake). This was achieved through
multiple scales of protection mechanisms designed into the MSC material (i.e., ultra-high ductility that
provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete,
intrinsic cracking control, electrochemical properties modification, reduced transport properties, and
extraordinary energy dissipation capacity). Second, it offers capacity for distributed and direct sensing of
cracking, strain, and corrosion wherever the material is located. This was achieved by establishing the
changes in electrical properties due to mechanical and electrochemical stimulus through experimental
studies and analytical modeling. MSCs exhibit strong piezoresistive behavior at both elastic and inelastic
stages. The elastic gage factors are 17, 62 and 56 for 2.5%, 5% and 10% MSCs, respectively, The inelastic
gage factors are 6413, 4134 and 2236 in average for 2.5%, 5% and 10% MSC specimens, respectively.
These gage factors are above the targets set in the proposal for the material development, and are far above
the gage factor of 2 (elastic only) for commercial strain gages. Larger gage factors mean that a small change
in strain can be reflected as large change in the measured impedance, indicating a higher sensing capacity.
Robust strain self-sensing in MSCs can thus be achieved by their large gage factors and strong signal to
noise ratios.

In addition to strain self-sensing, damage self-sensing was also accomplished in this project by
integrating material development and advanced impedance tomography methods. Algorithms were
developed to autonomously measure strain and identify damage based on an analysis of the input-output
voltages taken from MSC elements stimulated electrically. This study made it possible to visualize
distributed damage (e.g. a defect, a large localized crack, distributed microcracks and embedded steel
corrosion) in MSC based upon impedance measurements collected from MSC specimens in a multitude of
probe locations. MSC can behave as a damage sensor itself, thus offering spatial data wherever the material
is located. This eliminates the need for installing and maintaining a dense array of sensors; instead,

inexpensive electrodes can be attached to structural component boundaries to apply electrical input and
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measure output signals that collect spatial information throughout the material. This approach allows for
spatial sensing inside the material although the electrodes are only required at boundaries.

To complement MSC material development and characterization, a robust methodology for linear
transient diffusion equations was developed. Non-negative methodologies for nonlinear (in particular,
semi-linear and quasi-linear) diffusion-type equations were also developed. Mesh restrictions were derived
to meet maximum principles and the non-negative constraint for advection-diffusion and linear reactions.
Moreover, a state-of-the-art numerical methodology was developed to simultaneously meet the element-
wise species balance, the non-negative constraint and avoid node-to-node spurious oscillations.
Furthermore, a hierarchy of mathematical models was developed to model various mechanisms of
degradation. The models accounted for coupled chemo-thermal-deformation response, which was crucial
for mathematical modeling of degradation of materials. This mathematical model was consistently derived
using mechanics and thermodynamics principles. In particular, the model satisfies the second law of
thermodynamics, which is not the case with some of the current models for degradation. Overall, a
comprehensive mathematical model and stable and accurate computational framework that uniquely
capture fully coupled deterioration processes were developed through this project.

The self-sensing capacity of MSC was validated both at material and structural element scales.
Constitutive models of MSC were established for structural behavior prediction and future structural design.
A benchmark problem (i.e. a wall structure under shear) was studied through finite element simulation that
incorporates the new MSC constitutive models. The structural simulation results are compared with
experimental data.

In addition to the mechanical, electrical and electromechanical behavior, the durability of MSC was
characterized. Common deterioration mechanisms in spent nuclear fuel storage systems were studied,
including restrained shrinkage cracking, chloride penetration, embedded steel corrosion, freeze and thaw,
alkali-silica reaction and elevated temperature effects. The experimental results revealed that MSC had
superior durability to conventional concrete, mainly due to its extraordinarily high damage tolerance,
chemical stability and low transport properties even under large applied deformation. The improved
durability leads to an extended service life for SNF systems when MSC is used in lieu of conventional
concrete. Life-cycle analysis was conducted on dry cask systems to compare the newly developed MSCs
with existing concrete. The results showed the life cycle cost of a representative dry cask system can be
reduced by 30% when MSC is used. It should be noted that the life cycle analysis was based on simple
assumption that corrosion is the dominant deterioration mode, and other types of deterioration or failure
events will not occur during the structural life cycle. When other deterioration modes and possibilities of
natural and man-made hazards are considered, the life cycle cost advantage of SNF systems using MSC

will be even more predominant.
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1. INTRODUCTION

1.1 Research Significance

The U.S. Department of Energy’s termination of the Yucca Mountain repository project means that
spent nuclear fuel (SNF) will remain at non-permanent sites for decades longer than expected. As pools at
many nuclear reactors began to be filled up with SNF, dry cask storage has become one of the most practical
interim storage options. The 1,200+ loaded storage casks at 44 sites today could climb to more than 2,400
casks at 73 sites by 2020 and 9,300 casks by 2055. Licensed for 20 years with possible renewal up to 40
years, it is hoped the dry casks can be used for a greatly extended period, e.g. 300 years[1].

Concrete is a major material component for spent nuclear fuel storage systems that provides
radiation shielding in steel-lined concrete pools, concrete dry-storage casks, and foundation pads. The
concrete in SNF storage systems is constantly subjected to aging and deterioration under combined thermo-
chemo-hygro-mechanical effects, which often causes chemical and physical alteration of the concrete and
results in excessive cracking, spalling and loss of strength[2, 3]. SNF storage concrete is also susceptible
to impact loads or severely elevated temperatures during accident conditions and extreme events, which
can lead to catastrophic fracture failure[4, 5]. Obviously, the long-term durability and safety of concrete
structures for spent fuel pools and dry casks are key factors for extended storage of SNF[1]. This goal of
extended storage of SNF, however, is currently plagued by two fundamental limitations: quasi-brittle nature
of concrete materials, and inadequacies of current health monitoring methods.

Concrete is an inherently quasi-brittle material with low fracture energy on the order of 0.1 kJ/m*[6].
It is, therefore, highly susceptible to cracking and fracture failure under combined mechanical loads and
environmental effects. Cracking causes reduction of concrete member load carrying capacity and greatly
impairs the transport properties of concrete. This further leads to other common deterioration mechanisms
such as chemical attack, chloride diffusion and corrosion of embedded steel, moisture penetration,
radioactive water leakage, and increased radiation levels[7]. The deterioration process is further accelerated
when concrete is exposed to neutron or gamma radiation and elevated temperature, which leads to strength
loss and brittle fracture failure modes such as spalling. Furthermore, under impact loads during extreme
events or accident conditions, the low fracture energy of concrete can result in concrete spalling and
fragmentation, loss of bond with reinforcing steel, and catastrophic fracture failure[8]. While short
discontinuous fibers (e.g., polymer, glass, carbon, steel) have been used to improve concrete fracture
toughness and reduce the crack width, quasi-brittle fracture mode is still prevalent in fiber-reinforced
cement or concrete (FRC). FRCs feature a tension-softening behavior, with fracture energy extending to
several kJ/m?. It is noteworthy that FRCs do not fundamentally address the quasi-brittleness of concrete

materials; crack width within FRCs is still dependent on applied deformation, loading conditions,
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reinforcement ratio and structural geometry, and thus is not an inherent material property. To radically
extend concrete service life and improve safety in SNF storage systems, the quasi-brittleness of concrete
and FRC must be eliminated. Therefore, a new class of cementitious materials with ductile strain-hardening
behavior and fracture energy on the order of 10-100 kJ/m? is proposed and developed in this project.

Early detection of cracking and deterioration in SNF pools and dry cask concrete is critical to
minimize maintenance costs, prolonging structural service life, ensuring safety and preventing failure.
Current management practices rely on regular visual inspections that can be subjective and are limited to
accessible locations. While great technological advances have been made in recent years on many fronts in
the field of structural health monitoring (SHM), there still remain very few implementations of SHM
systems in operational structures. Key flaws still remain[9, 10]: (1) Indirect damage sensing that requires
physics-based models to correlate structural response measurements to damage state. Given the many
complexities inherent to this inverse problem, robust algorithms that are generically applicable to the SNF
storage concrete components do not yet exist. (2) Point-based sensors (e.g., strain gages, thermocouples)
that cannot accurately identify spatially distributed damage such as cracking and corrosion. To identify
spatially distributed damage, a dense network of point-based sensors is necessary for analytical models to
extrapolate the point measurements to predicted component behavior, but highly costly. Engineers have
begun to explore spatial or distributed sensing methods such as techniques based on ultrasonic acoustics[11].
While promising, ultrasonic inspection is difficult to apply to concrete structures, and requires expensive
and power-hungry instrumentation. Distributed multi-dimensional sensing that provides the spatial
resolution necessary to localize and quantify the severity of concrete deterioration and damage is direly
needed. Therefore, we developed a new approach to direct and distributed sensing that employs innovative
multifunctional strain-hardening cementitious materials.

This project aims to develop a new class of multifunctional strain-hardening cementitious materials
(MSCs) that possess intrinsic damage tolerance and self-sensing capacity for extended SNF storage systems.
The innovation of multifunctional concrete material is two-fold: First, it serves as a major material
component for SNF storage systems with greatly improved resistance to cracking, reinforcement corrosion,
spalling and other common deterioration mechanisms under service conditions, and prevents fracture failure
under extreme events. This is achieved by designing multiple levels of protection mechanisms (e.g., ultra-
high fracture energy, ductile strain-hardening behavior, and intrinsically controlled crack width) into the
material. Second, it offers capacity for distributed and direct sensing of cracking and straining wherever the
material is located. This is achieved by establishing the changes in electrical properties due to mechanical
and electrochemical stimuli. Using electrical stimulation and advanced modeling methods, multi-

dimensional spatial mapping offering a visual depiction of concrete damage and deterioration is gained.
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1.2 Research Scope

This final report is organized as follows. In section 2, a class of ductile strain-hardening
cementitious materials (SHC) was developed with a set of desirable characteristics that provides ultra-high
damage resistance under a SNF storage environment. The micromechanics-based material design theory of
SHC was presented. The multi-scale (i.e. microscale, mesoscale, and macroscale) experimental studies on
SHC for material development and properties characterization were described.

In Section 3, the newly developed SHC was further tailored and encoded with self-sensing
properties. The new self-sensing SHC was named MSC (multifunctional strain-hardening cementitious
materials). The MSC material design methodology and the unique electromechanical properties were
presented. The strain self-sensing capacity of MSC at elastic and inelastic stages was explored through
experimental studies and analytical modeling.

In Section 4, the distributed damage sensing capacity of MSC was explored by electrical impedance
tomography. Distributed damage within MSC was successfully visualized through the innovation in
material science, the development of advanced algorithms and modeling methods that solve nonlinear
inverse problems.

In Section 5, newly developed mathematical and computational models of the coupled deterioration
process within MSC were introduced. The mathematical model was fully coupled accounting for
deformation, temperature and diffusion while paying attention to the constitutive behavior of cementitious
materials. The computational model was capable of simulating various degradation mechanisms.

In Section 6, constitutive models of MSC were established for bridging material properties to
structural behavior. Finite element simulation of a wall structure using the new constitutive models was
conducted, and compared with experimental data.

In Section 7, the MSC durability characterization results are presented. Life cycle analysis was

performed on a representative dry cask system to compared MSC with conventional concrete.
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2. DEVELOPMENT OF STRAIN-HARDENING CEMENTITIOUS MATERIALS FOR
SPENT NUCLEAR FUEL STORAGE SYTEMS

2.1 Micromechanics Based Design of Strain-Hardening Cementitious Composites

2.1.1 Scale linking

The tensile strain-hardening behavior of SHC was be realized by tailoring the synergistic
interaction between the fibers, matrix, and fiber/matrix interface using micromechanics theory. Scale
linking is a fundamental characteristic of the SHC design approach; the theory links the measurable
constituent parameters to the cracking propagation mode, and then to conditions for composite tensile
strain-hardening behavior. Understanding and tailoring of microscale constituent parameters are the keys
to achieving target macroscale composite properties. The macroscale tensile stress-strain relation of SHC
is shown in Figure 2.1. Compared with normal fiber reinforced concrete (FRC), SHC features a pseudo
strain-hardening behavior after the initial elastic stage. During its strain-hardening stage, tensile stress
increases with tensile strain in SHC, leading to incredible tensile ductility hundreds of times larger than
normal FRC. Such tensile ductility indicates large fracture energy, and is thus crucial for achieving ultra-
high damage tolerance to extend service life (against cracking-induced deterioration) and improving safety

(against extreme loads) of spent nuclear fuel storage systems.

Tensile Stress (MPa)

o \ oo

Concrete
[ - | | | |

0 1 2 3 4 5
Tensile Strain (%)

Figure 2.1 Comparison of energy dissipation capacity of shear walls using concrete and MSC under
monotonic loading and cyclic loading.
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As a composite material, a fiber reinforced cementitious material contains three main components:
fibers, matrix (including pre-existing flaws), and fiber/matrix interface. Each of these can be defined by a
set of micro-parameters, as summarized in Table 2.1. To achieve a ductile tensile strain-hardening behavior
at the macroscale (10 ~ 10" m) under uniaxial tension, the multiple cracking process needs to be realized
instead of localized fracture. Steady-state crack propagation is a necessary condition to ensure multiple
cracking, which is governed by the fiber bridging properties across cracks at the mesoscale (10~ ~ 102 m).
The fiber bridging spring law across a crack, quantified by the fiber bridging stress vs. crack opening
relationship o), is the integration of the bridging force contributed by every fiber with different inclination
and embedment lengths. For an individual fiber, its bridging force for a given crack opening is determined
by its debonding and pullout behavior from the surrounding matrix, and governed by fiber and interface
properties at the microscale (10® ~ 10° m), as well as by fiber embedment length and inclination angle

between the fiber axis and the crack face normal.

Table 2.1: Three components of fiber reinforced cementitious material microstructure and corresponding

micro-parameters .

Component Micro-Parameters

Length L;, Diameter dj, Volume Fraction V,

Fiber Tensile Strength oy, Elastic Modulus Ej, Elongation Capacity
&,
. Fracture Toughness K, Elastic Modulus E,,, Initial Flaw
Matrix

Size apand Distribution, Tensile Strength o,

Chemical Bond Gy, Frictional Bond 7y, Slip Hardening
Fiber/Matrix Interface Coefficients f8; and f;, Snubbing Coefficient #, Fiber
Strength Reduction factor f*’, Cook-Gorden Effect

The micromechanics model links microscale constituent parameters to fiber bridging constitutive
behavior on the mesoscale; steady-state crack analysis links fiber bridging properties to tensile strain-
hardening behavior on the composite macroscale. This provides a systematic framework for developing
strain-hardening cementitious materials with the minimum amount of fibers by strategically tailoring the

microstructure at different scales.
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2.1.2. Conditions for tensile strain-hardening

As a fiber reinforced brittle mortar matrix composite, its pseudo strain-hardening behavior can only
be achieved through the sequential formation of matrix multiple cracking. The fundamental requirement
for matrix multiple cracking is that steady-state flat crack propagation prevails under tension. To ensure
steady-state cracking, the crack tip toughness J;;,, must be less than the complementary energy J,’calculated
from the fiber bridging stress ¢ versus crack opening ¢ curve, as illustrated in Figure 2.2 and shown in

Equations 2.1.

50
o v Jy =048 - IJB(§)d§
P 0

= O g 533 - IGB (5)d5 = Jn’p

I

S O 5

Figure 2.2: Spring law of smeared bridging fibers at one single crack

Por
<0,6,- | o(&)ds=1, @1

0

J,

tip

where o ¢ is the maximum fiber bridging stress corresponding to the crack opening 6 o. Equation 2.1
employs the concept of energy balance during flat crack extension between external work, crack flank
energy absorption through fiber/matrix interface debonding and sliding, and crack tip energy absorption
through matrix breakdown. This energy-based criterion determines whether the crack propagation mode is
steady-state flat cracking or Griffith cracking.

The fiber bridging stress versus crack opening relationship o(3), which can be viewed as the
constitutive law of fiber bridging behavior, is analytically derived based on fracture mechanics,
micromechanics and probabilistic tools. In particular, the energetics of tunnel crack propagation along the
fiber/matrix interface is used to model the debonding process of a single fiber from the surrounding
cementitious matrix. After debonding is complete the fiber pullout stage begins, and is modeled as slip-
hardening behavior with the assumption that non-linear frictional stress increases with slip distance. By

these means, the full debonding-pullout process of a single fiber, with given embedment length and
13
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orientation, is quantified as the fiber bridging force vs. fiber displacement relationship. Probabilistic is then
introduced to describe the randomness of fiber location and orientation with respect to a crack plane, with
the assumption of uniform random fiber distribution. The random orientation of the fibers also necessitates
the accounting of the mechanics of interaction between an inclined fiber and the matrix crack. In addition,
the snubbing coefficient # and strength reduction factor f * are introduced to account for the interaction
between fiber and matrix and the reduction of fiber strength when pulled at an inclined angle. In this way,
the o(8) curve can be expressible as a function of micromechanics parameters.

Apart from the energy criterion, another condition for pseudo strain-hardening is that the matrix
tensile cracking strength ¢ . must not exceed the maximum fiber bridging strength o .

0.<0, (2.2)

where o . is determined by the matrix-fracture toughness K,, and pre-existing internal flaw size ay and its
distribution. ¢ is the maximum fiber bridging capacity, which is strongly affected by fiber dispersion, and
fiber/matrix interfacial bond properties that also influenced by cementitious matrix hydration process and
pore structure. While the energy criterion (Equation 2.1) governs the crack propagation mode, the strength-
based criterion (Equation 2.2) controls the initiation of cracks. Satisfaction of both equations is necessary
to achieve strain-hardening behavior of cementitious composites; otherwise, the composite behaves as a
normal fiber reinforced concrete and tension-softening behavior results, even though a higher amount of

fibers are incorporated.

2.1.3. Condition for saturated multiple microcracking

For SHC with pseudo strain-hardening behavior, high tensile strain capacity results from the
saturated formation of multiple microcracks. Material tensile strain capacity increases as the number of
microcracks increases. While the steady-state cracking criteria (energy criterion, and strength criterion)
ensure the occurrence of multiple cracking, it is not directly related to the intensity of multiple cracking.
Matrix randomness such as flaws and fiber dispersion uniformity play important roles on the intensity of
multiple cracking. Interestingly, the elevated temperature effect will strongly influence both, as observed
in this study. The maximum fiber bridging stress oy at the "weakest" section imposes a lower bound of
critical flaw size cume, so that only those flaws larger than c,. can be activated and contribute to multiple
cracking. There also exists a minimum crack spacing controlled by interface properties, which imposes an
upper bound on the density of multiple cracking.

In this study, the minimum crack spacing xq4 for short discontinuous fiber reinforced composites
was derived, assuming that the matrix cracking strength is uniform at each section. Under this assumption,
the crack spacing between x4 and 2x4 was predicted after crack saturation. The minimum crack spacing

was determined by the distance necessary for transferring load from the bridging fibers at one crack back
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into the matrix through the fiber/matrix interface shear, so that next cracks can be formed. However, a wide
distribution far exceeding two times the minimum crack spacing was often observed in our preliminary
SHC specimens, due to the variation in matrix properties and non-uniform fiber dispersion. Large crack

spacing means that the maximum tensile strain capacity was not achieved (Figure 2.3).

Figure 2.3: Comparison between saturated microcracking (left), less-saturated microcracking (right), and
non-saturated microcracking (bottom).

Matrix imperfections, e.g. random distribution of pre-existing flaws, are one cause of the variation
in crack spacing and tensile strain capacity. In SHC composites with a quasi-brittle matrix, cracks initiate
from pre-existing flaws in the matrix. Examined under an optical microscope, the dominating flaws have
sizes below 4-5 mm, depending on the rheology (e.g. plastic viscosity, yield strength) of the fresh material
and processing details. The existence of flaws reduces the cracking strength of the cementitious matrix. We
computed the effect of initial flaw size on the theoretical cracking strength of an infinite two-dimensional
SHC plate under uniaxial tension. The reduction in matrix tensile cracking strength due to the presence of
flaws favors the Strength Criterion for Strain-hardening, because the matrix tensile cracking strength o
must be lower than the maximum fiber bridging strength o, to satisfy the strength-based strain-hardening

criterion. oo can be calculated by taking into account single-fiber debonding and pullout behavior, inclined
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angle bridging mechanics, snubbing effect, and the averaging effect of random 3-D fiber dispersion
throughout the cross section. It is a function of fiber and fiber/matrix interfacial parameters (Equation 2.1),
which are temperature dependent and need to be experimentally quantified.

The critical flaw size cmc can be determined as the flaw size that corresponds to the cracking stress
oo. The critical flaw size is whatseparates inert and active flaws — only flaws larger than c, can be activated
and contribute to multiple cracking (Figure 2.4). The pre-existing flaws in SHC can be entrapped air pores,
weak boundaries between phases, and cracks induced by material differential shrinkage, which all possess
a random nature and strongly depend on processing details and environmental effects. The number of cracks
that can form before reaching the maximum fiber bridging stress may therefore be limited, and can vary
significantly from batch to batch. Therefore, a large number of flaws slightly larger than cm. are preferred
for saturated multiple cracking and high tensile strain capacity. On the other hand, flaws much larger than
cme Will lead to a reduction in the net cross section and fiber bridging stress at the crack section. Under
elevated temperature after the fiber melts, a large amount of micro-flaws with very similar sizes will be

introduced to the matrix.

Spring Law (cg-0) of Bridging Fibers ()
g T o#
¢ h=ad - foyous
0
------ . natural flaw distribution
Reduced “effective N ¢
fiber volume” /—! : Activated flaws
Crne flaw size ¢
; Reduced o,
- . increases Cp,.
& Q 4

Figure 2.4: Effect of random flaw distribution and fiber bridging capacity on the 6(d) curve,
complementary energy, and critical flaw size.

Fiber dispersion is another contributor to the variation in tensile strain capacity and unsaturated
multiple cracking. With a fixed fiber volume percentage, the maximum fiber bridging stress oo at the
weakest section is determined by the degree of fiber dispersion uniformity in the composite. Fiber
dispersion uniformity is directly influenced by the rheology characteristics, e.g. plastic viscosity and yield

stress, of the fresh SHC during processing. It also alters after fibers start to melt after the temperature is
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elevated. The total fiber amount, orientation randomness, and uniformity of fiber dispersion determines
the maximum bridging stress 6o, the shape of the 6(8) curve at the weakest section, and the critical flaw size
cme (Figure 2.4). Melting of fibers, degradation of fiber/matrix interface properties, and non-uniform fiber
dispersion all lead to a reduction of the value of oo at the weakest section, which increases the critical flaw
size cme. Therefore, less pre-existing flaws with sizes larger than cyc can be triggered and contribute to
multiple cracking, resulting in a relatively lower tensile strain capacity. They also shift the o(5) curve
downward, and may reduce complementary energy Jp’ to less than Jy;p. In this case, the steady-state criteria
are violated and tension-softening behavior results. SHC then loses its ductile behavior and becomes a

regular FRC material.

2.2. SHC material design, processing, and specimen preparation

Based on the analytical framework in Section 2.1, we designed preliminary versions of SHC
mixtures (Table 2.2 and Table 2.3) by integrating micromechanics theory, rheology control during
processing, and micro-structure tailoring. The SHC design theory required the simultaneous satisfaction of
steady state cracking criteria and maximized micro-cracking density. The ingredient particle size
distribution and the combined amount of water and admixtures were first determined to achieve a
homogeneous cementitious composite material at fresh state, with plastic viscosity and yield stress tailored
to an optimal level that favored uniform dispersion of micro-scale polyvinyl alcohol (PVA) fibers. Then,
the micro-parameters of the hardened material, including matrix properties (e.g., fracture toughness, flaw
size distribution, hydration chemistry), the fiber/matrix interfacial properties (e.g., interfacial chemical and
frictional bonds, slip-hardening coefficient, fiber debonding and pullout behavior, Cook-Jordan effect), and
fiber properties (e.g., aspect ratio, strength, Young’s modulus) were tailored to ensure the strain-hardening
criteria were satisfied.

The designed SHC-1 binder system contained water, a polycarboxylate-based high range water
reducer, Ordinary Portland Cement (OPC) Type I cement, ASTM standard Type F fly ash, and silica sand
that served as fine aggregates. The designed SHC-2 binder system contained similar ingredients, except
that undensified silica fume and recycled glass bubbles (40 um diameter) were added. Glass bubbles were
incorporated into mix design for two reasons: (a) introduce artificial flaws to the cementitious matrix to
maximize multiple microcracking intensity for larger tensile strain capacity, (b) further improve the
material resistance to elevated temperature effect. The cementitious ingredients, silica sand, water and
admixture together formed the SHC matrix, with tailored toughness and tensile cracking strength satisfying
the strain-hardening criteria. Polyvinyl alcohol (PVA) fibers were incorporated into the composite system

at a volume fraction of 1.8 %. The PVA fibers were 8 mm long and 39 pm in diameter, with the nominal
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tensile strength of 1620 MPa and density of 1300 kg/m?. Most importantly, the fiber/matrix interfacial bond
was strategically tailored at nano-scale so that it can dissipate tremendous energy under loading, while the
pullout behavior is controlled to ensure a minimum crack width during multiple microcracking. The
complementary energy and the maximum fiber bridging stress were optimized so that they both satisfy the

strain-hardening criteria.

Table 2.2: Mixing proportion of SHC-1

Cement Water Sand Flyash  Superplasticizer Fiber
Kgm® Kgm’® Kgm® Kg/m’ Kg/m®
Vol-%
(b/fE) (/AP (b/A)  (b/AY) (Ib/ft)
266 309 456 956 2.7
1.8
(16.6) (193) (285 (59.7) (0.168)

Table 2.3: Mixing proportion of SHC-2

Cement Water Sand [Sjilllizn;f;z: B(l}llljllilse Fly ash Superplasticizer Fiber
Kgm® Kgm® Kg/m’ Kg/m® Kg/m® Kg/m® Kg/m® Vol-%
(b/fe)  (Ib/f)  (Ib/fE) (Ib/ft’) (Ib/ft?) (Ib/ft’) (Ib/ft®)
325 202 325 65 51 33 19.5 1.8
(20.3)  (12.6) (20.3) (4.06) (3.4) (2.03) (1.22)

All mixtures were prepared using a 12 L capacity force-based mixer under controlled room
temperature 20 £ 1 °C and relative humidity conditions 50 = 5 % RH. Solid ingredients were first mixed
at 100 rpm for one minute. Water and chemical admixtures were then added into the dry mixture and mixed
at 150 rpm for three minutes to produce a consistent and uniform. A number of mixtures with the different
combinations of water, superplasticizer and viscosity modifying agent were experimented; the yield stress
and plastic viscosity of the mortar without fibers were measured using a rotational rheometer and
determined based on Bingham model. This information was used to optimize mix design so that optimum
plastic viscosity was achieved to favor uniform dispersion of PVA fibers, while optimum yield stress was
obtained for the workability and desired self-compacting property of the SHC material.

After the SHC mortar was determined with the target rheological parameters, fibers were
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introduced to the material system. The mixtures were then cast into tensile or compression molds. No
external vibration was applied. The mixtures flowed under gravity to fill in the molds, and were therefore
considered self-compacting. The molds were then covered with plastic sheets, and demolded after 24 hours.
Finally, the specimens were moisture-cured in plastic bags at 95+5 % RH and 20+1 °C for 7 days, and air

cured at 50+5 % RH and 20+1 °C for 21 days until the age of 28 days when testing started.

2.3 Measurements of micromechanical parameters

The micromechanical parameters described in Table 1 were experimentally and analytically
determined for each mixture. Based on the conditions for strain-hardening and saturated multiple cracking,
it is evident that high tensile strain capacity requires a high J,’/Jip ratio and a sufficient number of pre-
existing flaws larger than cm.. The matrix toughness Ji, and flaw size distribution are matrix properties,

while the complementary energy Jp’ is mainly controlled by fiber and interface properties.

Figure 2.5: Matrix toughness test to characterize Jip.

To experimentally measure Ji,, matrix toughness tests were conducted on various mix designs
without fibers; therefore it measured the toughness of the cementitious matrix only. This test was similar to
ASTM E399[1] “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”. The
ASTM E399 allowed one to use different geometry specimens, such as bending specimens and compact
tension specimens, to measure the K, value. The cementitious matrix was prepared and cured as described

in Section 2.2, except that fibers were not added. The fresh mix was cast into notched beam specimens
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measuring 305 mm (12 in.) in length, 76 mm (3 in.) in height, and 38 mm (1.5 in.) in thickness. The matrix
fracture toughness K., was measured by the three point bending test, as shown in Figure 2.5. The span of
support was 254 mm (10 in.) and the notch depth to height ratio was 0.4. Three specimens were tested for

each test series. Ji, was calculated from the measured K, using Equations 2.3.

J =—m (2.3)

To calculate the complementary energy Jy’, single crack opening tests were conducted to measure
the fiber bridging spring law — the fiber bridging stress versus crack opening relation. Uniaxial tension test
was conducted on double-notched specimens (Figure 2.6) to measure the tensile stress vs. crack opening
relation. The double notches were artificially created to ensure the initiation and propagation of a single

crack at the notched cross section.

Gripping length
60 mm (2.4 in)
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— L 2
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r

Figure 2.6: Single crack opening test to characterize fiber bridging “spring law” across a crack for
calculating Jy’.

The measured fiber bridging spring law across a single crack is shown in Figure 2.7. Processed
binary images of the crack at the different opening is shown in Figure 2.8. The crack opening at each loading
stage was accurately measured through image processing and digital image correlation technique (See
Section 2.4). The fiber bridging stress increased with an initial crack opening, but started decreasing after
reaching a peak fiber bridging stress. This phenomenon resulted from the average effect of numerous fibers
bridging the crack with the statistically distributed fiber orientation angle and embedment length. Based on
the curve, the complementary energy J,” was calculated and compared with Ji, measured through matrix

toughness test. Table 2.4 summarized the results for two mixture designs of SHC. The high Jy’/Jy;p ratio for
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both SHC-1 and SHC-2 indicated that the steady-state cracking criteria were satisfied, and that the materials

would macroscopically exhibit tensile strain-hardening behavior.

Stress (MPa)

Figure 2.7: Fiber bridging stress vs. crack opening relation (Fiber bridging “spring law”).
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(e) 5=0.4 mm (1.6x10 inch)

Figure 2.8: Single crack opening at different crack width.

Table 2.4: J,’/Jipratios for evaluating strain-hardening energy-criterion

. SHC-1 SHC-2
emp. ’ ]’ ] ] ’ ]’
oC . (kJ/ 2 ]b Jb tip ]b b
0 Jeip (RIM%) Py i (kJ/m?) (kJ/m?) Jeip
20 0.0123 0.4864 39.6 0.0046 04321 94.8

The fiber/matrix interface micro-parameters were experimentally characterized through single fiber
pullout test, as shown in Figure 2.9. Single fiber pull-out test was conducted on small-scale prismatic
specimens with dimensions of 10 mm X 5 mm X% 0.5 mm (0.4 in. X0.2 in. X0.02 in.). A single fiber was
aligned and embedded into the center of SHC mortar prism with an embedment length of 0.5 mm (0.02 in.).
Three specimens were tested for each test series. The load P versus displacement & curve was obtained
through quasi-static testing and used to determine the interfacial micro-parameters. These interfacial
parameters, along with fiber volume fraction, length and diameter, were used to calculate the fiber bridging

law () and compared with ¢(d) directly measured through single crack opening test.
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Figure 2.9: Single fiber pullout test to characterize fiber/matrix interfacial bonding micro-parameters.

The general profile of a single fiber pullout curve (P vs. §) experimentally measured was
decomposed into three major regimes. Initially, a stable fiber debonding process occured along the
fiber/matrix interface. While the load carried by the fiber increased up to P,, there was no displacement of
the fiber embedded end, / = /.. . The debond length, /,, increased towards /; = [,. During this “debonding”
stage, the displacement of the fiber end was the sum of the elastic stretching of the debonded fiber segment
and of the fiber free length (the portion of the fiber outside the matrix). This debonding process resulted in
a tunnel-like crack that propagated stably from the free end towards the embedded end of the fiber. This
tunneling process was stable until the tunnel crack tip approached the embedded end of the fiber at which
stage it lost stability and the load suddenly dropped from P, to P. At this moment the fiber was held in the
matrix only by friction. The chemical debonding energy value, G4, was calculated from the P, to Py
difference using Equation 2.4:

_2AP,-B)

G
d 7Z'2Efd;

24
where Eyis the fiber Young’s modulus, and dyis the fiber diameter.
At the point P, the embedded fiber end just completed debonding and the frictional bond strength

70 at the onset of fiber slippage was calculated using Equation 2.5:

(2.5)
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During the fiber slippage stage, the fiber underwent sliding with slip-hardening, characterized by
the positive coefficient B. The f value was calculated from the initial (S” approaching 0) slope of the P

versus S’ curve using:
ﬂ:(df/lf)[l/Toﬁdf)(AP/AS’)|S'—>O +1]

When the interfacial chemical bond G, and frictional bond zp were too strong, fiber rupture occurred
during pullout state or even debonding stage. This would lead to a low value of J,” and violation of strain-
hardening criteria. On the contrary, when the interfacial bonds were too weak, maximum fiber bridging
capacity became lower, leading to the large crack width or even violation of strain-hardening criteria.
Therefore, the measurement and evaluation of Gy, 7y, and § values allowed us to tailor these values in this

project, to achieve the mixture designs in Tables 2.2 and 2.3 that satisfy strain-hardening criteria.

2.4. SHC uniaxial tensile behavior

To measure the tensile stress-strain relation of designed SHCs, direct uniaxial tension tests were
conducted. The direct uniaxial tensile test is considered the most convincing method for evaluating material
strain-hardening behavior[2] because some quasi-brittle fiber reinforced brittle matrix composite materials
can also show apparent hardening behavior under flexural loading — a phenomenon known as “deflection
hardening”. The direct uniaxial tension test setup was shown in Figure 2.10. The specimen dimensions
were 228.6 x 76.2 x 12.7 mm. The both ends of the specimen were wrapped with fiber reinforced plastics
to strengthen the end area and facilitate gripping. In this way, multiple cracking was “forced’” to form
within the middle gage length of 101.6 mm. Tests were conducted using a 50 kN capacity testing frame
under a displacement control rate of 0.0025 mm/s to simulate a quasi-static loading condition. Two external
linear variable differential transformers (LVDTs) were attached to the specimen surface with a gage length
of 101.6 mm to measure the displacement, which was used to calculate strain. The tensile stress-strain
curve of each specimen was determined.

During uniaxial tension tests, digital image correlation (DIC) system was used to characterize the
evolution of strain, damage process and final failure. DIC is a technique to track the position of subsets of
selected targets in a series of digital images of deformed states relative to an initial undeformed state. For
DIC setup, uniform random black speckles were sprayed on the background of the test specimen gauge zone
surface. A pair of non-perpendicular 12-megapixel charge-coupled device (CCD) cameras with 24 mm of
focal length lenses were mounted on cross-bar of the tripod in order to capture high-resolution images. The
distance between cameras, object distance from cameras, and the angle between cameras were adjusted
based on target size, available space using DIC system manual. The external sources of fluorescent lights

were used to maintain constant optimum illumination of the surface. DIC setup was calibrated by using very
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precise calibration panel or calibration cross, and calibration data were captured by the computer. All high-
resolution images were collected by a computer having high computing capacity. Afterward, images were

post-processed to obtain 3D deformation for crack distribution and crack characterization. The DIC system

setup with external lights, DIC inbuilt lights, a pair of cameras, and computer were shown in Figure 2.11.
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Figure 2.10: Direct uniaxial tension test.
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External Lights

Figure 2.11: DIC setup.

The test results are shown in Figure 2.12. Despite the variation in the tensile behavior between
SHC-1 and SHC-2 specimens, the tensile stress-strain curve followed the same pattern containing three
stages: (1) The initial elastic stage, characterized by Young’s modulus. (2) The strain-hardening stage,
accompanied by multiple microcracking formations. During this stage, the width of each microcrack
remained nearly constant after formation, while the increasing applied strain increases the number of the
microcracks. This stage was characterized by first cracking strength (i.e. the stress when the first micro-
crack occurs), ultimate tensile strength (i.e. the peak stress), and the strain capacity of the material (i.e. the
strain corresponding to peak stress). As this test was conducted under displacement control, each small load
“drops” on the curve corresponded to the released energy during the formation of each microcrack. (3) The
tension-softening stage, accompanied by the formation of a localized fracture at one of the microcracks and
the continuous drop of the ambient load. At the stage, the SHC material behaved the same as tension-
softening FRC materials. The results showed that the SHC specimens achieved strain-hardening behavior
with tensile strain capacity more than 4% and 5% for SHC-1 and SHC-2 respectively, which is 400 and 500
times, respectively, that of concrete adopted in current SNF systems. The tensile properties of SHC-1 and
SHC-2 were summarized in Table Such strain-hardening behavior leads to a high fracture energy that
provides ultra-high damage resistance under service or severe loading conditions. Instead of localized
fracture that represents a brittle failure mode, SHC has ductile response through the formation of distributed

damage. The tensile properties of SHC-1 and SHC-2 are summarized in Table 2.5.
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Figure 2.12: SHC tensile stress-strain curves of: (a) SHC-1, (b) SHC-2.

Table 2.5: Tensile and compressive properties of SHCs

Properties SHC-1
Mean Tensile Strength (MPa) 5.27
Mean Tensile Strain (%) 4.21
Mean Microcrack Width (um) 30.0
Mean Compressive Strength (MPa) 573

The multiple microcracking pattern in SHC at maximum tensile strain capacity is shown in Figure

2.13. The microcracks have an average width around 30-40 um for SHC-1, and around 10-20 pm for SHC-
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2. The microcracks were hard to see without aid. Special chemicals were applied to the surface of the
specimen to better reveal the microcracks. It should be emphasized that these microcracks are “self-
controlled”, which means their width is independent of specimen geometries, applied load or deformation,
and reinforcement ratios, as long as the material is in the strain-hardening stage; increasing strain only
increases crack number instead of crack width. The tight self-controlled crack width leads to significantly
reduced water permeability, chloride diffusion, and other transport properties of SHC under loading

conditions.

Figure 2.13: Saturated multiple microcracking in SHC.

The multiple microcracking process was captured using DIC, where the different colors showed
the different levels of local concentrated strain that indicated cracking (Figures 2.14 and 2.15). It should
be noted that each “colored line” in the image did not necessarily reflect one single crack; rather, it reflected
a number of adjacent microcracks in a local region. It was observed that SHC-2 exhibited more saturated
microcracking with tigher crack width than SHC-1. This important finding explained the higher tensile
strain capacity of SHC-2 than SHC-1 (5.12% vs. 4.21%) but the smaller average crack width (30-40 um vs.
10-20 um). It also validated the micromechanics-based design theory in this study that more tailored flaw
distribution in a cementitious matrix of SHC led to better controlled microcracking behavior. To further
explain the macroscopic properties of developed SHC at mesoscopic scale, Figure 2.16 compared the fiber
bridging spring law in SHC-1 vs. SHC-2 measured by single crack opening tests. It was seen that the critical
crack opening (i.e. crack opening corresponding to the maximum fiber bridging stress) of SHC-2 was lower

than SHC-2, leading to the smaller average crack width of SHC-2 than SHC-1.
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Figure 2.14: DIC images of damage process within SHC-1 as the applied tensile strain increases.
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Figure 2.15: DIC images of damage process within SHC-2 as the applied tensile strain increases.
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Figure 2.16: Fiber bridging “spring law” of SHC-1 and SHC-2.

2.5. SHC compressive behavior

Compressive testing was carried out according to ASTM C39[3] “Standard Test Method for
Compressive Strength of Cylindrical Concrete Specimens” on standard cylinders measuring 75 mm (3 in.)
in diameter and 150 mm (6 in.) in length. Tests were conducted on a Tinus Olsen hydraulic test system with
450 kips (2,000 KN) capacity. To ensure that compressive force was uniformly distributed, the test
specimens were capped on both ends. Two different types of capping methods were adopted in this study.
The first capping method was bonded capping using sulfur-based capping compound conforming ASTM
C617[4]. Sulfur was molten and poured into horizontally leveled capping mold, then immediately one end
of the cylinder was mounted vertically and waited until the capping material hardened. Similarly, another
end was also capped to ensure both capped top and bottom ends of the specimen were smooth and parallel.
The leveling of both ends and verticalness of cylinder was ensured by a spirit level. Another method was
unbonded capping with neoprene elastomeric pad restrained within steel restrainers conforming ASTM
C1231[5]. Elastomer pads of hardness 60 and 70 were used. Compression test results of both SHC-1 and
SHC-2 were consistent with either of the capping methods. Un-bonded capping using elastomer pads for
capping was a lot faster and easier than bonded capping. Therefore, unbonded capping satisfying ASTM
C1231 was used in the rest of compression tests.

The uniaxial compression test was conducted on capped cylinder specimens to measure the load-

displacement curves, under displacement control. The displacement rate was set to be 0.2 in/min until the
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top loading plate was fully in contact with the specimen; then displacement control testing rate was switched
to 0.01 in/min. The specimens were loaded until the load dropped by 20% of the peak load. Three to four
specimens were tested for each test scenario. The average compression test results of SHC-1 and SHC-2 is
shown in Error! Reference source not found.The average compressive strength of SHC was reported to
be 57.3 MPa for SHC-1 and 43.8 MPa for SHC-2.

The final compressive failure mode of SHC specimens was compared with control concrete
specimens with similar compressive strength (Figure 2.17). In contrast with the sudden brittle failure of
concrete specimens with splitting cracks (Figure 2.15 (b)), the SHC specimens exhibited ductile failure
mode with the final failure plane approximately 45 degree to the axis of the specimen. Such ductility

prevents catastrophic failure under compression.

(a) (b)

Figure 2.17: Compressive failure mode of (a) SHC and (b) normal concrete

2.6. SHC flexural behavior under monotonic and cyclic loading

Displacement-controlled four-point bending test was conducted on SHC specimens with
geometries and test setup shown in Figure 2.18. An LVDT was installed at the midspan of the specimen
to measure its vertical deflection. The SHC beam specimen was loaded monotonically until failure with a
loading rate of 0.015 mm/s. Under four-point bending, SHC first underwent an elastic stage, followed by a
deflection-hardening behavior accompanied by the formation of a number of microcracks on the tensile
side of the specimen. This allowed the SHC specimen to undergo a large curvature without fracture failure
under excessively applied deformation. The deflection-hardening response of SHC reflected its
extraordinary tensile ductility without of the need of steel reinforcements. A highly deformed SHC

specimen is shown in Figure 2.19. The bending stress vs. displacement relation of SHC is shown in Figure
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2.20. While the maximum midspan deflection (measured by LVDT and DIC) was around 23 mm, the

maximum roller displacement (A ) was measured as 17.8 mm.

63.5 mm-—)

rl53.5 mm

127 mm ‘ 127 mm ‘ 127 mm
@] @]
Specimen
L‘)\Suppm't roller
508 mm

Figure 2.18: Four point bending specimen geometry and test setup.

Figure 2.19: A highly deformed SHC specimen under four point bending; no steel reinforcement was

used.
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Figure 2.20: SHC bending stress vs. displacement relation.

In the cyclic loading tests, each cycle loaded the specimen with an incrementally increasing
deflection value of 1/10 of maximum displacement capacity of SHC beam specimen, which was followed
by unloading before starting the next cycle. Figure 2.21 shows the loading history. The loading and

unloading rate was 0.015 mm/s.

)
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Roller displacement (A)

0.3+
0.2+
0.1 4
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Number of loading cycles

Figure 2.21: The cyclic loading history.

During the testing, a DIC system (Figure 2.18) was used to track the surface deformation and strain
change of the deformed beam. The DIC is a non-destructive and non-contact measurement tool with many
advantages over conventional approaches. It computed the displacement of a regular grid of points on the
specimen surface by comparing the digital images of the specimen surface before and after deformation. In
this study, the DIC system tracked the full-field deformation, strain and damage from the surface of the

specimens during elastic, inelastic and post-cracking stages under cyclic loading. In this way, the DIC
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measurements provided information on the spatial strain and damage evolution and recovery of the
specimens. The DIC measurements were first verified through comparison with LVDT measurements

(Figure 2.22).

N
(9}

——%--DIC results

[\S]
(==}
I
T

—&— LVDT results
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=
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o 1 2 3 4 5 6 7 8 9 10 11 12
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Figure 2.22 Midspan deflection measured by DIC and LVDT.

The SHC beam specimen, even without any steel reinforcement, demonstrated extraordinary
ductility and considerable load carrying capacity. Unlike reinforced concrete specimens, no localized
fracture was observed. Instead, multiple microcracks were distributed along the tension side of the specimen,
with the crack number increasing with increasing deformation during each loading cycle. The large energy
dissipation capacity (Figure 2.23) of the specimen was solely contributed by SHC itself (i.e. without the
need of steel reinforcement). After the initial elastic stage, the beam exhibited a “deflection-hardening”
behavior as indicated by the increasing load carrying capacity following each loading cycle. The crack
number steadily increased from 14 during the 1 loading cycle to 149 during the 7™ loading cycle (Figure
2.24). The width of these cracks, however, remained below 30 pm. This distributed damage behavior with
self-controlled microcrack width was unique to SHC material. Upon unloading, crack number slightly
decreased, whereas the maximum crack width remained almost unchanged. The hysteresis behavior and
energy dissipation of SHC were associated with the bridging behavior of short discontinuous fibers with a
statistical distribution of embedment lengths and orientations, especially the fiber/cementitious matrix
interfacial properties. The large energy dissipation capacity of SHC at mocroscale resulted from its micro-
and meso-scale energy dissipation mechanisms. Such large energy dissipation capacity can lead to
significant damage tolerance under dynamic loading conditions (e.g. impact, earthquake) or accidental

conditions (e.g. during transportation).
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Figure 2.23: Cyclic behavior of SHC under four point bending.
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Figure 2.24: SHC crack number and maximum crack width at peak displacement and after unloading for

each cycle.

2.7. Summary of accomplishments

A new class of robust strain-hardening cementitious materials (SHCs) for SNF storage systems was

successfully developed in this project. The new SHCs uniquely feature the following characteristics:
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Ultra-high ductility with a tensile strain capacity more than 4%, and up to 6.5%. The tensile
strain capacity of SHC is more than 400 times that of normal concrete and FRCs.

The large tensile ductility of SHC overcomes the inherent brittleness of cementitious materials,
leading to extraordinary damage tolerance under service loading (e.g. cracking induced
deterioration, corrosion-induced concrete spalling and fracture) and extreme loading conditions
(e.g. impact, earthquake, accidental loading during transportation). The fracture energy of SHC
is two orders higher than current concrete used in SNF storage systems, and one order higher
than most FRCs.

Intrinsically controlled micro-crack width (mean crack width of 30.0 um for SHC-1, mean
crack width of 12.5 um for SHC-2) during strain-hardening stage, which is independent of
reinforcing ratio, structural member geometry, applied deformation and loading conditions;
The tight crack width provides high resistance to chloride diffusion and water permeation,
compared to conventional concrete at the cracked stage. Maximum allowable crack widths are
required in various codes and specifications for the design of reinforced concrete structures
exposed to aggressive chloride environments. The allowable maximum crack width ranges
from 150 to 300 um, with the most stringent requirements specified by JSCE[6, 7] and ACI
224R[8]. According to ACI 224R, the maximum crack width at the tensile face of reinforced
concrete structures is specified as 150 um for exposure conditions of seawater, seawater spray,
wetting, and drying; and 180 pum for deicing chemical exposure. As the microcrack width of
SHC formed during its strain-hardening stage is intrinsically limited to be below 30 pm, which
is independent of structural geometry and applied deformation, steel reinforcement is not
required to control crack width even for the most stringent allowable crack width requirement;
Sufficient compressive strength for structural applications including meeting the high strength
requirement for seismic applications;

Large energy dissipation resulted from its hysteresis behavior under cyclic loading.

A micromechanics-based framework and rheology design methodology was established in this

project for developing ductile SHCs that feature strain-hardening behavior with optimized tensile ductility.

The framework links measurable parameters at nano- and micro-scales to composite strain-hardening

behavior. The framework also took into account the random distribution of flaws and “effective volume”

of polymeric fibers, in addition to the interface nanoscale tailoring and matrix microstructure manipulation.

According to this analytical framework, we successfully designed and processed SHC materials with tensile

ductility two orders higher than SNF concrete and fiber-reinforced concrete, as well as intrinsic crack width

control capacity. Through tuning the chemical and physical parameters of SHC at microstructure scales,

the “spring law” (fiber bridging stress vs. crack opening relation) of each individual crack was modified
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(e.g. from SHC-1 to SHC-2) to achieve a significant change in the crack width distribution during SHC

strain-hardening stage. By this means, the mean crack width was further reduced to 12.5 um while the

tensile strain capacity was increased to above 5%.

The new SHC materials offer great advantage over normal concrete materials, in terms of improved

damage resistance and reduced transport properties for SNF storage.
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3. DEVELOPMENT OF MULTIFUNCTIONAL STRAIN-HARDENING
CEMENTITIOUS MATERIAL WITH SELF-SENSING CAPACITY

3.1 Introduction

The newly designed SHCs were further tailored in this project to achieve novel self-sensing
properties, turning it into a multifunctional strain-hardening cementitious material (MSC). The focus was
on strain sensing as well as distributed damage sensing.

To achieve the objective, the multi-point probing of SHC materials was explored with different
chemical compositions and physical parameters, which revealed their effects on the complex impedance
(under a wide range of frequencies) and the electromechanical behavior of SHC. The correlation between
the electrical properties and mechanical and environmental stimuli was established. A number of challenges
were successfully addressed for the development of MSC, including the following:

e The piezoresistivity test method needs to be robust by removing the electrical and electromagnetic
influence due to the testing frame and ambient environment on the impedance measurements. The
test results should reflect #7ue material properties.

o The electrode and electrode/specimen interface effects need to be removed to obtain more accurate
readings to reflect MSC material properties.

o Tailoring the electrical properties of MSC should not sacrifice the tensile ductility of MSC due to
the violation of aforementioned strain-hardening conditions.

e A minimum gage factor of 5 during elastic straining stage, and a minimum gage factor of 20 during
inelastic straining (i.e., strain-hardening) stages need to be achieved in MSC.

e The crack propagation within MSC needs to be carefully controlled within MSC so that a robust
damage sensing capacity can be established.

e The impact of environmental factors on MSC electromechanical properties need to be understood.

Cementitious materials are heterogeneous in terms of their microstructure and physiochemical
properties. SEM image of cement paste (Figure 3.1) shows that the microstructure of the cementitious
material is highly complex. Besides ingredients such as sand, coarse aggregates, pozzolans, etc, cement
paste microstructure includes several parts: pores, cement hydration products, outer products, and
unhydrated clinkers. Pores include capillary pores, entrapped air voids, and the entrained air system.
Hydrated cement particles consist of high-density C-S-H, and in some cases an interior core of unhydrated
cement. The outer product can be solid C-S-H gel, gel pores, calcium hydroxide, calcium sulfoaluminate
phases. Humidity exists in pore solution and C-S-H layer solution. For pore humidity, there are different

ions inside: Na*, K*, Ca*, SO42_, OH™, etc. For pore solution or gel pore solution, the conductivity is
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higher than 10 S/m [1, 2] after 1 day curing. The conductivity of C-S-H and other solid phase composites
is several thousand times lower than that of the pore solution [3]. Under an applied steady electric field, the
ions in pore water are mobilized to create the electrical current. The electrical response of a cementitious
material strongly depends on its heterogeneous microstructure, including the distribution and connectivity

of pores, the interconnecting layers of C-S-H gels, and their interfaces.

- 4 )

o Hydrated particles _,."
g

Outer product ‘

Figure 3.1. Backscattered SEM image of cementitious paste showing the main microstructural

features.[4]

The microstructure of cementitious materials is not only heterogonous, but also age-dependent.
Figure 3.2 shows the typical plot of porosity change in terms of concrete age. In addition to aging effect,
humidity content within pores also changes from time to time, due to cement hydration process as well as

ambient relative humidity changes in the exposure environment.

Typical plot with trend only

1 7 28 90
Age (day)

Figure 3.2. Porosity change with concrete age.
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In this study, electrical impedance spectroscopy (EIS) was conducted on cementitious material
specimens with two variables: age and composition. The electrical response of porous cementitious
materials with a wide frequency from 1HZ to 1IMHZ reflected the movement of ions in the pore solution
and hence was linked to microstructure characterization. Using the improved EIS method throughout the
following experiments, the cementitious material electrical properties were accurately characterized. In
order to fundamentally understand the electrical behavior, especially the complex impedance of
cementitious materials, EIS and equivalent circuit analysis were performed on various mixtures with
different binder ingredients, water/binder ratios, incorporation of conductive nano-materials, and age effects.
The equivalent circuit model was further refined to better reflect the contribution of different phases,
interfaces, components and ingredients on the electrochemical behavior of the material. The results shed
light on the age-dependent material electrical properties at the composite, component and ingredient levels,
which laid the groundwork for the systematic development of self-sensing strain-hardening cementitious
materials for SNF storage applications. A comprehensive electrical impedance study, coupled with
equivalent circuit analysis, allowed us to tailor the MSC material physical and chemical parameters to
exhibit a strong correlation between complex impedance and material strain, crack width, damage level,
and healing.

The significance of this study was three-fold: First, it allowed us to understand the true electrical
behavior of the material at the component, phases, microstructure, mesostructure, and composite scales.
This laid out the groundwork for systematically tailoring the MSC at different scales so that the material
can behave as versatile piezoresistive sensors, connecting mechanical or electrochemical stimulus to
different electrical responses. Second, through material tailoring, strain sensing became possible through
establishing strong gage factors at elastic, inelastic, and tension softening stages. Finally, sensing of damage
was achieved for the first time, which can capture crack opening and distributed damage evolution. Further
efforts were made on improving these properties. A series of MSC were further designed, guided by the
EIS results, the equivalent circuit model parameter studies, and micromechanics-based model that evaluated
the strain-hardening criteria of MSC. Meanwhile, the material design also took into account the effect of
chemical composition and hydration products on the rheology of the MSC material during fresh state, and
their consequent effects on the dispersion of particles as well as the age-dependent microstructure evolution

within MSC during hardened state.
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3.2 Electrical impedance spectroscopy on cementitious materials

3.2.1 EIS principle and test setup

Impedance spectroscopy is a relatively new and powerful method for characterizing electrical
properties of materials and their interfaces with electrodes. It can be adopted to investigate the dynamics of
bound or mobile charge in the bulk or interfacial regions of solid or liquid materials, including ionic,
semiconducting, dielectric and mixed electronic-ionic materials. Its fundamental theory can be shown
below. For ideal Ohms law:

R= E10) 3.1
1(r)

With small excitation signal, a sinusoidal potential excitation is applied. The response to this
potential is an AC current signal, containing excitation frequency and harmonics. The excitation signal,
expressed as a function of time, has the form of:

E(t) = E, cos(awt) (3.2)
I1(t) =1, cos(wt — @) (3.3)
For a linear system, the impedance is written as:

_E()  Eycos(wt) 7 cos(at)

“0= 1(1) B 1, cos(at — @) -0 cos(wt — @) (34
With Euler's relationship
exp(ig) =cos@P+ising (3.5)
E(t)=E,exp(iot) (3.6)
1(t) =1, exp(iot — i) (3.7)
Then impedance can be re-written as a complex number:
Z :§ = Z, exp(ig) = Z,(cos ¢ +isin ) (3.8)

When the complex number is plotted on the complex Coordinate, Nyquist plot is obtained. To
experimentally measure impedance response of cementitious materials, AC-Impedance spectroscopy
technology was utilized to capture data. This study focused on a wide frequency range (1HZ — 1IMHZ) AC-
IS results of cementitious material with different proportions of ingredients and age variation from 14 days
to 180 days.

Four-point probe method was adopted for EIS, as shown in Figure 3.3(a). Four copper electrodes

were applied on the surface of the specimen. Electrodes were parallel to each other with distances shown in
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Figure 3.3(b). Two outer electrodes were connected to positive polar of Current and Gen Output connectors
of impedance analyzer, which were used to inject current into the specimen and collect output current data.
High and Low voltage connectors were connected to the two inner electrodes to measure the voltage existing
between electrodes. Collected current data, as well as reference voltage data, provided impedance
information of the specimen within the gage length. The specimen had the thickness of 12.7mm, the width

of 51 mm and length of 254 mm. The gauge length between two internal electrodes was 102 mm.

Current Gen -f_)grrxlt
2 ( R
&
Ol C
I : > N
L o Specimen
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= - N Electrode
PR |
v (O
L —— ——— |l I
I | 28
Impedance analyzer —Grounded

(a)

= 7lmm -~ rBOrnm

X _ _
76mm

1 || ||
|

|"‘]()]ll’11‘|‘1 !
- 305mm -

Figure 3.3. EIS test setup: (a) measurement circuit details; (b) specimen details; (c¢) four-point probe with
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copper electrodes.

EIS measurement is sensitive to environmental conditions, such as humidity, temperature, and
different outer common electrical signal. It was thus important to verify the accuracy of EIS setup in this
project before using the technique to measure the electrical response of cementitious specimens. First,
constant resistor measurement (273 Ohms) was used. Four-point probe method was adopted. Bode plot of
impedance magnitude and phase degree (Figure 3.4 (a)) showed that below 1 MHZ, phase degree was
constant as zero degree and impedance magnitude was constant as 270 Ohms. This means the EIS setup
measured the real electrical property of a pure resistor. Second, shorten circuit measurement was used. The
leads of EIS system were twisted together to provide shortened circuit. It is shown in Figure 3.4 (b) that
while the phase degree was not constant, impedance magnitude was almost zero from 0.01 Hz to 100,000
Hz, and slightly increased to 0.5 ohms beyond 100,000 Hz. Both verification methods proved that with
relatively lower alternate voltage and appropriate frequency selection, the EIS setup established in this
project was able to provide accurate measurements to reflect real specimen electrical response. The EIS test

framework is shown in Figure 3.5.
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Figure 3.4. EIS verification: (a) constant resistor measurement (273ohms); (b) shorten circuit

measurement.
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Figure 3.5. EIS measurements and equivalent circuit modeling on cementitious specimens.

3.2.2 Materials

EIS specimens were made of different mixture designs shown in Table 3.1. C stands for cement; F
stands for fly ash; W stands for water; S stands for silica sand; P stands for PV A fiber; CB stands for carbon
black nanoparticles. 1% and 4% mean the volume proportions of carbon black. 0.28 and 0.21 are
water/binder ratios. Eight specimens were tested for each mixture design.

For each specimen, impedance was measured as a function of frequency in the range of 1Hz to
10MHz. The phase shift and amplitude, or real and imaginary parts, of the current at each frequency was
measured. Data collection rate was 35 point per decade. EIS was performed on the specimens at 7, 14, 21,

28,42, 63 and 180 days to consider age effect.

Table 3.1: Cementitious specimens with different ingredient proportions.

Specimen no. Composition & Description Specimen no. Composition & Description
1 C+W (0.21) 7 C+W+CB1% (0.28)
2 C+W (0.28) 8 C+W+CB4% (0.28)
3 C+W+S (0.21) 9 C+W+S+F(0.28)
4 C+W+S (0.28) 10 C+W+F+S+PVA
5 C+W+F (0.28)
6 C+W+F+S+ +CB1%
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3.2.3 EIS test results

The effects of specimen age on complex impedance of cementitious materials are shown in Figures
3.6-3.15 for different mixture proportions. For each mixture design, the results were plotted as impedance
magnitude vs. frequency. It was found that impedance increased with specimen age, and the increase
became more significant after 28 days. This was the case for all mixture designs. This change of electrical
response of cementitious materials was due to the hydration process that led to a decrease in pore water and

an increase in the nonconductive path formed by increasing amount of hydration products.
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Figure 3.6. Bode plot for C+W (0.21).
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Figure 3.7. Bode plot for C+W (0.28).
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Figure 3.8. Bode plot for C+W+S (0.21).
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Figure 3.9. Bode plot for C+W+S (0.28).
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Figure 3.10. Bode plot for C+W+F (0.28).
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Figure 3.12. Bode plot for CB+C 4%.
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Figure 3.13. Bode plot for C+W+S+F.
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Figure 3.14. Bode plot for C+W+S+F+P.
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The effects of water/binder ratios on complex impedance of cementitious materials are shown in
the bode plots in Figures 3.16 and 3.17 for different specimen ages. Two water/binder ratios were
investigated: 0.21 and 0.28. It was found that for earlier ages, the water/binder ratio had less effect than later
ages. At the age of 7 days, complex impedance 0.21 and 0.28 water/binder ratios did not show any
significant difference. At lower frequency, the impedance of C+W 0.21 specimens was slightly higher than
that of C+W 0.28. After the age of 14 days, the impedance difference between C+W 0.21 and C+W 0.28
specimens became more and more significant. The specimens with lower water/binder ratio exhibited higher
impedance magnitude. For specimen age of 180 days, the impedance magnitude of C+W 0.21 specimens
were more than 10 times higher than C+W 0.28 specimens. The trend was similar for C+W 0.28 specimens

with a higher water/binder ratio.
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Figure 3.16. Bode plots of C+W specimens with water/binder ratios of 0.21 and 0.28, at ages of (a) 7
days, (b) 14 days, (c) 21 days, (d) 28 days, and (¢) 180 days.
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Figure 3.17. Bode plots of C+W++S specimens with water/binder ratios of 0.21 and 0.28, at ages of (a) 7
days, (b) 14 days, (c) 21 days, (d) 28 days, and (¢) 180 days.

The effects of fine aggregates, i.e. sands, on complex impedance of cementitious materials are
shown in the bode plots in Figures 3.18 and 3.19 for different specimen ages. Two scenarios were
investigated: with and without sand. For all specimen ages, and for two different water/binder ratios, the
presence of sands in the cementitious material led to an increase in impedance magnitude; such increase
was more prominent for later ages. The results elucidated the role of silica sands as nonconductive paths for

a wide range of frequencies in cementitious materials.
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Figure 3.18. Bode plots of C+W+S 0.21 specimens and C+W 0.21 specimens, at ages of: (a) 7 days, (b)
14 days, (c) 21 days, (d) 28 days, and (e) 180 days.
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Figure 3.19. Bode plots of C+W+S 0.28 specimens and C+W 0.28 specimens, at ages of (a) 7 days, (b)
14 days, (c¢) 21 days, (d) 28 days, and (e) 180 day.

The effects of fly ash on complex impedance of cementitious materials are shown in the bode plots
in Figure 3.20 at different specimen ages. Two scenarios were investigated: with and without fly ash. It
was found that the effect of fly ash on electrical response of cementitious materials was different from sand.
At the ages of 7 days and 14 days, specimens with fly ash exhibited lower impedance magnitudes. The
difference became negligible at the age of 21 days. At the age of 28 days and 180 days, specimens with fly
ash exhibited higher impedance magnitudes with larger variation and noise. The impedance magnitude of

C+W+F 0.28 specimens was more than 40 times larger than that of C+W 0.28 specimens.
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Figure 3.20. Bode plots of C+W 0.28 specimens and C+W+F 0.28 specimens, at ages of (a) 7 days, (b)
14 days, (c) 21 days, (d) 28 days, and (e) 180 days.

The effects of PVA fibers on complex impedance of cementitious materials are shown in the bode
plots in Figure 3.21 at different specimen ages. Two scenarios were investigated: with and without PVA
fibers. The specimens with PV A fibers exhibited higher impedance magnitudes at early ages. At later ages,
i.e. 63 days and 180 days, no obvious difference was observed. In fact, the variation in the impedance results
made it difficult to conclude that specimens with PVA fibers had higher impedance magnitude at most of

the frequencies than specimens without fibers.
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The effects of conductive nanoparticles, e.g. carbon black nanoparticles, on the complex impedance
of cementitious materials are shown in the bode plots in Figure 3.22 at different specimen ages. Three
scenarios were investigated: 0%, 1% and 4% addition of carbon black nanoparticles. It was found that the
addition of carbon black nanoparticles reduced impedance magnitudes, especially at later ages. Most
interesting, the specimens with 4% of carbon black nanoparticles showed negligible age effect on
impedance magnitudes. At the age of 180 days, the impedance magnitude of specimens with 4% of carbon

black nanoparticles was three orders lower than specimens without and with 1% carbon black nanoparticles.
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Figure 3.22. Bode plot comparison for C+W specimen, CB+C 1% specimen, and CB+C 4% specimen.
(a) 7day, (b) 14 day, (c) 21 day, (d) 28 day, and (f) 180 day.
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The impedance magnitude changes with specimen age for all mixture designs at fixed frequency

of 1,500 Hz were plotted in Figure 3.23. The 180-day impedance magnitude of different mixture designs

was further compared in Figure 3.24. Based on the electrical impedance spectroscopy studies, the following

conclusions were drawn:

Material composition, proportion, and age all contributed to the changes of complex
impedance at a wide range of excitation frequencies. Material aging led to increased
impedance magnitude, indicating the effect of hydration process on the change of the
material microstructure, which subsequently resulted in less conductive paths within the
cementitious material.

Water/binder ratio played an important role on the electrical response of cementitious
materials. A higher water/binder ratio led to lower impedance magnitude. This difference
was small at specimen early age due to a lower hydration degree and thus higher amount
of pore water containing ions that can be mobilized to generate current; however, the
difference became significantly large at later ages of cementitious materials, as the
hydration process consumed more water.

Silica sand dispersed in cementitious matrix acted as nonconductive paths, leading to
increases in impedance magnitude for a wide range of excitation frequencies, and for both
early and later ages.

Fly ash had an age-dependent effect on the impedance magnitude: specimens with fly ash
exhibited lower impedance at earlier ages, but higher impedance at later ages compared
with specimens without fly ash. This effect was due to the lower hydration rate at earlier
ages and increased pozzolanic reaction at later ages.

Introducing PV A fibers into cementitious materials led to an increase of impedance; such
increase was more significant at earlier ages and became negligible at later ages. In addition,
the bode plots of specimens with PVA fibers had higher noise, probably due to the
increased porosity and nonhomogeneity of material microstructure.

Adding conductive carbon black nanoparticles into cementitious materials was an effective
way to reduce impedance magnitude while minimizing the effect of age on the electrical

response of cementitious materials.

Based on the important findings from the comprehensive EIS studies, the initial MSC material

composition and proportion design was formulated. Especially, carbon black nanoparticles were

incorporated at different percentages into the cementitious material design to explore the resulting material

electromechanical behavior.
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3.3 Nyquist plot and equivalent circuit model

New equivalent circuit model was developed in this project to represent the physical processes in
the cementitious material that led to its electrical response. In this model, the material impedance is

expressed as:

Z= (3.9)

1
—t—+t joC
Rl 1 J 2

R, +—
JoC,

Where Z stands for the impedance of cementitious material; R; is the resistor that describes
continuous conductive paths; Rrand C; are the resistor and constant phase element (imperfect capacitor)
that describe discontinuous conductive paths; C, is the constant phase element (imperfect capacitor) that

describes insulted paths; j is the imaginary unit; w is the radial frequency.

The modeled results were plotted as Nyquist plot in Figures 3.25-3.29. Parameter studies were
conducted, including cement/binder ratio (Figure 3.25), effect of sands (Figure 3.26), effect of fly ash and
carbon black nanoparticles (Figure 3.27), effect of PVA fibers (Figure 3.28), and age (Figure 3.29). The
modeling results generated clear understanding on how different physical and chemical parameters affected
the complex electrical properties of cementitious materials. The modeling results were compared with
nyquist plot of experimental results measured by EIS in Figure 3.30, showing good agreement. Figure 3.31
shows the material composition effect on conductive path resistance R, calculated based on the equivalent
circuit model. Figure 3.32 shows the age effect on conductive path resistance R;.

To summarize, the comprehensive EIS experimental study, coupled with new equivalent circuit
modeling in this project, generated significant insights on the physical and chemical mechanisms that affect
the AC response and complex impedance of cementitious materials. Such knowledge was generated for the
first time, and was critical for guiding us to tailor most critical parameters for achieving new generation of
cementitious materials with robust self-sensing capacity. This study took into account of the heterogeneous
nature of cementitious materials, as well as its complex microstructure and interfaces, which were generally

neglected by DC measurements.
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Figure 3.25. Equivalent circuit model Nyquist plot of (a) C+W 0.21 and C+W 0.28; (b) C+W+S 0.21 and
C+W+S 0.28 at age of 180 days.
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Figure 3.26. Equivalent circuit model Nyquist plot of (a) C+W 0.21 and C+W+S 0.21; (b) C+W 0.28 and
C+W+S 0.28 at age of 180 days.
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Figure 3.27. Equivalent circuit model Nyquist plot of (a) C+W 0.28 and C+W+F 0.28; (b) C+W 0.28 and
C+CB 1% at age of 180 days.
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Figure 3.28. Equivalent circuit model Nyquist plot of C+W+S+F and C+W+S+F+P at age of 180 days.
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Figure 3.30. Nyquist plot of EIS measurements and equivalent circuit model for (a) C+W 0.21, (b) C+W
0.28, (c) C+W+S 0.28, and (d) CB+C 1%.
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Figure 3.31. Effect of material composition on continuous conductive path R; at age of 180 days.
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Figure 3.32. Effect of material age on continuous conductive path R;.
3.4 Doping SHC with carbon black nanoparticles

Carbon black nanoparticles were well dispersed into the developed SHCs (see Section 2) with four
different percentages of total material volume: 0%, 2.5%, 5% and 10%. The fresh mixtures were cast into
coupon specimens (152mm x 51mm X% 25.4mm). Specimens were demolded and moisture-cured at a
temperature of 20 £ 1 °C and a relative humidity of 50 + 5% till the age of 42 days. The specimens were
then exposed to outdoor environment to simulate field condition for 14 days. Scanning electron microscopy
with energy dispersive X-ray analysis (SEM/EDX) was performed on small samples taking from the cured
specimens. As shown in Figure 3.33, carbon black nanoparticles were well dispersed in the cementitious

binder.

Carbon black concentration

Figure 3.33. SEM/EDX of carbon black nanoparticles dispersed in cementitious matrix.
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EIS was then performed on the specimens to measure the phase shift and amplitude, including the
real and imaginary parts. Data collection rate was 35 point per decade. Equivalent circuit modeling was also
conducted, which took into account of the conductive paths formed by adjacent carbon black nanoparticles,
discontinuous paths, and insulated paths within the cementitious microstructure. The EIS experimental
results are compared with equivalent circuit modeling results in Figure 3.34, showing good agreement. In
these figures, the dual-arc behavior was observed. The rightmost arc in all curves was associated with the
electrode interface response and did not reflect the material properties. The left arc reflected the
cementitious material properties, which was used to calibrate the equivalent circuit model parameters. The
effect of increasing carbon black dosage on the impedance spectra was clearly observed: the diameter of
the left arc significantly decreased with increasing amount of carbon black nanoparticles; the center of the

left arc shifted more to the left.
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Figure 3.34. EIS Nyquist plot and equivalent circuit model results.
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The resistance of Rj, R, and capacitance of C; obtained from the Nyquist plot and equivalent circuit
model enabled us to obtain critical information on conductive paths and discontinuous conductive paths.
Conductive paths and discontinuous conductive paths contributed significantly to the bulk impedance of
cementitious materials and provided the potential for piezoresistivity. For example, under compressive force,
discontinuous conductive paths can turn into conductive paths, resulting in a decrease in bulk impedance.
Under tensile force, some of the conductive paths can become discontinuous conductive paths, leading to
an increase in bulk impedance. The effects of carbon black nanoparticle dosage on dielectric parameters
Ri, Ry and C; are shown in Figure 3.35. R; and R, decreased exponentially with increasing amount of
carbon black nanoparticles, while C; increased exponentially. This indicated that increasing carbon black
nanoparticles led to the increase of conductive paths and discontinuously conductive paths within the SHC

materials, presenting a material tailoring strategy for achieving self-sensing capacity.

(a) (b)
10M ¢ 10M ¢
IM ¢ M N
2 ol Sl T
2 100k ¢ - 2 100k |
B =
. )
~ 10k} _ o 10kt ¥
1k 1k
; == i
100 1 " 1 " 1 " 1 n 1 100 1 " 1 " 1 n 1 n 1
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
Carbon volume proportion (%) Carbon volume proportion (%)
(©
10M
ML
5 100k =
4=
2 :
Q
10k - -
Ik
100 Lu

0.0 2.5 5.0 7.5 10.0
Carbon volume proportion (%)
Figure 3.35. Effect of carbon black nanoparticles on physical parameters of conductive paths and

discontinuous conductive paths.
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3.5 Re-evaluation of strain-hardening criteria

While incorporating carbon black nanoparticles into SHC improved its electrical properties, it had
a negative impact on SHC mechanical behavior. Uniaxial tension tests conducted on SHC with different
amount of carbon black nanoparticles showed that the both tensile strength and tensile strain capacity

decreased with increasing amount of carbon black nanoparticles (Figure 3.36).
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Figure 3.36. Effect of carbon black nanoparticles on tensile stress-strain relation of SHC.

In order to explain the macroscopic phenomenon, the strain-hardening criteria was re-evaluated for
SHCs incorporting carbon black nanoparticles. Single crack opening test was performed on double-notched
specimens with geometry of 50.8 mm X12.7 mm X76.2 mm (Figure 3.37). Test was conducted with
displacement control at a displacement rate of 8.5 x10~°> mm/ second. Four specimens were tested for
each scenario. From the single crack test results, the complementary energy J,” was calculated. To measure
matrix crack tip energy Jip, The matrix toughness test setup is shown in Figure 3.38. The specimens were
prepared without fibers. After mixing, the fresh slurry was cast into beam specimens that were 305 mm
long, 50.8 mm deep and 25.4 wide. After curing for 42 days, a sharp notch was made on the mid-span of
the specimen, with notch depth around 25.4 mm. The matrix fracture toughness K., was measured by the
three-point bending test. Four specimens were tested for each test series, Ji, was calculated from the

measured K, based on Equations 3.10 and 3.11.

[y
Jop SO60 — f co(0)do=J, (3.10)
0
K,
T == (3.11)

m
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Where is the maximum bridge stress corresponding to the opening om, Ki is the matrix-fracture toughness,

and E., is the matrix Young’s modulus.
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Figure 3.37. Single crack opening test and J,’ calculation.
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Figure 3.38. Matrix toughness test.
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Table 3.2: Proposed Multifunctional Strain-hardening Cementitious Composites design.

Design Water Cement Sand Fly ash Silica Carbon  Superplasticize  Fiber

fume Black T
kgm® kgm® kgm’ kgm’ kg/m’ kg/m’ kg/m’ Vol-%
0% MSC 312 292 456 935 0 0 2.7 2
2.5% MSC 277 243 380 584 113 12.5 2.7 2
5% MSC 296 243 380 600 115 25 2.7 2
10% MSC 313 243 380 611 117 51 2.7 2

The pseudo strain-hardening index J’/Jip, was calculated the control mixture design as well as
mixture designs containing 2.5%, 5% and 10% carbon black nanoparticles by total volume of cementitous
mateirals. The results are shown in Figure 3.39. Two conclusions were drawn: (1) the pseudo strain-
hardening index was larger than 1 for mixture designs with 2.5%, 5% and 10% carbon black nanoparticles,
indicating that 2.5% MSC, 5% MSC and 10% MSC were all able to achieve strain-hardening behavior. (2)
There was an upper threshold of the carbon black amount that could be incorporated; higher amount of
carbon black nanoparticles could lead to a deterioration of tensile strain capacity due to a lower value of

Jv’/Jip, leading to a tension softening behavior.

tip

3

0L L 1 L 1 L 1 L 1
0.0 2.5 5.0 7.5 10.0

Carbon volume proportion (%)

Figure 3.39. Pseudo Strain-hardening index (Jy’/Jsp) for 0%, 2.5%, 5% and 10% MSC.
3.6 Tensile properties of MSC

The tensile properties of MSCs in Table 3.2 were measured by direct uniaxial tension test. The
tensile stress-strain curves are shown in Figure 3.40. All specimens exhibited tensile strain-hardening

behavior with tensile strain capacity larger than 3%. The 5% MSC had a tensile strain capacity larger than
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4%, while the 2.5% and 0% MSC had tensile strain capacity larger than 5%. With higher amount of carbon
black nanoparticles, the tensile strength of MSC decreased. Nevertheless, all MSC material exhibited large
tensile ductility that was hundreds times more than normal concrete or fiber reinforced concrete. After the
initial elastic stage, the MSC materials underwent a pseudo strain-hardening stage accompanied by steady-
state microcracking with intrinsically controlled crack width. Such unique strain-hardening behavior
suppressed localized fracture prevalent in cementitious materials.
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Figure 3.40. Tensile stress-strain relation of 0%, 2.5%, 5% and 10% MSC.

3.7 Electrical properties of MSC

The electrical responses of MSCs were measured using four-point AC probing electrical impedance
spectroscopy. The results are shown in Figure 3.41. The impedance magnitude was plotted against
excitation frequency. It was clearly observed that increasing the amount of carbon black nanoparticles
greatly reduced impedance magnitude for a wide frequency range. Compared with the control specimen
(0% MSC), the impedance magnitude was reduced by 2 order, 3 orders and 4 orders of magnitude lower
for 2.5% MSC, 5% MSC and 10% MSC respectively.

In order to test the uniformity that the electrical properties measured for MSCs, EIS was conducted
on specimens with different gauge lengths (Figure 3.42). Frequency range from 10e2 HZ to 10e4 HZ was
chosen for uniformity analysis. The measured impedance data were transformed into sheet resistivity unit
to exclude geometry influence on the electrical properties. The test results are shown in Figure 3.43. It was
observed that specimens containing carbon black nanoparticles exhibited better uniformity that was barely

influenced by the gage length.
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Figure 3.41. Bode plots of 0%, 2.5%, 5% and 10% MSC.
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Figure 3.43. Uniformity test results. (a) 0% MSC; (b) 2.5% MSC; (c) 5% MSC; (d) 10% MSC.

85



CFP-12-3545 Final Report

3.8 Piezoresistive behavior of MSC

The piezoresistive behavior of MSC was measured using four-point AC probing electrical
impedance spectroscopy while the specimen was loaded in uniaxial tension or uniaxial compression.
Piezoresistive effect refers to the change in electrical resistivity due to mechanical strain. The uniaxial
tension test setup is shown in Figure 3.44. The uniaxial tension test setup is shown in Figure 3.45. The test
was conducted with displacement control with a loading rate of 0.005mm/s. Two LVDTs were attached to
both sides of the specimen to measure displacement, while the force was recorded by the testing system.

During testing, impedance change was measured at a fixed frequency (1500 HZ).
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Figure 3.44. Measuring piezoresistive behavior of MSC under uniaxial tension. (a) Test setup; (b)
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Figure 3.45. Measuring piezoresistive behavior of MSC under uniaxial compression.
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Figure 3.46 shows the piezoresistive behavior of 0%, 2.5%, 5% and 10% MSCs under cyclic
uniaxial tension within elastic range. The impedance magnitude change was plotted against change of

tensile strain. The fractional change in impedance magnitude is defined as:
I, =— (3.12)

Where I is the fractional change in impedance magnitude, /; is the initial impedance magnitude at
zero strain, and A/ is the change in impedance magnitude.

For the 0% MSC specimens, which served as control specimens, no obvious linear relation between
strain and fractional change in impedance magnitude was observed. A large noise was also seen. When the
carbon black nanoparticles content increased, linear relation was observed between the fractional change in
impedance magnitude and strain. With increasing elastic strain, the impedance magnitude increased in a
linear manner; when the material was unloaded with decreasing elastic strain, the impedance magnitude
decreased in a linear manner correspondingly. Such piezoresistive behavior under cyclic tension was
significant, especially for 5% and 10% MSCs. Noise in impedance data was also minimized in 5% and 10%
MSC. The results clearly revealed that by tailoring the piezoresistive behavior of MSC through
nanoparticles and micromechanics-based material design, self-sensing of elastic strain under cyclic tension
was successfully achieved.

Based on the test results, gage factors and the signal to noise ratios were calculated. Gage factor
was defined in Equation 3.13, where I/ is the fractional change in impedance magnitude and ¢ is the tensile
strain. The value of gage factor indicates the effectiveness of strain-sensing capacity.

I
a=-—L (3.13)

The signal to noise ratio is defined as the power of the signal to the power of noise, as shown in

Equation 3.14, where Piignai is the power of the signal and Pyoise is the power of noise.

P
SNR,,, =10log,, (—£"Ly (3.14)

noise
Compared with control 0% MSC specimens, the 2.5%, 5% and 10% MSC specimens all surpassed
the target gage factor of 5 during elastic straining stage. The gage factors are 45 + 23, 268 + 16 and 95 + 9
for 2.5%, 5% and 10% MSCs, respectively, indicating the strong tensile strain-sensing capacity of the three
versions of MSC materials within elastic range. Specially, the 5% MSC achieved the largest gage factor and

strongest signal to noise ratio.
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Figure 3.46. Piczoresistive behavior of MSCs during elastic stage under tension.

Table 3.3. Gage factor and Signal-noise ratio comparison for MSCs under tension.

Material 0% MSC 2.5% MSC 5% MSC 10% MSC
Gage factor N/A 45+23 268 + 16 95+9
Signal to noise ratio (db) 0 8.34 19.4 17.6

Figure 3.47 shows the piezoresistive behavior of 0%, 2.5%, 5% and 10% MSCs under cyclic
uniaxial compression within elastic range. The impedance magnitude change was plotted against change of
compressive strain. For the 0% MSC specimens, which served as control specimens, a correlation between
strain and fractional change in impedance magnitude was observed, but the pattern of such correlation was
inconsistent. Robust sensing of strain through measuring impedance changes was thus difficult to achieve
in the control 0% MSC. For the 2.5%, 5% and 10% MSCs, consistent linear relation between impedance
magnitude change and compression strain existed during both loading and unloading stages during each
loading cycle. Gage factor for each material was calculated and compared in Table 3.4. The 2.5%, 5% and
10% MSC specimens all surpassed the target gage factor of 5 during elastic straining stage. The gage factors
are 17+£3.4,62+ 5 and 56 £ 4 for 2.5%, 5% and 10% MSCs, respectively, indicating the strong compression
strain-sensing capacity of the three versions of MSC materials within elastic range. Specially, the 5% MSC

achieved the largest gage factor and strongest signal to noise ratio.
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Figure 3.47. Piezoresistive behavior of MSCs during elastic stage under compression.

Table 3.4. Gage factor and Signal-noise ratio comparison for MSCs under compression.

Material 0% MSC 2.5% MSC 5% MSC 10% MSC
Gage factor 8.4+£2.67 13.7+4.8  62.4+6.7 54.0+5.5
Signal to noise ratio (db) 7.6 12.4 18.6 17.7

The piezoresistive behavior of MSC beyond its elastic stage, and during inelastic strain-hardening
stage followed by tension-softening stage was also measured. The results are shown in Figure 3.48, which
plotted the fractional change of impedance magnitude with increasing tensile strain till the localized fracture
failure occurred in the specimen. For all MSC specimens, they exhibited three distinguishable stages in their
tensile stresss-strain curves: (1) elastic stage, (2) strain-hardening stage, which started when the first
microcrack occurred and ends when localized fracture took place at one of the many microcracks formed
during this stage, and (3) tensile-softening stage, which corresponds the localized fracture process. During
the elastic stage, there was no cracking. During the strain-hardening stage, steady-state crack propagation
prevailed. The number of microcracks increased with increasing tensile strain while the width of each
microcrack merely changed. During the tensile-softening stage, crack opening increased at the single final
failure crack with increasing strain, and the total number of total cracks did not change. Interestingly, this
unique damage process within MSCs was well reflected in their electrical responses. As shown in Figure
3.48, there was a general trend of increasing impedance magnitude due to increasing strain, indicating a
strong piezoresistive behavior during the three stages. For the control 0% MSC, large noise was observed

in the impedance data, but a nearly linear increasing trend during strain-hardening and tension-softening

91



CFP-12-3545 Final Report

stages was clear. For the 2.5%, 5% and 10% MSC specimens, the noise in the impedance data was
significantly reduced, indicating more homogeneous electrical properties of the materials. Moreover, a
nonlinear relation between fractional impedance magnitude change and tensile strain during strain-
hardening stage and tension-softening stage was found in the 2.5%, 5% and 10% MSCs, which was different
from the nearly linear relation for the 0% MSC. At the larger strains, the fractional increase in impedance
magnitude became faster than at the smaller strains. This unique phenomenon was due to the change in the
dielectric effect of matrix cracks during the multiple cracking process, and the change in the contact
impedance between fibers and cementitious matrix; both of which were dictated by the fiber bridging law
across cracks. As a result, the 2.5%, 5% and 10% MSCs not only can reliably “self-sense” strain change
with reduced noise, but also can “self-sense” strain level. The change of nonlinear relation between
impedance magnitude and strain during elastic, strain-hardening and tension-softening stages also made it
possible for damage-level sensing in addition to strain sensing.

Figure 3.48 also plotted the fitted results for fractional impedance magnitude change vs tensile

strain. A three-degree polynomial function was used, as defined in Equation 3.15.
I, = ag’ +be +ce, (3.15)

Where [y is the fractional change in impedance magnitude, and & is the tension strain. The curve fitting

parameters are summarized in Table 3.5.
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Figure 3.48. Piezoresistive behavior of MSCs under uniaxial tension
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Table 3.5. Fractional impedance magnitude change vs. tensile strain curve fitting parameters.

Material a b c

0% MSC 522 -159 26
2.5%MSC 278394 -12814 340
5% MSC 42865 1948 11.6
10% MSC 365112 -20671 359.3

Table 3.6. Electromechanical properties of MSCs.

Specimen  First cracking  Ultimate strength ~ Strain-hardening  Strain-hardening

Material . .
number strain (%) (MPa) capacity (%) gage factor
1 0.14 4.2 3.6 803
2 0.1 4.4 4.2 932
0%
MSC 3 0.12 3.9 4.6 743
4 0.15 4.0 3.8 782
1 0.17 3.2 4.5 6574
2 0.18 3.1 4.8 6210
2.5%
MSC 3 0.20 3.0 3.9 6000
4 0.14 34 4.1 6870
1 0.18 2.5 5.0 4017
2 0.19 2.8 4.7 4200
5%
MSC 3 0.22 3.0 52 4501
4 0.16 2.7 4.4 3821
1 0.21 2.0 3.2 2208
2 0.19 1.9 3.0 1982
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10% 3 0.23 2.2 3.1 2453
MSC

4 0.23 2.1 2.9 2301

The electromechanical properties of MSCs are summarized in Table 3.6. The strain-hardening gage

factors were determined based on Equation 3.16, as shown in Figure 3.49.
I, =58’ (3.16)

Where Iris the fractional change in impedance magnitude, Syis defined as the strain-hardening gage
factor, and & is the tension strain. Similar as the elastic gage factor, the strain-hardening gage factor is a
critical parameter for strain sensing during the strain-hardening stage of the MSC material to predict strain
level based on measured impedance change. A higher the strain-hardening gage factor means a stronger
piezoresistive behavior of the MSC material during strain-hardening stage, making it a more sensitive to
self-sense strain. The calculated strain-hardening gage factor for MSCs are summarized in Table 3.6. It
was seen that 2.5% MSC has the highest strain-hardening gage factor and the 0% MSC has the lowest strain-
hardening gage factor. For all the 2.5%, 5% and 10% MSC specimens, inelastic (i.e. strain-hardening) gage
factors were all well above the target values of 15 set in the proposal. The inelastic gage factors are 6413,
4134 and 2236 in average for 2.5%, 5% and 10% MSC specimens, respectively. Therefore, we have
successfully achieved robust strain-sensing in the newly developed MSC materials with large gage factors

both at elastic and inelastic stages.

—
(o)

2.5% MSC

[
o
T

X.5% MSC

N
T

0% MSC

0% MSC
3 4 5 6
Strain (%)

(=]

Fractional change in imedance magnitude
0]
T

)
—
[\

Figure 3.49. Determining MSC gage factors during strain-hardening stage
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3.9 Effect of damage level on MSC complex impedance

Impedance spectroscopy at frequencies of 1 HZ to 1 MHZ were conducted on the MSC specimens
at different damage levels on tensile, in order to demonstrate the effect of microcracking damage on the
complex impedance of self-sensing MSC. The data for 5% MSC is shown in Figure 3.50. Eight damage
levels were considered, corresponding to 0%, 1%, 2%, 3%, 4%, 5%, 6%, and 7% applied tensile strain. It
should be noted that an applied tensile strain level larger than 1% were considered to be extremely high in
cementitious materials; large cracking and concrete material failure is inevitable at such high tensile strain
levels, and the structure relies on steel reinforcement to prevent failure. Due to the large tensile strain
capacity of MSCs, the cementitious material itself can resist extraordinarily large applied tensile strains
without failure; instead, the damage level within MSCs increased in form of multiple steady-state
microcracking. The change in damage level in MSCs can also be self-sensed through complex measured
impedance data, as shown in the Nyquist plot in Figure 3.50. With increasing strain level, the increased
multiple cracking damage within MSC specimens were shown. It was obvious that increasing microcracking
damage level in MSC increased the radius of the high-frequency arc of the Nyquist plot and shifted the
center of the arc to the right. Moreover, equivalent circuit model parameters were extracted from the EIS
data in Figure 3.50. The resistivity of resistor element in the equivalent circuit model was calculated and
plotted against tensile strain in Figure 3.51. Based on the sudden change of the slope in the measured
resistivity increase vs. strain, the localized fracture failure can be identified. The results clearly showed that
the damage level in MSC, including the increased multiple microcracking process during strain-hardening
stage and the localized fracture failure that initiates the tension-softening stage, can be successfully self-

sensed by the newly developed MSCs in this project.
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Figure 3.50. Effect of material damage process on the complex impedance (a) multiple microcracking

during strain hardening; (b) localized fracture during tension softening
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Figure 3.51. Resistivity of the resistor element in MSC vs. tensile strain.: (a) resistivity vs. tensile strain;

(b) resistivity change vs. tensile strain.

3.10 Summary of accomplishments

A new generation of multifunctional strain-hardening cementitious materials (MSCs) for SNF
storage systems was successfully developed. The MSCs uniquely possess extraordinary damage tolerance
and self-sensing capacity. With a tensile strain capacity of more than 4%, MSCs exhibit strong
piezoresistive behavior at both elastic and inelastic stages. The elastic gage factors are 17, 62 and 56 for
2.5%, 5% and 10% MSCs, respectively, higher than the elastic target gage factor of 5 specified in the
proposal. The inelastic gage factors are 6413, 4134 and 2236 in average for 2.5%, 5% and 10% MSC
specimens, respectively, far above the target inelastic gage factor of 20 specified in the proposal. These
gage factors are also well above the gage factor of 2 (elastic only) for commercial strain gages. Larger gage
factors mean that a small change in strain can be reflected as large change in the measured impedance,
indicating a higher sensing capacity. Robust strain self-sensing in MSCs was achieved based on their large
gage factors and strong signal to noise ratios.

A fundamental understanding of the electrical, electro-chemical, and electro-mechanical behavior
of cementitious materials was obtained. Electrical impedance spectroscopy and equivalent circuit analysis
on various mixtures with different binder ingredients, water/binder ratios, hydration chemistry,
incorporation of conductive nano-materials, age effects, and damage levels revealed the age-dependent
material electrical properties at composite, component and ingredient levels. The equivalent circuit model
was well validated by the experimental data. The results laid the groundwork for the systematic
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development of MSCs for SNF storage applications. A comprehensive electrical impedance study, coupled
with equivalent circuit analysis, allowed us to tailor the MSC material physical and chemical parameters to
exhibit strong correlation between complex impedance and material strain, crack width, damage level, and
healing. Furthermore, in order to correlate MSC material mechanical behavior (e.g. strain and damage) with
electrical response, a four-point probing piezoresistivity test method was established. The results also
revealed the effect of conductive nanoparticles on the electromechanical properties of MSC composite
material systems.

The significance of this study was three-fold: First, it allowed us to understand the true electrical
behavior of the material at component, phases, microstructure, mesostructure, and composite scales. This
made it possible for systematically tailoring the MSC at different scales so that the material can to behave
as versatile piezoresistive sensors, connecting mechanical or electrochemical stimulus to different electrical
responses. Second, through material tailoring, strain sensing became possible through establishing strong
gage factors at elastic, inelastic, and tension softening stages. Finally, sensing of damage as well as healing
was achieved for the first time, which can capture crack opening, distributed damage evolution, and
autogenously healing processes. Further efforts were made on improving these properties. A series of MSC
were further designed, guided by the EIS results, the equivalent circuit model parameter studies, and
micromechanics-based model that evaluated the strain-hardening criteria of MSC. Meanwhile, the material
design also took into account the effect of chemical composition and hydration products on the rheology of
the MSC material during fresh state, and their consequent effects on the dispersion of particles as well as
the age-dependent microstructure evolution within MSC during hardened state.

In addition to experimental development and characterization, analytical models were established
on the electromechanical behavior of MSC at multiple scales: (a) the change in contact impedance due to
fiber debonding and pullout behavior at microscale, (b) the impedance vs. crack opening relation at
mesoscale, and (c) the impedance vs. strain and damage level relation at macroscale. The multi-scale model
coupled micromechanics with equivalent circuit modeling, and was validated by multi-scale experimental
data. The multi-scale model elucidated the fundamental mechanisms that were responsible for the unique

electromechanical behavior of MSCs at elastic, strain-hardening and tension softening stages.
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4. DISTRIBUTED DAMAGE SELF-SENSING IN MSC THROUGH IMPEDANCE
TOMOGRAPHY

4.1 Introduction

Through engineering conductive nanomaterials into the strain-hardening cementitious composite
materials, the elastic and inelastic strain, and damage process, were strongly correlated to electrical
conductivity change through large gage factors. To render the electromechanical sensing method proposed
herein attractive for industrial adoption, algorithms are needed to autonomously measure strain and identify
damage based on an analysis of the input-output voltages taken from MSC elements stimulated electrically.
In this project, imaging techniques first developed for the biomedical and geophysics fields were adopted
and modified to assist in performing electrical impedance tomography (EIT) on MSC specimens. This task
made it possible to visualize material conductivity in three dimensions based upon voltage measurements
collected in MSC specimens in a multitude of probe locations. Conductivity reconstruction was a difficult
nonlinear inverse problem defined by an underdetermined set of linear equations based on the Poisson
equation. Finite element models (FEM) that describe the forward problem and the backward problem were
implemented.

In a spent nuclear fuel storage system, the functionality and effectiveness of components that
provide radiation shielding, as well as those related to overall structural integrity are ensured by periodic
visual inspections and measurements taken with portable equipment and instrumentation. Dry cask storage
systems must have the ability for continuous monitoring of temperature, pressure, structure stability, leakage,
and degradation, following NRC regulations[1, 2].

For overpack, visual inspection[3] is the main method carried out on the accessible concrete
surfaces. Practically, crack comparators and remote portable cameras are set up to measure the extent of the
concrete surface damage. Visual inspection of in-service concrete structures needs to follow ACI
201.1R(ACI, 2008a)[4]. Based on the ACI code[5], the frequency of visual inspection on a concrete surface
is once per 5 years for structures exposed to the natural environment (direct and indirect). Inspection of air
vents is required daily for most Dry Cask Storage Systems(DCSSs). Routine weekly or monthly inspection
of the DCSS exterior should also be carried out[6]. The limitations for visual inspection are obvious. The
subsurface cracking, internal delamination, voids, and corrosion of the steel reinforcement cannot be
detected by visual inspection. It is difficult to conduct a qualitative study with visual inspection and to
discern trends in data. The regular visual inspections are known to be highly subjective, labor-intensive, and
limited to accessible locations. Taking digital images of suspected regions and the application of image
processing techniques (e.g. digital image correlation technique) is limited to surface features. While great

technological advances have been made in recent years on many fronts in the field of structural health
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monitoring (SHM), there still remain very few implementations of SHM systems in operational structures.
The main limitations are indirect damage sensing and point-based sensing. Sensors in common use do
not detect damage directly. Complex physics-based models are needed to correlate structural response
measurements to damage states. Robust algorithms that are generically applicable to the nuclear structural
concrete components do not yet exist. Furthermore, the widely used sensors are point-based sensors that
cannot accurately identify spatially distributed damage or deterioration such as cracking and corrosion. A
dense network of point-based sensors is necessary for analytical models to extrapolate the point
measurements to predicted component behavior, but highly costly. Distributed and direct sensing that
provides the spatial resolution necessary to localize and quantify the severity of concrete damage and
deterioration is direly needed.

In this project, the innovative multifunctional strain-hardening and self-sensing concrete (MSC)
was integrated with advanced electrical impedance tomography (EIT) algorithms for achieving distributed
and direct damage sensing in concrete structures. Using electrical stimulation and advanced modeling
methods, spatial mapping offering a visual depiction of concrete performance over time was gained. MSC
can behave as a sensor itself, thus offering spatial data wherever the material is located. This eliminates the
need for installing and maintaining a dense array of sensors; instead, inexpensive electrodes can be attached
to structural component boundaries to apply electrical input and measure output signals that collect spatial
information throughout the material. This approach allows for spatial sensing inside the material although

the electrodes are only required at boundaries.

4.2 Complete Electrode Model

The complete electrode model is the means by which the boundary electrodes are accurately
modeled. In the current study, the common used mesh generator Netgen is used to create the meshes by
performing a mixture of advancing front surface meshing and Delaunay tessellation followed by mesh
optimization. Once the model is created, it is necessary to establish mathematical formulae relating the
physical conditions imposed at the boundary to the electric field in the interior.

Based on Maxwell’s equations for electro-magnetics, the flux of electric field £ through a closed
surface equals the total charge density inside divided by €y constant, as shown in the Equation 4.1. In the
following equations, E is the electric field, B is the magnetic field, p is the charge density, j is the current

density, v is the outward unit normal vector, ¢ is the speed of the light, and ¢ is the constant.
v.E=L 4.1

In addition, the negative rate of change of the flux of B through the loop can be expressed as

Equation 4.2,
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g 98
VxE=-7 4.2)

The flux of B through a closed surface is equal to zero,

VeB=0 4.3)
Then,
j OFE
VxB="—+—
e at 4.4)

As for EIT technology, the excitation signal believed as quasi-static as the driving patterns are time
harmonic at a low frequency. In computation, the static conditions are assumed as static, assuming
measurements are conducted instantaneously. The magnetization components are neglected,

a—BzO and a—EzO 4.5)
ot Ot

Then
VxE=0 (4.6)
Therefore, when the curl of the vector E is equal to zero, then there exists a scalar #whose gradient
is equal to that vector,
E=-Vu (4.7)

Then assuming static current signal injected, Equation 4.5. becomes:

j
VxB=— 4

In these conditions, the current density can be assumed to be time invariant. If Ij is the n™ current

pattern driven into the volume, from a boundary electrode surface §then
i = j-vds (4.9)
Based on the charge conservation law,
[ -as=-L0,) (4.10)
s dt Q ’
The charge in the interior of the volume (J, can be expressed as
0o =IgpdV 4.11)
Combining equation Equation 4.9, Equation 4.10, Equation 4.11.

v.j=-% (4.12)
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Since there are no current sources in the interior of the volume and £ does not change with time,
Equation 4.12 becomes,
V-j=0 (4.13)
In a linear isotropic medium, the current density and the electric field are related by the
approximation
jryVE =~ (0 +iwe)E (4.14)
Then
V-yE=0 (4.15)
Combine Equation 4.15 and Equation 4.7, it yields the laplacian elliptic partial differential
equation,
V.y(-Vu)=0
V7 (Vi) =0 (4.106)
The complete electrode model consists of the partial differential Equation 4.16 and the following

boundary conditions

ou(x) ,.
J,o 5 =l oy N, (4.17)
u(x)+ z,a(x)? =U,, xbelongstooQ,[=1,..N, (4.18)
n
ou(x) el
o(x)—=—=0, x belongs to 0Q\ U e (4.19)

n =1
Where U, is the (RMS) potential on /" the electrode, /, denotes the RMS of the electric current
applied to the electrode e, , z, is the constant impedance between the /" electrode and the domain Q, and

nis the unit normal pointing outward from the boundary 6Q . In addition to boundary conditions, the charge

conservation law has to be obeyed. Thus Equation 4.20 needs to be satisfied:

=z

1 =0 (4.20)

1

~
Il

Further, the potential reference level needs to be fixed,

=

U, =0 @.21)

1

~
Il
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4.3 Forward problem with Finite element method

Finite element approximation for the complete electrode model is employed to tackle the forward

questions. Firstly, the weak form is derived for Galerkin method.

1 onvertexi,
¢ (x,y,z)={ : (4.22)
0 otherwise.
Then “# can be expressed as
u,=> U (4.23)

Where U is the value of the potential at the vertex ¢ and 7 the number of vertices in the model. For

the FEM derivations, the discrete conductivity distribution vector y € C™ is taken as

k
=S, 24
i=1
Where,
1 onelementi,
v, (x,y,2)={ 0 . (4.25)
otherwise.
Combining Equation 4.22 and Equation 4.23 leads to
”IQ;/'VQ. Vu,dx dy dz=0 i=1,...n (4.26)
Applying Green’s second identity on Equation 4.26,
HLZ vV NVu,dx dydz= ”@Q yoVu,ds (4.27)
Where
0
Vu, =2 (4.28)
ov
Then Equation 4.28 becomes
0@, ou, O¢ ou, 0@ Ou, ou,
—L 4 L L M)dxdydz= —d
J.”Qf}/( Ox Ox 0y oy 0z Oz e dy dz ”595 79 v (4.29)
For i =1,...,4 , and plugging in the boundary condition yields,
0¢. ou, O¢ ou, O¢ Ou, 1
— +—= +—= dx dydz= — (V. —u,)ds 4.
Mar & oy oo Y ﬂagﬁz,(l 2 (430)
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Where z, is the contact impedance of electrode /and V, the potential measured on it. And then,

substituting u, from Equation 4.28 leads to

(4.31)

[, 4 V2% 008 34 00

1
dx dy dz= — (U 04, -V,)d
Ox  Ox oy oy 0z 0Oz )b dy dz J‘.LQEQ Zl( J ¢/ ) )ds

Generalizing equations for the n’th element, the global conductance matrix is assembled by
evaluating the following entries for each of the elements. These entries formalized as local matrices 4,, €
C*** A, € R*** and A4, € R*arise from the various factors of generalization equation and depend on the
actual location of the element.

If U € C* is the vector of the potential values at ny, -+, ny, in each element the following relation

holds
(A4,+A)U=A4Y, (4.32)
For a finite set of current patterns /¢, the forward problem is formulated as a system of linear
equations
A,+4, A4, U 0
. I, 1=0,,] (4.33)
A, A7V, 1
A set of driving current patterns is shown below:
I =01'5"...1"] (4.34)

Where U € RE*¥ the conservation of charge theorem imposes

k
[i=21¢=0 (439)
i=1

Given a finite element model with known admittivity distribution and a set of current patterns the
potential at the vertices of the model and the boundary electrodes can be calculated from equation 34.
Expressing above equation in a more condensed form, the forward problem becomes

Au=0b (4.36)

It has an algebraic solution

u=A4"bp (4.37)

The forward problem can be solved either directly or iteratively. In this study, it is solved iteratively.
In this study, the iterative schemes for the forward problem are the linear preconditioned conjugate gradients
iteration, designed for solving the LS problem.

This iterative algorithm generates a sequence of solutions which minimize the least squares residual
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!
arg, min - | Au—b|]; (4.38)

It is known that the rate of convergence can be drastically improved when the system is properly
preconditioned. If M € R*"*LX"+Lig 3 proper preconditioned, the modified forward problem becomes
M "Adu=M""b (4.39)
Which has a solution identical to the original problem, only this time the convergence depends on
the properties of the M ~' 4 matrix than A alone.
The preconditioner is selected in a way that
M7'A~1I
(4.40)
cond(M ™' A) < cond (A)

Where [ is the identity matrix.

4.4 Inverse problem

In order to solve the inverse problem, second derivative terms from the Taylor expansion of the
nonlinear forward problem are eliminated, so that problems are inversed into well posed problem. The other
approach is using some Tikhonov type regularization to obtain a step solution within the Newton-Raphson
algorithm, considering a linearized form of the inverse problem.

In principle, for the inverse admittivity problem the aim is to obtain a stable solution &* which

minimizes the residual error
£(&) = %(F(e‘) VY (F(&)-V)= % | F&) -V (4.41)

Where F(&):C" — C™ is the nonlinear forward operator in a problem with n parameters and m

measurements.
Let D(&) = F(&) -V , the Taylor series of D(&)1is
D(E+h)=D(E)+D'(E)h +%D"(§)h2 +O(1) (4.42)

The first method involves neglecting second order terms in above equation

D(&)=-D'(S)h

. (4.43)
hyp ==(D'(8)) D(&) = F'(E)V = F(S)
Finally arriving the Newton-Raphson iterative solution
Sin =S H (G, )_1 (V' =F(5)) (4.44)
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Where F'(&,) is the Jacobian matrix. And then
Vi=D'()*D(5)=F'(&)*(F(&)-V)
Hf =D'(§)*D'(&)+D"(5)*D(S) (4.45)
:F'(f)*F'(§)+ZE"(f)(F(f)—V)

The second derivative terms in Equation 4.45 can be neglected. Therefore, we can assume

2 EEFEE)=V)=0 (4.46)
Then
1 2
JE+n) =)+ FE)*(F(S)=V)h+ () *F(&)h™ =0 (4.47)
Setting the gradient of equation to zero yields
h-Vf=F'(&)*(F(E)-V)h+hF'()*F(£)=0 (4.48)
From where the step / is derived as
h=F'(&) V-F()) (4.49)

Where F'(£)"is Moore-Penrose generalized inverse of £ '(¢) . Then

hoy = F'(&)'(V = F(&))

G =&+ hgy @0
Then
2 ENF €)=Yy = Al (4.51)
And then the residual error becomes
FE+m) = f(E)+F(*(F(E&)-V)h +%(F (E)*F(&)+ADh* =0 (4.52)

And setting the gradient to zero, which leads to the Tikhonov regularization solution

h=(F(&)*F(&§)+ ) F(&*(V -F($) (4.53)

Substituting this result into the newton-raphson formula gives the Levenberg-Marquardt method

by = (F(E)*F(&)+ A F(E*(V - F(£))
§k+1 :§k+hLM

Therefore, the inverse problem can be approximately solved with Finite element method.

(4.54)

Figure 4.1 shows the adjacent electrical impedance tomography measurement approach.
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Figure 4.1: Electrical impedance tomography measurement approach.

4.5 Forward problem calculation and corresponding inverse problem calculation

4.5.1 Forward problem calculation

Forward problem was first studied to provide fundamental information for the inverse problem
computation. The panel specimen was simulated with Finite Element Method (FEM). As shown in Figure
4.2, the panel specimen was simplified as a 2D specimen. The Specimen conductivity was considered as
constant 1S/m. With 1 V voltage applied on the specimen from different probes, the voltage distribution on
the specimen was plotted in Figure 4.2. Figure 4.2 demonstrating 4 types of current injection pattern. The
feasibility of FEM method for normal panel specimen was verified.

A panel specimen with a hole drilled in the middle was simulated with FEM. Figure 4.3
demonstrated the 2D model with a hole in the middle and the corresponding FEM mesh. It was shown that
compared with Figure 4.2. The voltage distribution on the specimen was different indicating the EIT
method was feasible to perform on the panel specimen.

In addition, a panel specimen with a notch on one side of the specimen was simulated. Voltage
distributions with nine current inject pattern were plotted in Figure 4.3. Compared with Figure 4.2 and
4.3, the voltage distribution was totally different. Therefore, it was concluded that with current injection

through the boundary, the captured voltage distribution as able to reflect the damage condition.
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Figure 4.2: Electrical potential distribution in panel specimen. The FEM model and four current injection

pattern.
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Figure 4.3: Electrical potential distribution in panel with hole in the middle.
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Figure 4.4: Electrical potential distribution in a panel with the notch.

Next, the three-dimensional FEM image reconstruction was conducted. Figure 4.5 shows the simulated
specimen with a length of 6 inch and width of 2 inch. The copper electrodes were wrapped on the two ends of

the specimen. The simulated current was injected via top electrodes, and the bottom electrode was grounded.
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Then voltage distribution was able to reflect the resistivity distribution in the specimen. The finite element
mesh for specimen without cracks and with simulated cracks is shown in Figure 4.5. The voltage
distribution along the specimen is illustrated in the figure. Then voltage differences between simulation
without cracks and simulation with cracks are compared in Figure 4.6. It was found that the potential

distribution was able to capture damage.

Specimen model Without cracks With simulated cracks

(FEM) (FEM)
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Figure 4.5: Panel specimen with copper electrodes.
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(b)

Figure 4.6: Potential distribution for (a) specimen without crack, (b) specimen with crack.

Concrete

Figure 4.7: Model for concrete with steel.

Electrical impedance tomography to image the condition of embedded steel in concrete and MSC was
also studied. As shown in Figure 4.7, a steel rod was embedded in a cylindric cementitious sample. The electrical
current was injected from one side and the other side was grounded. After computation, the 3D results were
shown in Figure 4.8(a). The results were also demonstrated by 2D plot in Figure 4.8(b) and (c). It was observed
that the voltage distribution was different between specimens with and without steel reinforcement. It was thus
concluded EIT is a feasible method to characterize crack development and steel reinforcement conditions in

cementitious materials.
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Figure 4.8: Potential distribution for (a) 3D model Comparison for (b) specimen with steel, (c) specimen

without steel.

4.5.2 Inverse problem calculation

The inverse computation was carried out. The image reconstruction problems from boundary
measurements are in general nonlinear and ill-posed, which are typically solved using a finite element
forward model and regularized Newton’s method to solve the inverse problem. Currently, there are no
commercially available finite element programs for EIT image reconstruction based on complete electrode
model.

In this project, the Netgen Mesh Generator was used to generate finite element mesh. NETGEN is
an automatic 3d tetrahedral mesh generator. It accepts input from constructive solid geometry (CSG) or
boundary representation (BRep) from STL file format.

After generating the finite element mesh, computation was chosen to evaluate different algorithms
and to validate the feasibility of the image reconstruction method. The specimen with one center hole is
shown in Figure 4.9. The electrode number is 16.

The meshing for the specimen is shown in Figure 4.10. The conductivity of the specimen was
assumed to be uniformly constant. There were 16 electrodes simulated. All 6400 elements were triangular
elements. The hole and notch were applied with resistivity ten times more than that of the specimen.
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As shown in figure 4.9, for the right specimen, the middle part of the specimen was applied with
higher resistivity. Then forward computation was conducted and image reconstruction followed using
different algorithms: (1) one step Gauss-Newton reconstruction (Tikhonov prior), (2) one step Gauss-
Newton reconstruction (NOSER prior), (3) one step Gauss-Newton reconstruction (Laplace filter prior),
(4) one step Gauss-Newton reconstruction (automatic hyperparameter selection), and (5) total variation
reconstruction. The same simulation experiments were performed on a specimen with a side notch (see
Figure 4.12), and on a specimen with distributed microcracking damages (see Figure 4.13).

The image reconstruction results were plotted in Figure 4.11, Figure 4.12, and 4.13. It is shown
that the different image reconstruction algorithms provided different image reconstruction quality. For this
scenario, total variation reconstruction provided the best results. It was found that the square hole and notch
were plotted with EIT image reconstruction. Even for the distributed damages on the specimen, the image

reconstruction accurately located damage and identified damage size, as shown in Figure 4.13.

Figure 4.9: Specimen illustration and specimen with a square hole in the middle.

SRR

Figure 4.10: FEM model: Specimen illustration and specimen with a square hole in the middle.
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Figure 4.11: Reconstructed images using different algorithms. (a) One step Gauss-Newton reconstruction
(Tikhonov prior); (b). One step Gauss-Newton reconstruction (NOSER prior); (c). One step Gauss-
Newton reconstruction (Laplace filter prior); (d). One step Gauss-Newton reconstruction (automatic

hyperparameter selection); (e). Total variation reconstruction.
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Figure 4.12: Specimen with notch and image reconstruction.
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Figure 4.13. Reconstructed images using different algorithms for distributed damage. (a) One step Gauss-

Newton reconstruction (Tikhonov prior); (b). One step Gauss-Newton reconstruction (NOSER prior); (c).

One step Gauss-Newton reconstruction (Laplace filter prior); (d). One step Gauss-Newton reconstruction
(automatic hyperparameter selection); (e). Total variation reconstruction.

Steel

Concrete

Figure 4.14: Concrete with steel model for image reconstruction.
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Figure 4.15: Reconstructed images of the model in Figure 4.14.

As shown in Figure 4.14, a reinforced concrete specimen was simulated. The forward finite
element computation was first performed. The simulated measurements were stored for image construction.
Figure 4.15 shows the reconstructed images based on the simulated measurements. It wasfound that the

image reconstruction well reflected the presence of steel in the concrete.

4.6 EIT test and results

In this project, the image reconstruction method for electrical impedance tomography on MSC and
cementitious materials in general was established. Based on the image reconstruction algorithm, finite
element method was conducted to validate the feasibility of the image reconstruction. In addition, electrical
impedance tomography experiment was designed in conjunction with LabVIEW software. The MSC
material was tailored to reduce the effect of environmental factors on the damage self-sensing sensitivity.
The strain-sensing and damage-sensing behavior of MSC under complicated combined loading condition
were studied. Example results are shown in sections 4.6.2- 4.6.4. The other results will be shown in two

separate journal papers are submitted for publication.

4.6.1 EIT test setup

The framework of EIT method and experimental setup is shown in Figure 4.16. A variety of
scenarios were investigated, including MSC specimens containing a hole as defect, and subjected to
multiple microcracking under different levels of loading conditions. Control concrete specimens were also
studied for comparison purpose.

The EIT system built in PI’s lab included a data acquisition system, a data processing system, data
collection LabVIEW code, and the specimen in interest (Figure 4.16). A matrix/multiplexer switch was
used to handle the switching of both current injection and voltage measurement. The current injection and
voltage measurements can be switched from one pair of channels to the other pair. The current and voltage
signals were transported independently so that noise was minimized. The system automatically controlled
the switch from one measurement to another. For 16 channels output, the entire scan was approximately 30
seconds. For 32 channels output, the entire scan was approximately 120 seconds. However, when the
current was changed with different frequency, the scan time became different. For the lower frequency
current injection, the scan time was longer. It was reasonably assumed that electrical properties of MSC did
not vary significantly over the scan period. The short scan time made it possible to satisfy the instant scan
assumption. AC current source was adopted. With injected current, the voltage was measured and recorded

with a data acquisition system.
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Figure 4.16: EIT test setup.

4.6.2 EIT image reconstruction on panel specimen with a center hole

Figure 4.17 shows the tested specimen with 16 electrodes made of copper tape and conductive

silver paste. EIT data collection was conducted on the specimen. 208 data were collected. The Same

procedure was repeated for three times. The average of the three scans was utilized as the undamaged EIT

data. The specimen was then drilled with a cetner hole with the diameter of 5 mm. Thereafter, another three

repeated EIT scans were conducted on the specimen containing the center hole. With the collected data,

image reconstruction was conducted. Figure 4.18 shows the image reconstruction results. Different

algorithms were used to reconstruct the image of the distributed damage (i.e. the hole). It was found that

while most of the algorithms were able to identify the damage, they did have different sensitivity or

accuracy.
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Specimen with middle hole.

Figure 4.18. Reconstructed EIT images using different algorithm: (a) One step Gauss-Newton
reconstruction (Tikhonov prior), (b) One step Gauss-Newton reconstruction (NOSER prior), (c) One step
Gauss-Newton reconstruction (Laplace filter prior), (d) One step Gauss-Newton reconstruction (automatic

hyperparameter selection) and (e) Total variation reconstruction.

EIT was performed on MSC specimens in comparison with control concrete specimens. The

purpose was to reveal the damage self-sensing capacity of MSC that was not possessed by normal concrete
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specimens. Figure 4.19 shows the specimen configuration prepared for the EIT experiment. 32 copper
electrodes were attached to the surface of the specimen. In the first scenario, the specimen made of MSC
or normal concrete contains a central hole. After the data were collected from EIT measurements, the data

was used to reconstruct the damage information within the specimens.

Copper Electrode

Specimen

Figure 4.19: 5% MSC specimen with electrodes.

Figure 4.20. (a) Damage location and size; (b) FEM mesh for the specimen.

To reconstruct the damage image, inverse finite element problems needed to be solved. The
meshing of the specimen for inverse image reconstruction is shown in Figure 4.20. In the physical model,
the electrode potentials measured from copper electrodes were correlated to the impedance distribution
within and throughout the specimen.

The damage image reconstruction results are shown in Figure 4.21. It was clearly shown that the

normal concrete specimen failed to identify the millimeter-scale defect through the EIT method. In contrast,
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the newly developed MSC specimen was able to accurately identify the distributed damage within the
specimen, validating its damage self-sensing capacity. It should be noted that although the data were
collected only from specimen boundaries, the distributed damage inside the specimen was located; the

image reconstruction clearly reflected the location and the shape of the damage.

High Impedance Low Impedance

Figure 4.21. Image reconstruction comparison for (a) normal concrete, and (b) 5% MSC material.

4.6.3 EIT image reconstruction on coupon specimen with damage

In addition to identifying a millimeter-scale defect (e.g. a hole), the capability of identifying
distributed micro-scale cracks in MSC was studied. Figure 4.22 shows the test setup and the framework of
EIT image reconstruction on coupon specimens with a number of microcracks formed under loading. Two
materials were studied: MSC with self-sensing capacity, and SHC without self-sensing capacity. SHC was
chosen over normal concrete as the control material because it was impossible to generate microcracks in
concrete specimens due to the brittleness of concrete materials, thus making it impossible to evaluate the
capacity for sensing microcracks. Once casted and cured, the coupon specimens were gripped on a hydraulic
testing frame to performed uniaxial tension test. EIT was performed on the specimens before the tension
test, and after the tension test which introduced a number of microcracks into the specimens. Each
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microcrack had a width below 30 micron. The difference in the collected impedance data before and after
damage was used for image reconstruction. In this study, the image reconstruction esd based on difference
image reconstruction. Difference image reconstruction means that there were two sets of measurements.
The first set of measurements was the original measurement or reference measurement, which was
conducted before damage occured. The second set of measurements were measurement after damage. The
damage pattern and image reconstruction of SHC specimens (without self-sensing capacity) are shown in
Figure 4.23 and 4.24. The damage pattern and image reconstruction of MSC specimens (with self-sensing

capacity) are shown in Figure 4.25 to Figure 4.28.
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Figure 4.22: Electrical Impedance Tomography image reconstruction of real damage pattern.
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Figure 4.23. Damage pattern of normal SHC material.

—
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High Impedance Low Impedance

Figure 4.24. Image reconstruction of damage within normal SHC material with collected for different
frequency (a) 1 HZ; (b) 10 HZ; (c) 100 HZ; (d) 1000 HZ; (e) 10000 HZ; (f) 100000 HZ; (g) 100000 HZ.
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Figure 4.23 shows that under uniaxial tension test, a number of microcracks formed in the SHC
specimen. The red color indicated microcracks under the surface of the specimen. Figure 4.24 shows the
image reconstruction of damage pattern for the SHC specimen with a frequency range from 1 HZ to IMHZ.
It was clearly shown that the reconstructed image failed to locate the damage in an accurate way.

Figure 4.25 shows the damage pattern in the 5% MSC material. A number of microcracks with
width smaller than 30 micron formed in the 5% MSC specimen during the tension test. Figure 4.26 shows
the image reconstruction of damage pattern for the MSC specimen with a frequency range from 1 HZ to
IMHZ. It was shown that for data collected at 1Hz, 10 HZ, 100 HZ, 1,000 HZ and 10,000 HZ, the
reconstructed images clearly revealed the location and intensity of the distributed microcracking damage.
However, EIT performed at the very high frequencies (i.e. 100,000HZ and 1,000,000 HZ) were not able to

identify the microcracking damage.

0%

Figure 4.25: Damage pattern illustration of 5% MSC material specimen No.(1) .

(b)
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Figure 4.26: Image reconstruction of damage within 5% MSC material specimen No.(1) with collected
for different frequency (a) 1 HZ; (b) 10 HZ; (¢) 100 HZ; (d) 1000 HZ; (e) 10,000 HZ; (f) 100,000 HZ; (g)
1,000,000 HZ.

Figure 4.27 shows the damage pattern in a different specimen made of 5% MSC. The specimen
contained a number of microcracks with width smaller than 30 pm and a localized failure crack with a width
of 380 um. Figure 4.28 shows the image reconstruction of damage pattern for the MSC specimen with a
frequency range from 1 HZ to IMHZ. It was seen that for data collected at 1Hz, 10 HZ, 100 HZ, 1,000 HZ
and 10,000 HZ, the reconstructed images clearly revealed the location and intensity of the distributed
microcracking as well as the localized crack. It was also found that EIT performed at the very high

frequencies (i.e. 100,000HZ and 1,000,000 HZ) were not able to identify the microcracking damage.

Vil

Figure 4.27: Damage pattern illustration of 5% MSC material specimen No.(2).

(b)
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Figure 4.28: Image reconstruction of damage within 5% MSC material specimen No.(2) with collected
for different frequency (a) 1 HZ; (b) 10 HZ; (¢) 100 HZ; (d) 1000 HZ; (e) 10,000 HZ; (f) 100,000 HZ; (g)
1,000,000 HZ.

Figure 4.29 shows the damage pattern in the third specimen made of 5% MSC. This specimen was
loaded to larger strain that induced higher level of damage in form of larger number of microcracks. In
addition, there was a corner “crash” on the specimen which made the damage pattern more complex. Figure
4.30 shows the image reconstruction of damage pattern for the MSC specimen with a frequency range from
1 HZ to IMHZ. It was seen that for data collected at 1Hz, 10 HZ, 100 HZ, 1,000 HZ and 10,000 HZ, the
reconstructed images clearly revealed the location and intensity of the distributed microcracking as well as
the corner damage. For example, for the results based on EIT conducted at 1,000 Hz, the location and
intensity of damage were accurately revealed by the difference in colors seen for the microcracks region
and for he corner damage region. Similar as other results, EIT performed at the very high frequencies (i.e.

100,000HZ and 1,000,000 HZ) was not able to identify damage.

Corner crash

) _

N
AV

Figure 4.29: Damage pattern illustration of 5% MSC material specimen No.(3).
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(d)
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(f)
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Figure 4.30. Image reconstruction of damage within 5% MSC material specimen No.(3) with collected
for different frequency (a) 1 HZ; (b) 10 HZ; (c) 100 HZ; (d) 1000 HZ; (e) 10,000 HZ; (f) 100,000 HZ; (g)
1,000,000 HZ.

In the 5™ scenario, the specimen was loaded gradually to different strain levels evaluate the
capability of EIT to reconstruct progressive damage. Figure 4.31 shows the tensile strain levels where the
test paused for EIT to be conducted. Figure 4.32 shows the specimen before testing. There were 32

electrodes attached onto the sides of the specimen. The test was paused at 0.5%, 1%, 2%, and 3% tensile

-
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strain for EIT scan.
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Stress (MPa)
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Figure 4.31: Uniaxial tensile test results and EIT scan point.

Figure 4.32. Specimen before damage with 32 electrodes.

Figures 4.33 to 4.36 show the image reconstructions for damage caused by 0.5%, 1%, 2%, and 3%
applied strain, respectively. The real damage patterns captured by a microscope are also shown in the
figures. The results clearly show that the damage pattern, location and intensity change with progressive
loading applied to the MSC specimen were clearly captured by data collected from MSC specimen

boundaries, validating the direct and distributed damage self-sensing capacity of MSC even at microcrack
levels.
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Figure 4.33: Image reconstruction at 0.5% strain. (a) real damage. (b) image reconstruction.
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Figure 4.35: Image reconstruction at 2% strain. (a) real damage. (b) image reconstruction.
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RIS

(b)

Figure 4.36: Image reconstruction at 3% strain. (a) real damage. (b) image reconstruction.

4.6.4 EIT image reconstruction on beam specimen with damage

In this section, the damage sensing in MSC was studied at structural element scale using a beam
specimen subjected to bending load. Figure 4.38 shows the test setup and specimen details of the beam
made of MSC material. The dimensions of beam specimen are 4 in. X 4 in. x16 in. The specimens were air
cured for 28 days, and then subjected to three-point bending (Figure 4.38). The layout of the electrodes are
shown in Figure 4.38 (¢). 27 circle electrodes were attached to the specimen surface. In real applications,
these electrodes can be easily sprayed onto structural service in the region of interests. Maintaining these
electrodes is not a concern, because its easy and inexpensive to install or uninstall the electrodes wherever
needed. The current was first injected into 1-2 electrodes and then the voltage was measured via 1-2
electrodes, 2-3 electrodes, 3-4 electrode and so on. Thereafter, the current was injected into 2-3 electrodes

and the voltage was measured with the same pattern.
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Figure 4.37: EIT image reconstruction on beam specimen.
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Figure 4.38 Test setup and specimen details for structural sensing test.

The finite element model of the beam is shown in Figure 4.39. 27 surface electrodes were
simulated. The mesh size effect was also studied. Data collection was performed at a wide range of low and
high frequencies (i.e. 1 Hz, 10 Hz, 100 Hz, 1,000 Hz, 10,000 Hz, 100,000 Hz and 1,000,000 Hz). Figure
4.40 shows the real damage pattern on the surface and inside of the specimen. There existed one bending
crack with a depth around 1.5 inch. The reconstructed image is shown in Figure 4.41. The results shown
that the bending crack was successfully “sensed” in three dimensions by EIT performed on the MSC

specimen with frequency up to 10,000 HZ.
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Figure 4.41. MSC image reconstruction (7 results indicate 1 HZ, 10 HZ, 100 HZ, 1,000 HZ, 10,000 HZ,
100,000 HZ, 1,000,000 HZ)

4.7 Summary of accomplishments

This study made it possible to visualize distributed in MSC based upon impedance measurements
collected from MSC specimens in probe locations at boundaries. A variety of damage scenarios were
investigated, including (1) a millimeter-scale defect, (2) a number of distributed microcracks, (3) a localized
single crack, (4) a mix of localized crack and multiple distributed microcracks, (5) a mix of multiple
distributed microcracks and corner damage, (6) progressive damage levels, and (7) three-dimensional
bending crack. Sensing the damage location and density in MSC was successfully accomplished for the

variety of scenarios at a wide frequency range.
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The damage self-sensing capacity of MSC was achieved through integrating material innovation
with algorithms development for effective and accurate image reconstruction. Advances have been made
on the fronts of materials science and engineering, EIT probing and imaging methods, and FEM method.
Such interdisciplinary nature of this study was unique, which made it possible for accomplishing the
fundamental development of new generation of MSC materials that can also be readily be applied for
industrial adoption. This can lead to a new paradigm for future design of self-sensing structures, such as
self-sensing spent nuclear fuel storage systems, which can survive harsh environments and extreme
conditions with long life, and can also self-sense damage to provide early warning. MSC behaves as
damage-tolerant materials as well as a damage sensor itself, thus offering spatial data wherever the material
is located. This eliminates the need for installing and maintaining a dense array of sensors; instead,
inexpensive electrodes can be attached to structural component boundaries to apply electrical input and
measure output signals that collect spatial information throughout the material. This approach allows for

spatial sensing inside the material although the electrodes are only required at boundaries.
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5. MATHEMATICAL AND COMPUTATIONAL MODELING OF DETERIORATION
PROCESSES

Please see appendix.
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6. CONSTITUTIVE MODELING OF MSC AND BENCHMARK PROBLEM
6.1 Introduction

In order to predict performance of structures made of MSC, this study developed new constitutive
models of MSC that took into account the unique tensile strain-hardening behavior. The models were
incorporated into finite element simulation to study a benchmark problem — a shear wall subjected to
earthquake loading. The benchmark problem was chosen to study a structure made of new MSC subjected
to complex loading condition under an extreme loading event (e.g. earthquake) which is expected during
the long life cycle of spent nuclear fuel storage systems. In a general sense, the shear wall can represent the
wall element in dry casks, nuclear reactors and other nuclear engineering structures.

In the past two decades, a significant amount of research in developing constitutive models of
reinforced concrete has been performed. The cyclic softening membrane model (CSMM) developed by
Mansour et al [4] is the most recent model to predict shear behavior of structural panels under cyclic shear
loading. Zhong [5]implemented the model into a finite element program called SCS using OpenSees frame
work. The SCS has an excellent capability to predict behavior of a series of shear walls tested by Gao[5].
In this study, the CSMM based finite element program was modified to account for MSC tensile strain-
hardening properties. The seismic performance of shear walls with MSC material was studied. The effects
of tension and compression properties, energy dissipations, pinching characteristics on the seismic

performance of MSC shear walls were critically examined.

6.2 Cyclic Softening Membrame Model (CSMM)

This section aims at expanding the scope of the CSMM model originally developed for reinforced
concrete to account for the unique tensile strain-hardening effect of MSC. In order to develop the so-called

MSC-CSMM model, the basic principles of the CSMM model for reinforced concrete is presented below.

6.2.1 Formulation of CSMM
6.2.1.1. Coordinate Systems in CSMM

Three Cartesian coordinates, x-y, 1-2, and Xs-ysi, are defined in the reinforced concrete elements,
as demonstrated in Fig. 6.1. Coordinate x-y defines the local coordinate of the elements. Coordinate 1-2
represents the principal stress directions of the applied stresses that has an angle6; with respect to the x-

axis. Steel bars can be oriented in different directions in the elements. Coordinate Xs-ysi indicates the

‘ith, citha

direction of the group of rebars, where the group of rebars are located in the direction of axis X

with an anglefs to the x-axis. The stress and strain vectors in x-y coordinates and 1-2 coordinates are
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denoted as [ox, Oy, rxy]T,[sx, €y, O.5yxy]T, [61, 02, T12]" and [e1, €2, 0.5y12]T, respectively.

(a) Applied principal stresses (b) Reinforcement component in
in local coordinate local coordinates

Figure 6.1: Cyclic stress-strain relationship of material.

6.2.1.2. Equilibrium and Compatibility Equation
The applied stresses in the x-y coordinate (ox, oy and 7,) are related to the internal concrete stresses
(o, oy and 7)) in the principal stress directions, and the steel bar stresses (f;;) in the bar directions by the

following equilibrium equation:

O-x O-IL psifsi
o, =[T(=0)] o5 1+ Z[T(-0.)]] © ©6.1)
T 7/, i 0

wherep,;is the steel ratio in the “i"™ direction; [T(-6;)] and [T(-6)] are the transformation matrices
from the 1-2 coordinate and the Xs-ysi coordinate to the x-y coordinate, respectively.
The relationships between the biaxial steel strains (&) in the X-ys coordinate and the biaxial

concrete strains (& and &) in the 1-2 coordinate are defined by the following compatibility equation:

gs[ 81
e. 0=[T(6,-6)] e (6.2)
0.5, 0.57,,

6.2.1.3. Uniaxial strain and Biaxial strain

In reality, uniaxial tests are usually performed in laboratory to determine material properties. There
is no such exprimental biaxial constitutive material model for the biaxial strains in Equation (6.2). In order
to solve problems in 2-D dimension, the biaxial strains need to be converted to uniaxial strains so that the
unixial constitutive material model tested in laboratory can be used. The uniaxial strains are related to the

biaxial strainsby the Poisson Ratios of cracked concrete:
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1 Vi, 0
z B l=v,v,  1=v,y,
| |
o=l e 2 —— 0 (63)
0.57,, 0.57,, —ViVa ~—ViaVa
0 0 1

In Equation (6.3), v;:is the ratio of the resulting tensile strain increment in the principal 1-direction
to the source compressive strain increment in the principal 2-direction, and vz;is the ratio of the resulting
compressive strain increment in the principal 2-direction to the sourcetensile strain increment in the
principal 1-direction. Values for v;.andvz;for reinforced concrete elements were derived from the panel

tests by Zhu and Hsu[6].

6.2.1.4. Uniaxial constitutive model for concrete and embedded steel

The cyclic uniaxial constitutive relationships of concrete with embedded mild steel barswere
proposed by Mansour [7]. The characteristics of these concrete constitutive laws include: (1) the softening
effect on the concrete in compression due to the tensile strain in the perpendicular direction; (2) the
softening effect on the concrete in compression under reversed cyclic loading; (3) the opening and closing
of cracks, which are taken into account in the unloading and reloading stages, as shown Figure 6.2(a). The
smeared yield stress of embedded mild steel bars is lower than the yield stress of bare steel bars and the
hardening ratio of steel bars after yielding is calculated from the steel ratio, steel strength and concrete
strength. The unloading and reloading stress-strain curves of embedded steel bars take into account the

Bauschinger effect, as shown in Figure 6.2(b).
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Figure 6.2: Cyclic stress-strain relationship of materials.

6.2.1.5. Finite Element Implementation
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The constitutive laws discussed before are combined with the equilibrium and compatibility
equations to form a tangent stiffness matrix [D] for element. The detail of the derivation of the matrix [D]

is presented in Zhong [5].The formulation to determine [D] is given as follows:

o &

X X

[D]=di0, /01 « (6.4)

y

T 0.5y,

Xy

[D] is evaluated by:
[D)=[7 (=o)L ][7 ()] + 2T (=2 J[p.](7 (6. ~e)]IV][7(4)] (6.5)

In Equation (6.5), [V]is the matrix defined in Equation (6.3) which translates the biaxial strains
into uniaxial strains using the Hsu/Zhu ratios. [D.] and [Dsy] are the uniaxial tangential constitutive matrix

of concrete and the uniaxial tangential constitutive matrix of steel, respectively. [D.] and [Dy] are defined

as follows:
e ail 0
0g, —
a ¢ psi si 0 0
[D.]= 86_2 E o ;[p]=| 0 00 (6.6)
& 0 00
0 0 G

In Equation (6.6), Ef,l_?g and l_?si are the tangential stiffness of uniaxial moduli of concrete and
reinforcement which are computed at a stress/strain state. The derivatives of stress over strain 6c°1/0¢; and
0c%/0g; can be obtained by using the uniaxial constitutive relationships and taking into account the states
of the concrete stresses and uniaxial strains in the 1-2 directions[5]. G}, is the shear modulus of concrete

and is evaluated by the following equation.

C C
0, —0,

¢ _
G12_

(6.7)
& =&

6.2.2 Program SCS and Validation

6.2.2.1. Implementation
OpenSees stands for Open System for Earthquake Engineering Simulation [8]. OpenSees has been

developed in the Pacific Earthquake Engineering Center (PEER) and is an object-oriented framework for

simulation applications in earthquake engineering using finite element methods. An object-oriented
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framework is a set of cooperating classes that can be used to generate software for a specific class of
problem, such as finite element analysis. The framework dictates overall program structure by defining the
abstract classes, their responsibilities, and how these classes interact. OpenSees is a communication
mechanism for exchanging and building upon research accomplishments, and has the potential for a
community code for earthquake engineering because it is an open source.

Using the OpenSees as the finite element framework, a nonlinear finite element program titled
Simulation of Concrete Structures (SCS) was developed for the simulation of reinforced concrete structures
subjected to monotonic and reversed cyclic loading [9]. To create SCS program, the CSMM is implement
OpenSees, three new material modules, namely SteelZ01, ConcreteZ01 and RCPlaneStress were developed.
SteelZ01 and ConcreteZ01 are the uniaxial material modules, in which the uniaxial constitutive
relationships of steel and concrete specified in the CSMM are defined, as shown Error! Reference source
not found... The RCPlaneStress is implemented with the quadrilateral element to represent the four-node
reinforced concrete membrane elements. The uniaxial materials of SteelZ01 and ConcreteZ01 are related
with material RCPlaneStress to determine the material stiffness matrix of membrane reinforced concrete in

RCPlaneStress.

6.2.2.2. Validation
OpenSees stands for Open System for Earthquake Engineering Simulation [8]. OpenSees has been

developed in the Pacific Earthquake Engineering Center (PEER) and is an object-oriented framework for
simulation applications in earthquake engineering using finite element methods. An object-oriented
framework is a set of cooperating classes that can be used to generate software for a specific class of
problem, such as finite element analysis. The framework dictates overall program structure by defining the
abstract classes, their responsibilities, and how these classes interact. OpenSees is a communication
mechanism for exchanging and building upon research accomplishments, and has the potential for a
community code for earthquake engineering because it is an open source.

Nine different framed shear walls were tested by Gao[10] to evaluate the seismic performance of
shear walls under constant axial load and reserved cyclic loading. In this article, two of these shear walls
are selected for analysis. The wall dimensions were 914.4 mm by 914.4 mm with a thickness of 76.2 mm.
The cross section of the boundary columns was 152.4 mm square. The details of the reinforcement of the
specimen are illustrated in Figure 6.3(a). The bottom left and right corner of the specimens were supported
by a hinge and a roller, respectively. Table 6.1 gives the material properties, reinforcement ratio and axial
load ratio of each specimen. As noted from the table, the concrete strengths used in the two specimens are

very close. Specimen SW13 has less reinforcement ratio and lower axial load ratio than Specimen SW4.

148



CFP-12-3545 Final Report

As observed from the test results, Specimen SW13 has ductile behavior and Specimen SW4 has brittle
behavior [10].
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(b) FEM modeling of shear walls
Figure 6.3: Frame shear walls [10].

149



CFP-12-3545 Final Report

Finite element analyses were conducted on the shear walls named SW4 and SW13. The two
specimens were modeled by the finite element mesh, as illustrated in Figure 6.3(b). The wall panel are
simulated by RCPlaneStress quadrilateral elements, mentioned above. The boundary columns and beams
are simulated with NonlinearBeamColumn element, which are available elements in OpenSees. The axial
loads acting on the columns were applied as vertical nodal forces which remain constant in the analysis.
The comparison of the analytical result with test data of the shear force-drift relationship of the structures
is illustrated in Figure 6.4. The analytical result is shown to provide a good correlation with experimental
data. The primary backbone curves, the initial stiffness, the yield point, the peak strength, the descending

branch, and the failure characteristics of the analytical result matches very closely with experimental data.

Table 6.1 Dimensions and properties of specimens

Specimen 1! Column & beam Wall panel Vertical Load
name
(MPa) Hoop Long. Long.  Panel steel Panel P (kN) P/Po
steel (mm) steel Ratio
steel steel (%)
(mm) (%)
Sw4 4951 #3@63.5 6#4 3.33 #H2w152.4 0.23 534 0.46
SW13 5691 #2@63.5 6#4 333 W2@l152.4 0.55 89 0.07
600
400 n
g 200 i
3]
) 0
S 9]
5 -200 -
= —---- Test

— OpenSees

20 -16 -12 -8 4 0 4 8 12 16 20
Total Drift (mm)

(a) Shear Wall SW13
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Figure 6.4: Seismic behavior of shear walls under cyclic loading.

6.3 Constitutive models of Multifunctional Strain-hardening Cementitious Composites

To expand the CSMM model to account for the tensile strain-hardening behavior, the constitutive
laws of normal concrete in CSMM is modified following two beneficial characteristics of MSC. First, the
tension stiffening of normal concrete is replaced by the tensile strain-hardening behavior of MSC, as shown
in Figure 6.5 (a). Second, the strain at maximum compression stress of MSC is modified to be higher than

concrete, as shown in Figure 6.5 (b).
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Figure 6.5: Smeared uniaxial stress-strain relationships of concrete and MSC.

The behavior of MSC subjected to shear is considered for the softening effect because the biaxial
state of stress is different than the uniaxial behavior so that the compressive strength is a function of the
lateral strain. The softened stress-strain relationship of MSC is proposed in this section, as shown in Figure
6.6. The softening effect of MSC is expected to be different from the concrete elements due to the unique
multiple microcracking pattern of MSC. The softening effect of for MSC is considered in this model.

As shown in Figure 6.6, the compressive stress-strain curve of MSC in a 2-D element subjected to
shear exhibits three characteristics. First, the peak point is reduced or ‘softened’ in both strain and stress.
Second, the ascending branch is expressed by a bi-linear curve. Third, the descending curve is a parabolic

curve which intersects the horizontal axis at a large strain of 4¢€,.

fc A
e ™. — Non-softened MSC

oA - -

Softened MSC
é,‘fci -------- :’

09E;

/] &,
Cen (& 2¢y, 480,

Figure 6.6: Softening stress-strain relationship of MSC.

The ascending branch of the softened stress-strain curve of MSC can be expresses as:

fc = Eec(“s—‘c gc < é/(?()l (68)
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/= ;[ﬂ, N Y —fm)] By <e<(E,  (69)

02~ €01

The descending branch of the softened stress-strain curve of MSC can be expresses as:

5'6/4'502 -1

P J e, > (2, (6.10)

=1 —[

Where €, is the strain at peak stress f. This value for MSC is usually greater than that for concrete.

In this section, €, is taken as 0.005 in most of analysis cases. { is the softened coefficient. Notice that both
peak stress f and the equivalent strain at peak point €, are multiplied by T to achieve the effect of stress
softening and strain softening, respectively. €y4is the strain at the stress f,;, which is defined as the limit
stress for the elastic zone of MSC, and is taken as 0.8f,. E,.is the initial modulus of MSC, taken as 90

percent of the initial modulus of concrete with the same strength.

6.4 Seismic behavior of Reinforced MSC shear walls

The proposed MSC-CSMM was implemented in SCS program. The SCS program with MSC is
utilized to perform similar analyses of the two shear walls SW4 and SW13 mentioned in the previous
section. In all analyses, the maximum compressive stresses, the tensile stresses at cracking and the tensile
strains at cracking of MSC are defined the same as the values used with concrete in Section 6.2.The ultimate
point of the response curve is defined at the point of 80% of the structure’s maximum shear capacity. Some
of important aspects of the results obtained from the analyses are discussed to evaluate the effect of MSC

on the seismic performance of the shear wall structures.

6.4.1 Seismic response of shear walls under monotonic loading

The results from the analyses of monotonic loading are presented in Figure 6.7. It is very
interesting to see the very big difference between these two sets of curves. Before the cracking point, MSC
shear walls and concrete shear walls have almost identical stiffness. After the cracking point, the stiffness
of all shear walls decreases, the stiffness of MSC shear walls is higher than that of concrete walls. The
similarity of stiffness before cracking can be explained by two reasons. Firstly, these values of maximum
compressive stresses, tensile stresses at cracking and the tensile strains at cracking are similar. Secondly,
the initial stiffness of the compressive stress-strain curve of MSC is defined very close to the initial stiffness
of concrete. The difference of the stiffness between MSC shear walls and concrete shear walls after cracking
can be explained by the dissimilarity of the tensile stress-strain curve of MSC and concrete after cracking.

After cracking, the tensile stress of concrete decreases and is usually neglected. The tensile stress of MSC,
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however, maintains its value or increases steadily due to the elastic-hardening property of MSC. This tensile
stress contributes in increasing the shear force capacity of MSC shear walls.

In both cases of SW4 and SW13, the peak strength and ultimate displacements or total drifts of
MSC shear walls are greater than concrete shear walls. As shown in Figure 6.7a, the peak strength
increases about 30% and the displacement increase approximately three times. It is noted that, in the case
of SW13, the curve is ductile with the use of original concrete and it becomes much more ductile the use
of with MSC. In the case of SW4, the behavior of wall which is originally brittle becomes a little ductile
when MSC is used, as shown in Figure 6.7b.
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Figure 6.7: Seismic responses of shear walls using different material under monotonic loading.
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6.4.2 Seismic response of shear walls under cyclic loading

The results from the analyses of cyclic loading are presented in Figure 6.8. The stiffness, peak
strength, and maximum displacement of the shear walls increase significantly similar to the case of
monotonic loading. For the sake of the higher ductility, the shear walls can sustain more cycles of loading.

Therefore, the energy dissipation capacity is sustainably increased.
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Figure 6.8: Seismic responses of shear walls using different material under cyclic loading.

6.4.3 Effect of strain at maximum strength o
Unlike tensile property, not many studies have been done to investigate the compressive property
of MSC. The MSC is assumed to have a similar characteristic in compression as confined concrete which

is more ductile than ordinary concrete [11].1t is noted from analysis, when the ascending part of the force-
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displacement curve is affected mostly by the tensile property of material, the descending part is controlled

by the compressive property, in that, the train at peak compressive stress is the dominant parameter.
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Figure 6.9: Seismic responses of shear walls using MSC material with different values of strain at
peak strength.

Error! Reference source not found. shows the results of the same shear walls using MSC material
with different values of the trains at peak compressive stress. As the strain at peak compressive stress
increases, the stiffness of the descending part increases and the wall has more ductility. For the case of
ductile shear wall SW13, this change has little contribution in the overall response of the wall. However,
this change makes big improvement in the case of SW4 because it original behavior with concrete is brittle.

In other words, the ductility of material in compression becomes more important in case of brittle structures

and more attention is need.
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6.4.4 Pinching effect

As shown in Figure 6.8, the pinching effect of MSC shearwalls is not much improved compared
with concrete shear walls. Since tensile property of MSC is very ductile, it is expected to enhance the
ductility in tensile principal direction; as a result, the pinching effect of the shearwalls will be increased like
the use of steel in principal direction [4]. However, although the tensile strain is large, but the tensile stress

is small, it cannot have big influence to help enhance pinching effect on the shear walls.

6.4.5 Energy dissipation capacity

Error! Reference source not found. shows the difference in term of energy dissipation capacity
between concrete walls and MSC structures analyzed in Sections 6.4.1 and 6.4.2. It can be seen that for
both analyzed cases of monotonic and cyclic loading, the dissipated energy of MSC shearwalls is

approximately four times greater than concrete shear walls.
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Figure 6.10: Comparison of energy dissipation capacity of shear walls using concrete and MSC under
monotonic loading and cyclic loading.
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6.5. Summary of accomplishments

In the section, the seismic performance of a reinforced MSC shear wall was studied as a benchmark
problem. A new Cyclic Softening Membrane Model for MSC was developed. The constitutive model links
material properties of MSC to structural behavior. The seismic response of MSC shear walls under
monotonic and cyclic loading, including pinching effect and energy dissipation capacity were critically
examined. It was concluded that MSC shear walls had superior performance and safety than normal
reinforced concrete shear walls under seismic loading. Compared with reinforced concrete shear walls,
reinforced MSC shear walls had significantly larger shear capacity, ductility, and energy dissipation
capacity. MSC shear walls were also able to survive more cycles than concrete shear walls under cyclic

loading.
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7. DURABILITY CHARACTERIZATIONS AND LIFE-CYCLE ANALYSIS
7.1 Introduction

The objective of this task was to compare the newly developed MSCs with existing concrete
through durability characterization and life-cycle analysis. Life-cycle modeling represents a comprehensive
analytic tool for evaluation and management of SNF storage systems with regard to long-term economic
and environmental indicators. New service life and deterioration models developed within this project were
critical to facilitate life cycle assessment of both existing and new designs of dry casks using MSCs. Data
collected from experimental characterization and computational modeling provided deterioration measures
and input for predictive service life modeling and life estimation. The service life prediction was integrated
with maintenance and repair schedules to develop a life cycle analysis framework that considered material
production, construction, use and end-of-life stages.

A durability-based, lifetime optimization methodology for planning the inspection and repair of
structures that deteriorate over time was introduced and illustrated in the event trees. The life cycle model
was based on minimizing the expected total life-cycle cost while maintaining an allowable lifetime
reliability for the structure. This method took into consideration (1) the quality of inspection techniques
with different detection capabilities, (2) maintenance and repair frequencies, and (3) the time value of

money. In addition, the sensitivity analysis was performed to study different sustainability indicators.

7.2 Durability Characterization
7.2.1 Chloride penetration and corrosion

Corrosion of reinforcing steel and other embedded metals is the leading cause of deterioration in
concrete. When steel corrodes, the resulting rust occupies a greater volume than the steel. This expansion
creates tensile stresses in the concrete, which can eventually cause cracking and spalling.

The corrosion of steel reinforcement is complex, but basically, it is an electro-chemical reaction
similar to that of a simple battery. Concrete is capable of conducting electric current and acts as the
electrolyte with the circuit being completed by the bar through which the electrons can flow. However, the
highly alkaline environment (pH is typically over 12) provided by good quality concrete produces a
protective layer around the steel preventing the flow of current. This is known as passivation.

In dense concrete, the embedded steel reinforcement is normally protected from corrosion due to
the formation of a passive layer over the steel surface in the highly alkaline concrete environment. However,
the breakdown of the passive film occurs either due to the carbonation which reduces the pH of the pore
water to a non-protective level or by the presence of the significant quantities of chloride ions at

reinforcement level in concrete[ 1-3]. Chloride ions are considered to be the primary cause of rebar corrosion
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in concrete. The source of chloride may be internal and/or external. The chloride introduced into concrete
at the time of preparation, i.e. from mixing water, chloride contaminated aggregates, chloride containing
admixtures, etc. is known as internal chloride. On the other hand, chloride entering into hardened concrete
by the application of deicing salts in bridge decks and parking structures, from sea water in marine structures,
and from soil and ground water containing chloride salts is known as external chloride.

Carbonation occurs when carbon dioxide from the air penetrates the concrete and reacts with
hydroxides, such as calcium hydroxide, to form carbonates. In the reaction with calcium hydroxide, calcium
carbonate is formed. This reaction reduces the pH of the pore solution to as low as 8.5, at which level the
passive film on the steel is not stable. Carbonation is generally a slow process. The amount of carbonation
is significantly increased in concrete with a high water-to-cement ratio, low cement content, short curing
period, low strength, and highly permeable or porous paste.

MSC specimens were prepared from 4-inch diameter cylinders with 8-inch height, which were
casted according to ASTM C192 without tamping. These specimens were cut using wet masonry saw to the

thickness of 2 in. = 0.04 in. tolerance (Figure 7.1).

Figure 7.1. Cylinder specimens for rapid chloride penetration test

Prior to the rapid chloride penetration measurement, specimens were conditioned in a vacuum
desiccator (Figure 7.2) using a vacuum pump for 3 hours, introducing negative pressure to >0.95 bar into
the chamber. Distilled water was then instilled into the vacuum system until the entire specimen was
immersed in water, the pumping was continued for another hour. The vacuum was vented and the specimens
remained immersed in distilled water for another 18 hours. After conditioning, concrete samples were
installed in between measuring cells. Distilled water from specimen conditioning was poured into the

measuring cells to confirm that no leakage occurs on the cells before they are filled with proper solutions.
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Figure 7.2. Conditioning of specimens with a vacuum desiccator

Approximately 250 mL of solutions was poured into respective measuring cells, 3% sodium
chloride solution on the anode and 0.3M sodium hydroxide solution on the cathode. These two measuring
cells were connected to a power supply through the electrodes (Figure 7.3). With the flow of electric current
that was maintained under 60V DC potential for 6 hours period, anionic chloride was repelled from the
anodic side into the specimen. In the case of a higher penetrability specimen, a larger number of ions were
transported into the material, which created a higher conductivity between the anode and cathode, indicated

by a larger current reading.

+ 60V DC ”
Power supply

Measuring cell

Measuring cell

Concrete sample

Figure 7.3. Rapid chloride penetration test
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Figure 7.4. Rapid chloride permeability test measurement in progress

The rapid chloride permeability test was performed on MSC and conventional concrete specimens
at 28 days and 90 days (Figure 7.4). Measurement of the current through the distilled water-saturated
concrete sample was obtained every five minutes for a total of 6 hours. The total charge passed through the

sample can be obtained by an integration of the current over time, as expressed in Equation 7.1:

_ (T
Q=[,It)at a1

Where
QO = charge passed (Coulombs)
I = electrical current (A)
T = current testing time (s)
T = total testing period (6 hours)
Since the measurement was performed in 72 steps of 5 minutes interval yielding a total of 6 hours,
integration can be done in a simplified calculation shown in Equation 7.2:

(Is + 2Iip + 2515 + .. + 21359 + 21355 + Ig0) ™)
1000 (7.2)

Q = 1500¢)

MSC rapid chloride permeability measurement resulted in an average of 48.87 Coulombs of charge passed
at 90 days, which was categorized as negligible; 203.52 Coulombs at 28 days, which was categorized as
very low; while conventional concrete samples resulted in an average of 4748.16 Coulombs and 3207.89

Coulombs at 28 days and 90 days, respectively. The results are shown in Table 7.1.

Conductivity of the concrete was calculated by Equation 7.3
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VtA (7.3)
Where

o = bulk conductivity (Siemens/meter)
V' = applied voltage (V)

L =length of the specimen (m)

A = specimen cross sectional area (m?)
¢t = total measurement period (s)

As the experiment proceeds, more ions migrated into the concrete causing an increase in the
conductivity of the specimen. However, the net change in conductivity during the test also depended on the
amount of chloride ions binding to the concrete matrix which decreased conductivity, and a possible
increase in the temperature (due to the application of high voltage), which decreased the conductivity
according to Equation 7.4

p(T) = po[1 + a(T —Tp)] (7.4)
Where
p = resistivity at temperature T (€2)
po = resistivity at temperature Ty (€2)
o = temperature coefficient of resistivity
T = temperature (°C)
Ty = fixed ambient temperature (°C)

The net conductivity was observed to decrease slightly for MSC, and increased slightly for
conventional concrete due to the net interaction of the aforementioned reasons. The calculated bulk
conductivity was 22.96 mS/m and 15.51 mS/m for control concrete at 28 and 90 days, and 0.98 mS/m and
0.24 mS/m for MSC at 28 and 90 days, respectively.

Table 7.1. Total charge passed and conductivity in rapid chloride permeability test

Properties Age MSC Control Concrete
Charge passed 28 days 515 4750
(Coulombs) 90 days 73.4 3210
Conductwlty 28 dayS 213 230
(millisiemens/meter) 90 days 0.84 15.51

164



CFP-12-3545 Final Report

Accelerated corrosion test was performed using a standard procedure with a 30V DC capacity
potentiostat (constant voltage source). Electromigration of chloride ions from the solution into concrete
specimen hastened the corrosion and expansion of steel rebar. Localized expansion of rebar generated
tensile stress on concrete specimen that resulted in cracking. A crack in the concrete allowed exposure of
the steel bar to the solution provides a shorter electrical path. This phenomenon resulted in a current increase
that can be a failure indicator even without the appearance of a visible crack on the concrete specimen. The
experimental setup was adopted from Florida DoT standard for accelerated corrosion test.

The theory of the accelerated corrosion test relies on basic theory of electrolysis in electrochemistry.
When two different metals are connected to a power supply and immersed in an aqueous electrolyte, the
more reactive electrode loses electrons and corrode, as shown in Figure 7.5. In this case, the iron electrode
was more reactive than the copper electrode, and elemental iron readily lost their electrons to become

aqueous iron ions.

Copper cathode Iron anode
the electrons will combine Electron flow Since this is the most reactive
with hydrogen ions fromthe <€ electrode, it will loose electrons

and corrode
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Figure 7.5. Electrochemical cell of copper and iron

Chloride ions migration from the solution to the rebar through the porous concrete specimen caused
oxidation in the steel that manifests in volume expansion thus creating a tensile stress in the embedded rebar,
leading up to cracks in the concrete. In order to accelerate the corrosion process, electrochemical process is
used to enhance the efficiency of chloride ions to attach themselves onto the steel bar. Since sodium chloride
dissociates into positive sodium ions and negative chloride ions when dissolved in water, the negative
charge of chloride is used by attaching the steel bar to a positive voltage source. The higher the voltage of
the steel bar, the faster and larger are amount of chloride ions that are attracted and react to the steel bar.

The standardized procedure for accelerated corrosion test is to embed a bar through the center of a

concrete cylinder with diameter 4 inches and height 5.75 inches, suspended at 1.75 inches height from the

165



CFP-12-3545 Final Report

cylinder base. Test setup is shown in Figure 76. In this experiment, the specimen was moist cured for 14
days upon demolding, and partially submersed in a 5% sodium chloride solution with 6V DC applied
electric field to facilitate the initiation of corrosion. The steel bar concrete complex using rebar with
diameter 0.375in similar to the ties used in the SC-UHPC beam is electrically connected to the cathode and
a 2 inch wide, 0.063in thick stainless steel strip was selected as anode due to its stable behavior compared

to the rebar electrode (Figure 7.7).
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mA ||
Stainless steel A
plate > Steel rebar
A
2"
Y
~
27 | 5% NaCl
Plastic container— solution
v
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Figure 7.6. Accelerated corrosion test setup

Figure 7.7. Accelerated corrosion test on a MSC
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Through chloride diffusion test and accelerated corrosion test in this study, it was found that both
corrosion initiation time and propagation time were prolonged by MSC in comparison with control concrete.
Through the multiple microcracking behavior and self-controlled crack width of the new MSC, the chloride
diffusion rate was significantly slowed down, through prolonging the corrosion initiation time. In addition,
the strain-hardening behavior and tensile ductility of the MSC were able to accommodate the expansion and
resulting tensile strain during the corrosion stage, providing extra spalling resistance. Furthermore,
microcracking behavior in MSC led to a microcell corrosion mechanism, in contrast with the localized
macrocracking behavior and macrocell corrosion mechanism in concrete, thus prolonging the corrosion
propagation time. The three levels of corrosion protection offered by MSC (i.e. prolonged corrosion
initiation and propagation stages, and spalling resistance) led to prolonged service life of the overpack in
dry casks, and significantly reduced maintenance and repair intervals. The improved service life was

considered in the life cycle analysis.

7.2.2 Freeze and thaw

Concrete materials that are saturated or nearly saturated with water can be damaged by repeated
freezing and thawing cycles. Because water expands when freezing, fully or mostly saturated concrete will
experience internal stresses from the expanding ice during a cooling event. If the pressure developed
exceeds the tensile strength of the concrete, the cavity will dilate and rupture. The accumulative effect of
successive freeze-thaw cycles and disruption of paste and aggregate can eventually cause expansion and
crack, scaling, and crumbling of the concrete[4, 5].

Freezing and thawing testing was conducted on non-air-entrained MSC and non-air-entrained
normal concrete prisms over 15 weeks based on ASTM C666A. After 5 weeks (110 cycles of freezing and
thawing), the non-air-entrained concrete specimens had severely deteriorated. The non-air-entrained MSC
specimens survived 330 cycles with no degradation of dynamic modulus. The freeze-thaw durability factor

of MSC was calculated as 100, far larger than 10 for the non-air-entrained concrete.

7.2.3 Restrained shrinkage cracking

Shrinkage of concrete, when constrained, often causes early-age cracking in concrete. The tensile
ductility of MSC is two orders higher than its shrinkage strain measured in this task. Therefore, ECC can
accommodate the restrained shrinkage deformation to suppress localized cracking Shrinkage ring tests were
conducted to simulate the shrinkage of a freshly cast MSC layer constrained by a steel ring, following
AASHTO T334-08. The standard steel ring had an outer diameter 12 in. and wall thickness of 0.5 in
(Figures 7.8 and 7.9). The inner and outer faces were machined smooth and polished to minimize friction

between the concrete layer and the steel ring. Once the control concrete or MSC were casted around the
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steel ring, the specimens were demolded 24 hours after casting. Top surfaces of the specimens were lined
with silicone sealant to prevent water from evaporating from the top surface. Figure 7.10 shows the
specimens after casting. Curing with wet burlap was done right after the specimen hardened to mimic the
condition on site. The burlap was kept wet for three days prior to its removal (Figure 7.11). Then the
specimen was exposed to ambient temperature between 21°C to 24°C and humidity 40% to 60%. Crack
formation and development in the rings was visually monitored periodically using a portable microscope

microscope.

In contrast with the localized cracking in the control concrete specimens, whose crack width
increased as the shrinkage strain increased with time, the MSC layer exhibited a number of distributed
microcracks with crack width under 30 micron. The width of these microcracks did not increase as the
shrinkage strain increased with time; instead, the number of microcracks increased. The results indicated

that MSC does not require steel reinforcement to control shrinkage cracking.

: 2 'I' ‘

Figure 7.8. Test setup for crack width measurement of restrained shrinkage test
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Figure 7.9 Specimen dimension for restrained shrinkage test.

Figure 7.10: Casted restrained shrinkage specimens of (a) MSC and (b) control concrete.
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Figure 7.11: Specimen moisture-curing with a burlap

7.2.4 Alkali-silica reaction

Alkali-silica reaction is the most common form of alkali-aggregate reaction in concrete. Alkali-
silica reaction is a chemical reaction between hydroxyl ions in the alkaline cement pore solution in the
concrete and reactive forms of silica present in some aggregates (e.g., opal, chert, chalcedony, tridymite,
cristobalite, strained quartz)[6]. The resulting chemical reaction produces an alkali-silica gel that swells
with the absorption of moisture, and this swelling exerts an expansive pressure within the concrete, resulting
in internal damage that manifests as characteristic map cracking on the surface concrete[7].

The primary factors influencing the initiation and propagation of alkali-silica reaction include: a) a
sufficiently high alkali content of the cement (or alkali from other sources such as deicing salts, seawater,
and groundwater); b) a reactive aggregate; and c) available moisture, generally accepted to be relative
humidity greater than 80 percent. In general, ASR can cause serviceability issues and can also exacerbate
other deterioration mechanisms.

The alkali silica reaction resistance and potential degradation of MSC was characterized in this task.
To promote alkali silica reaction, ASTM C1260-94 and ASTM C1293 were followed. Specimens were
exposed to 1 M NaOH solution. Measurements were taken at 7, 28, and 56 days, followed by measurements
at 3, 6,9, and 12 months. Selected samples were impregnated with epoxy and then surface polished to 0.25
microns to be analyzed using scanning electron microscopy with a back-scatter sensor to identify the
location of the gel and how fibers confine the microstructure to prevent the overall expansion. Figure 7.12
and 7.13 show the severe deterioration of the control concrete specimen due to ASR, while the MSC did

not exhibit any deterioration.
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(a) Control concrete specimen

(b) MSC specimen

Figure 7.12: Alkali-silica reaction resistance of MSC.
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Figure 7.13: Time-dependent alkali-silica reaction expansion of MSC compared to control concrete

7.3 Service life prediction of reinforced concrete structures
LCCA estimated initial construction costs, protection costs, and future repair costs to compute the
costs over the design life of the structure. A number of models for predicting the service life of concrete

structures for estimating life-cycle costs have been developed recently. The corrosion of embedded steel
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reinforcement in concrete due to the penetration of chlorides from deicing salts, groundwater or seawater is
the most prevalent form of deterioration in concrete structures. Deterioration of reinforced concrete
structures due to chloride ingress followed by reinforcement corrosion is the principal factor that has been
used to mathematically predict service life in practical solutions.

The initiation period, t;, defines the time takes for sufficient chlorides to penetrate the concrete cover
and accumulate in sufficient quantity at the depth of the embedded steel to initiate corrosion of the steel.
Specifically, it represents the time taken for the critical threshold concentration of chlorides, C,, to reach the
depth of cover, x4. This study predicts the initiation period assuming diffusion to be the dominant
mechanism. Fick’s second law is the governing differential equation:

dC d*C
2= _D.
dt dx’

where C = chloride content, D = apparent diffusion coefficient, x = depth (from the exposed surface), and t

(7.5)

= time.
The chloride diffusion coefficient is a function of both time and temperature, and it is governed by

the following relationship to account for time-dependent changes in diffusion:

t
D(t)=D,, -( jf>'" (7.6)

where D(t) = diffusion coefficient at time t, Dyr = diffusion coefficient at time t..r (= 28 days), and m =
constant (depending on mix proportions).

The temperature dependent changes in diffusion is determined by:

u 1 1
D(T)=D,, -exp[— - (-—— )] 7.7
f R'T, T (7.7)

where D(T) = diffusion coefficient at time t and temperature T, U = activation energy of the diffusion
process (35000 J/mol), R = gas constant, and T = absolute temperature.

The chloride exposure conditions (e.g., the rate of chloride build up at the surface and maximum
chloride content) are selected by the model based on the type of structure, the type of exposure (e.g., to
marine or deicing salts) and the geographic location (as shown in Figure 7.14). The solution is carried out
using a finite difference implementation of Fick’s second law (Equation 7.5) where the value of D is
modified at every time step using Equation 7.6 and 7.7.

In this study, the effects of temperature, corrosion inhibitors, and the addition of silica fume and fly
ash on the permeability and diffusivity of concrete were considered. In addition, the influence of crack on
the diffusion coefficient was also accounted for. Crack width was selected as the main test variable. when
a crack occurs in the cover concrete, the corrosion of the steel reinforcement may be accelerated because

the deterioration causing factors can pass through the crack. In recent years the effect of cracking on the
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penetration of concrete has been the subject of numerous investigations [8-11], All of these studies have
clearly indicated that the presence of cracks could contribute to an increase in the diffusion coefficient. A
comparison of diffusion coefficients for cracked and uncracked concrete shows an increase in the diffusion
coefficient for cracked concrete by one or two orders of magnitude, with wider cracks resulting in higher
values.

Surface Concentration

0 10 20 30 40 S0 60 70 80 90 100 110 120 130 140 150
Figure 7.14: The chloride exposure conditions
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Figure 7.15: Monthly temperatures conditions

The diffusion coefficients of concrete do not increase with increasing crack widths up to the so-
called “threshold crack width,” while, over this threshold value, the diffusion coefficients start to increase.
The threshold crack width is found to be around 30~80 4 m based on the present test data. After this
threshold, the chloride diffusion coefficient through cracked concrete is proportional to the crack width.
MSC is a fiber-reinforced cement-based composite material micromechanically tailored to achieve high
ductility and multiple cracking under tensile and shear loading. The characteristic strain-hardening after

first cracking is accompanied by multiple microcracking. Even at ultimate load, the crack width remains on
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the order of about 30 ¢ m. This tight crack width is self-controlled and, whether the composite is used in
combination with conventional reinforcement or not, it is a material characteristic independent of
reinforcing bar reinforcement ratio. In contrast, normal concrete and fiber-reinforced concrete rely on steel
reinforcement for crack width control, and the crack width can easily go up to hundreds of microns. Fig.
7.16 [11, 12] shows the relationship between the effective diffusion coefficient of chloride ions and the
beam deformation level for mortar and specimens with strain-hardening behavior measured by the PI. MSC
falls within this category. Despite the same or higher magnitude of imposed overall deformation and higher
crack density, the MSC specimens reveal a effective diffusion coefficient considerably lower than that of

the reinforced mortar because of the tight crack width control.
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Fig. 7.16 Diffusion coefficient versus preloading deformation level for ECC and mortar [11, 12]

Once the corrosion of rebar starts, corrosion product (rust) is formed and deposited on the surface
of rebar. The formation of rust is controlled by the corrosion rate (c;), which can be determined theoretically

by Faraday's law or experimentally by the galvanostatic pulse method.

7.4 Durability based LCCA model
7.4.1 System definition

The typical DCSS designs analyzed in this study are constructed upon an existing reinforced
concrete overpack (MAGNASTOR) originally built by NAC INTERNATIONAL, INC[13]. Figure 7.17
and Table 7.1 illustrates the structures of the different types of the overpack system. Two types of materials
system, normal concrete and MSC, respectively, are assessed in this study. The material mixtures and

durability parameters are shown in Table 7.2.
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Figure 7.17: Details of the overpack structure[13].

Table 7.1 Dimension and Volume of the concrete cylinder.

Type of Structure Cylinder
Wall Depth 25 in.
Total Length 200 ft
Reinf. Depth 2.5 1in.
Vol. of Concrete 5524 cub. yd

Table 7.2 Material composition and chloride diffusion parameters

Normal Concrete MSC
water cement ratio 0.4 0.3
Fly ash (%) 0 40%
Average crack width (um) 30 100
Dss (in*in/sec) 1.231E-8 7.085E-9
m 0.2 0.44
Hydration (yrs) 25 25
Ct (% wt. conc) 0.05 0.05
Prop. (yrs) 20 20
Rebar volume 5.2% 5.2%
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Rebar type Epoxy coated Epoxy coated

7.4.2 Life Cycle Assessment Model

If all attributes and consequences of a decision concerning a structure can be expressed in monetary
terms, then an optimal decision will be the one that minimizes the life-cycle cost of the structure. Generally,
if the benefits of each alternative are the same, then the expected life-cycle cost up to time T, LCC(T), may
be represented as

LCC(T) = C, +Cyy (T) + Cpp (T) + Co(T) (7.8)

where C;j is the initial material and construction costs, Cm(T) is the expected cost of maintenance, Cin(T)
indicates the cost of inspections, and Cr(T) is the repair cost. Costs and benefits may occur at different times
so in order to obtain consistent results it is necessary for all costs and benefits to be discounted to a present
value. Discount rates are influenced by a number of economic, social and political factors and thus can be

quite variable.

Present Worth

A

Initial Costs
3
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Figure 7.18: Timeline and maintenance schedule for construction activities.

The total life-cycle costs are calculated as the sum of the initial construction costs and the
discounted future repair costs over the life of the structure. These are typically construction and preservation
costs, including material costs, equipment rental and operating costs, and labor costs. The initial
construction costs are simply the cost of the concrete + the cost of the steel (or other reinforcement) plus
the cost of any surface protection (membrane or sealer). Future repair costs are calculated on a “present
worth” basis using the inflation rate, i, and the real discount rate, .

The discount rate is a central element to economic analysis, and can significantly influence LCCA
results. Historical trends over the last several years indicate that the real time value of money ranges

approximately between 3% and 5%][14]. In the LCCA model, a real discount rate is used. Real discount
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rates reflect the true time value of money with no inflation premium. The real discount rate of 4% for all

costs was estimated based on values recommended by the U.S. Office of Management and Budget (OMB).

Table 7.3 Economic parameters

Concrete &Steel Repair
Concrete ($/cub.yd) 76.76 Repair ($/sq.ft) 37.16
MSC ($/cub.yd) 195.85 Area to repair (%) 10
Vol. of Concrete 5524 cub. yd Repair interval 10(Normal)/20(MSC)
Steel ($/1b) 0.45 Repair Qtty 7159 sq.ft
Rebar Qtty(lb) 2170424

7.5 Results and discussions
7.5.1 Service life prediction results

Figure 7.19 displays the change in chloride concentration over time on the surface of the rebar. The
chloride concentration exponentially grows during service life. It can be also seen that under service
condition, it takes around 60 years for the chloride concentration reaching the threshold for the initiation of
corrosion, while for MSC system, the corrosion point has been greatly extended to about 170 years. This
can be mainly attributed to the tightly cracking control property of MSC materials. The large cracks in
normal concrete due to structural loads would significantly accelerate the chloride transport, thereby
influence the deteriorate rate of structures. Figure 7.20 shows the service life of each materials mix, dividing

the total into the initiation period and propagation period.
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Figure 7.19 Chloride concentration at rebar as a function of time.
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Figure 7.20 Predicted service life for the first time repair event.

Figure 7.21 and 7.22 use color to show how the chlorides diffuse through the concrete over the
initiation period. On the left-hand-side of this cross-section is a color scale of chloride concentrations,
expressed as either % wt. of concrete. At the point of initiation, the color at the outer edge of the reinforcing

steel should correspond to the Ct, which is 0.5% wt in this study.
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Figure 7.21: Chloride distribution on the cross section of normal concrete materials.
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Figure 7.22: Chloride distribution on the cross section of MSC materials.
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Figure 7.23 shows the concrete's diffusivity over time. In a typical analysis, this graph shows that
the diffusivity decreases over time (this is modeled through the "m" term described above); on the other
hand, the diffusivity oscillates annually, due to the annual changes in temperature (diffusivity increases with

temperature).

Diffusivity Versus Time

—_— MSC
Normal

n*in/sec x -1.008

4 = &0 ) 1 1) 1> 130 1«

Year

Figure 7.23: The change of diffusion coefficient versus time.

7.5.2 Life cycle cost analysis results

Figure 7.24 gives the life cycle cost for each materials system. It shows that the MSC overpack
system increases the initial costs at year one of the life cycle. The MSC system is about 40% higher for
initial cost than the conventional system in year 1. By the end of life cycle, however, the total cost of the
normal concrete system is significantly higher than MSC system. The MSC system saves about 30% of
total cost comparing with normal concrete.

Figure 7.25 displays the present value of all costs, by year, over the analysis period. The values are
created by summing all costs that occur in a given year and then discounting this value to the next year
using the real discount rate specified in the previous section. It can be seen that by the year 100 of the life
cycle, the conventional system exceeds the total life cycle cost of MSC system. These results show that
assessing costs from a life cycle perspective is important for long-live systems. While initial costs would
suggest the normal concrete is more economical than the MSC system, total life cycle costs show a 30%

advantage for the MSC materials by the end of 300 years.
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Figure 7.24: Life cycle costs.
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Figure 7.25: Cumulated costs during service life.

7.5.3 Sensitivity analysis

Sensitivity analysis is the calculating procedure used for prediction of the effect of changes in the
key input data on output results. In this procedure input parameters are altered one by one from initial values
in order to determine their impact on the analysis outcomes. This, if necessary, prevents unwanted

alterations of outcome variables. This procedure is often used in investment decision making related with
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the investment project evaluation under conditions of uncertainty. Uncertainty in cost parameters and the
future conditions of inflation ratio, repair interval, and repair cost can affect the outcomes of LCCA.
Figure 7.26 shows that the repair cost significantly affects the life cycle costs. The total life cycle
cost increases as the repair cost grows. And the repair related costs have a more significant impact on the
conventional concrete system than the SHC system. When the repair cost is lower than 8 $/cub.yd, the
normal concrete system still costs less than SHC system even though the later system can greatly reduce
repair events. As the repair cost pass this threshold, the normal concrete costs surpass SHC system for the

total life cycle. This difference becomes more obvious as the repair cost increases.
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Figure 7.26: The impact of a repair cost on life cycle cost.

Repair interval is another important parameter that can change total cost in LCCA. Figure 7.27
shows the influence of repair interval on the life cycle costs. It can be seen that the repair frequency strongly
influences the total life cycle costs, especially when the repair interval is shorter than 5 years. This result
indicates that the quality of repair significantly affects the life cycle cost. For normal concrete, due to the
natural brittleness, most often drying shrinkage of "new" repair material restrained by "old" concrete
substrate causes cracking of the repair material, combined with interface delamination between the repair
and the concrete substrate, which may also introduce chlorides, oxygen, moisture, alkali or acid into the
repaired concrete structure and accelerate further deterioration. MSC is a material micromechanically
designed with high ductility and toughness indicated by multiple micro-cracking behaviors. Experimental

study on a layered repair system verified that the high ductility of MSC can relieve shrinkage induced
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stresses in the repair layer and at the MSC/concrete interface, thereby suppressing large surface cracks and
interface delamination.

Figure 7.28 shows the development of total life cycle cost net present value depending on the
material system and the discount rate applied when calculating the net present value costs. The figure shows
that increasing the discount rate reduces the differences of facility life-cycle costs net present values for two
selected material systems. At discount rate of 7.0 %, there is almost no difference in the facility life cycle
cost net present values for those two systems. This suggests the selection of a discount rate can be a key
parameter in determining the results of a comparative LCCA, and can have a significant effect on long-term
investment decisions. The sliding discount rate affects the conventional design results more greatly than the
MSC design because the conventional design requires more repair in later years when compared to the MSC
system.

Figure 7.29 provides the initiation time for rebar corrosion as a function of average crack width
under service condition. It can be noticed that when the crack width is small enough, usually below 50
microns, the chloride induced service life reduction is negligible. However, once the crack width is larger
than this threshold, the diffusivity of concrete is approximately proportional to the crack width. As a result,
the initiation time of corrosion dramatically declined. When the crack width reaches 200 microns, it only

takes about 20 years for chloride concentration passing C;.
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Figure 7.27: The impact of repair interval on the life cycle cost.

183



CFP-12-3545 Final Report

60000 s | s | s | s | s | s | s | s | s |

50000 ——MSC

40000 -
30000 -

20000 =

Life Cycle Cost ($/cub.yd)

10000 -

Discount rate (%)

Figure 7.28: Discount rate variation from 0-4% and the corresponding life cycle cost.
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Figure 7.29: initiation time for rebar corrosion

7.6 Summary of accomplishment

The durability of MSC was characterized. Common deterioration mechanisms in spent nuclear fuel
storage systems were studied, including restrained shrinkage cracking, chloride penetration, embedded steel
corrosion, freeze and thaw, and alkali-silica reaction and elevated temperature effect. The details study of
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elevated temperature effect is reported in a published journal paper [15] and a Ph.D. dissertation [16]
advised by PI. The experimental results revealed that MSC had superior durability to conventional concrete,
mainly due to its extraordinarily high damage tolerance, chemical stability and low transport properties
even under large applied deformation. The improved durability leads to an extended service life for SNF
systems when MSC is used in lieu of conventional concrete.

A framework for LCCA that assesses the life cycle cost concrete overpack of dry cask system was
proposed. Two potential material designs were evaluated and compared using this LCCA framework: a
conventional concrete design, and a new MSC design. Life-cycle analysis was conducted on dry cask
systems to compare the newly developed MSCs with existing concrete. The results showed the life cycle
cost of a representative dry cask system can be reduced by 30% when MSC is used. It should be noted that
the life cycle analysis was based on simple assumption that corrosion is the dominant deterioration mode,
and other types of deterioration or failure events will not occur during the structural life cycle. When other
deterioration modes and possibilities of natural and man-made hazards are considered, the life cycle cost

advantage of SNF systems using MSC will be even more predominant.
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SUMMARY & PLANS

The following are the on-going or completed research tasks. We also briefly discuss our future

plans.

We also provided journal papers, conferences talks and awards that have resulted from this

research funding.

(D

(111)

Numerical methodology for transient diffusion equation to meet maximum prin-

ciples and the non-negative constraint: One of main tasks on the numerical modeling

front is to the develop numerical methodologies for satisfying maximum principles and the
non-negative constraint for transient problems.

(a) In the first year, we have finished the development of a robust methodology for linear
transient diffusion equations. The research is also submitted for review to an international
journal. We have briefly outlined this research component in this yearly report.

(b) We have just started developing non-negative methodologies for nonlinear (in particular,
semi-linear and quasilinear) diffusion-type equations. The transport in sophisticated
degradation models will be nonlinear transient diffusion-type equations. This part of
work will be finished by the end of year #2, and we plan to include the results in the
subsequent quarterly reports.

Deriving mesh restrictions to meet maximum principles: We have made a great
progress on deriving mesh restrictions to meet maximum principles and the non-negative
constraint for advection-diffusion and linear reactions. Our plan is to finish this part of the
research and submit the research findings to a peer-reviewed journal by the end of this year
(2013). Some of the main findings are provided in this yearly report.
On achieving element-wise species balance and enforcing maximum principles
for advection-diffusion-reaction equations: We have been developing a state-of-the-art
numerical methodology to simultaneously meet the element-wise species balance, the non-
negative constraint and avoid node-to-node spurious oscillations. The numerical methodolo-
gies have been derived. We also obtained some preliminary results. Currently, we are in the
process of developing a computer code to be able to solve large-scale realistic problems. To
complete this research task, it make take two quarters. It is worth saying that this component
of the research is truly transformative research and will greatly enhance simulation capabil-
ities for a wide variety of fields including degradation of materials, contaminant transport.
In this yearly report, we have provided the numerical methodologies, and some preliminary
numerical results.
Deriving a chemo-thermal-deformation model for degradation studies: We have
been developing a hierarchy of mathematical models to model various mechanisms of degra-
dation. The models will account for coupled chemo-thermal-deformation response, which is
crucial for mathematical modeling of degradation of materials. As discussed in our proposal,
this mathematical model in consistently derived using mechanics and thermodynamics prin-
ciples. In particular, the model will satisfy the second law of thermodynamics, which is not
the case with some of the current models for degradation. After this model is derived, we
need to develop a computational framework to solve the resulting nonlinear partial differ-
ential equations, which will be another research task, as outlined in the proposal. We will
report our research progress on this task in subsequent quarterly reports.

Conferences & Invited Talks

Cl. “Numerical modeling of diffusive-reactive systems;” K.B. Nakshatrala, ASME Interna-

tional Mechanical Engineering Congress € Exposition, Houston, Texas, November 9-15,
2012.



C2. “Modeling moisture degradation of structural members;” M.K. Mudunuru, and K.B. Naksha-
trala, ASME International Mechanical Engineering Congress € Exposition (Special session
on Environmental effects and failure of engineering structures), Houston, Texas, November
9-15, 2012.

C3. “On achieving element-wise species balance and enforcing non-negative constraint for
advection-diffusion equation;” M.K. Mudunuru, and K.B. Nakshatrala, American Geo-
physical Union Fall Meeting, San Francisco, California, December 3-7, 2012.

C4. “Least-squares finite element formulations for flow problems;” J.N. Reddy, K.B. Naksha-
trala, and J. Chang, American Geophysical Union Fall Meeting, San Francisco, California,
December 3-7, 2012. [An invited talk]

C5. “Optimization-based methodology for enforcing mazximum principles and the non-negative
constraint;” K.B. Nakshatrala, American Geophysical Union Fall Meeting, San Francisco,
California, December 3-7, 2012.

C6. “A robust non-negative numerical framework for diffusion-controlled bimolecular-reactive
systems;” M.K. Mudunuru, K.B. Nakshatrala, and A.J. Valocchi; SIAM Conference on
Computational Science and Engineering (STAM CSE13), Boston, February 25-March 1,
2013.

C7. “Importance of non-negative numerical solution for mizring-controlled reactive transport;”
A.J. Valocchi, and K.B. Nakshatrala, SIAM Conference on Mathematical € Computational
Issues in the Geosciences, University of Padova, Italy, June 17-20, 2013.

C8. “On modeling thermal and moisture degradation of materials and structures;” M.K. Mudunuru,
C. Xu, and K.B. Nakshatrala, US National Congress on Computational Mechanics, Raleigh,
North Carolina, July 22-25, 2013.

C9. “On mesh restrictions for advective-diffusive-reactive systems to achieve non-negative solu-
tions;” M.K. Mudunuru, and K.B. Nakshatrala, US National Congress on Computational
Mechanics, Raleigh, North Carolina, July 22-25, 2013.

C10. “A new framework for coupling flow and deformation of the porous solid;” M.J. Martinez,
D.Z. Turner, and K.B. Nakshatrala, US National Congress on Computational Mechanics,
Raleigh, North Carolina, July 22-25, 2013.

C11. “Importance of non-negative numerical solutions in degradation modeling, groundwater
modeling, and reactive transport;” K.B. Nakshatrala, US National Congress on Computa-
tional Mechanics, Raleigh, North Carolina, July 22-25, 2013.

Peer-Reviewed Journal Papers

P1. “A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce
mazximum principles and the non-negative constraint;” K.B. Nakshatrala, M.K. Mudunuru,
and A.J. Valocchi; Journal of Computational Physics, 253: 278-307, 2013.

P2. “A numerical methodology for enforcing maximum principles and the non-negative con-
straint for transient diffusion equations;” K.B. Nakshatrala, H. Nagarajan, and M. Shabouei;
International Journal for Numerical Methods in Fluids, under review, 2013.

P3. “On mesh restrictions to satisfy maximum principles, comparison principles, and the non-
negative constraint for a general linear second-order elliptic equation;” M.K. Mudunuru,
and K.B. Nakshatrala; under preparation, 2013. [will be submitted soon to a journal]
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M4.

MB5.

MB6.

“On achieving element-wise species balance and enforcing mazimum principles for advection-
diffusion-reaction equations under the finite element method;” M.K. Mudunuru, and K.B.
Nakshatrala; under preparation, 2013. [will be submitted soon to a journal

Awards / Honors

Maruti Kumar Mudunuru won travel award from SIAM to attend 2013 STAM Conference
on Computational Science and Engineering (CSE13). The conference held from February
25—-March 1, 2013. The award is based on the abstract: “A robust non-negative numerical
framework for diffusion-controlled bimolecular-reactive systems.” The award consisted of
cash award and waiver of conference registration fee.

Maruti Kumar Mudunuru won travel grant from the U.S. Association for Computational
Mechanics to attend US National Congress on Computational Mechanics (USNCCM) 2013.
The conference will be from July 22-25, 2013. The award is based on the abstract:
“On mesh restrictions for advective-diffusive-reactive systems to achieve non-negative so-
lutions,” M.K. Mudunuru, and K.B. Nakshatrala. The award consisted of cash award and

waiver of conference registration fee.

Mini-symposia organization at national/international conferences

“Flow and transport in heterogeneous porous media,” Organizers: K.B. Nakshatrala (Chair),
D.Z. Turner, M. Martinez, and S. Karra, ASME International Mechanical Engineering

Congress and Exposition (IMECE), Houston, November 9-15, 2012.

“Environmental effects and fatigue of engineering structures / materials,” Organizers:

K. B. Nakshatrala (Chair), and K.J. Willam, ASME International Mechanical Engineering

Congress and Exposition (IMECE), Houston, November 9-15, 2012.

“Multifunctional composite materials,” Organizers: M. Li (Chair), K.B. Nakshatrala, C.

Vipulanandan, and D. Jack, ASME International Mechanical Engineering Congress and

Exposition (IMECE), Houston, November 9-15, 2012.

“Recent advances in theoretical, numerical and experimental methods in flow and trans-

port in porous media,” Organizers: S. Karra (Chair), K.B. Nakshatrala, A. Cortis, and

S. Anwar, American Geophysical Union Fall Meeting, San Francisco, December 3-7, 2012.

“Flow and transport in heterogeneous porous media,” Organizers: K.B. Nakshatrala (Chair),
D.Z. Turner, M. Martinez, and S. Karra, 12th US National Congress on Computational

Mechanics, Raleigh, North Carolina, July 22-25, 2013.

“Mathematical and numerical modeling of degradation of materials and structures,” Or-

ganizers: K.B. Nakshatrala (Chair), R. Duddu, J.N. Reddy, and K.J. Willam, 12th US

National Congress on Computational Mechanics, Raleigh, North Carolina, July 22-25,

2013.




A Report on Research Task #4.1

Enforcing maximum principles and the non-negative constraint
for transient linear diffusion equations

1. INTRODUCTION AND MOTIVATION

Certain quantities (e.g., concentration of a chemical species and absolute temperature) naturally
attain non-negative values. A violation of the non-negative constraint for these quantities will imply
violation of some basic tenets of Physics. It is, therefore, imperative that such physical constraints
are met by mathematical models and by their associated numerical formulations. Herein, we shall
focus on two popular transient mathematical models, in which physical restrictions like the non-
negative constraint play a central role. The first model is based on Fick’s assumption (commonly
referred to as Fick’s law) and balance of mass. Fick’s assumption is a simple constitutive model to
describe the diffusion of a chemical species in which the flux is proportional to the negative gradient
of the concentration. The second model is based on Fourier’s assumption and balance of energy,
which describes heat conduction in a rigid conductor. Both these constitutive models combined
with their corresponding balance laws give rise to transient diffusion-type equations, which are
parabolic partial differential equations.

There has been tremendous progress in Applied Mathematics for these type of equations with
respect to existence and uniqueness results, qualitative behavior of solutions, estimates, and other
mathematical properties [79), B2]. In particular, it has been shown that transient diffusion-type
equations satisfy the so-called maximum principles [79]. It will be shown in a subsequent section
that the non-negative constraint can be shown as a consequence of maximum principles under
certain assumptions. Analytical solutions to several problems have been documented in various
monographs (e.g., see references [19}, [77]). However, it should be noted that most of these solu-
tions are for isotropic and homogeneous media, and for simple geometries. For problems involving
anisotropic and heterogeneous media, and complex geometries; finding analytical solutions is not
possible, and one has to resort to numerical solutions. Obtaining physically meaningful numerical
solutions for transient diffusion equation that satisfy maximum principles and the non-negative
constraint is the main aim of this research. It is well-known (and will be discussed in subsequent
sections) that many popular numerical schemes (including the ones that are based on the finite
element method) do not satisfy maximum principles and the non-negative constraint. Even for
isotropic diffusion, stringent restrictions on the time step and the computational mesh are neces-
sary to meet these important mathematical properties.

The usual approach of solving linear second-order parabolic partial differential equations under
the finite element method is to employ Galerkin formalism for spatial discretization. Several theo-
retical results (which include convergence proofs, a-priori estimates) for this approach can be found
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in the literature (e.g., see Reference [30]). But it has been adequately documented in the litera-
ture that this approach will not satisfy maximum principles and the non-negative constraint (for
example, see Reference [45]). Thus, there is a need to develop new methodologies that will satisfy
important mathematical properties like maximum principles and the non-negative constraint, and
thereby improve the overall predictive capabilities of current numerical schemes.

1.1. Maximum principles for transient systems. Transient diffusion equations fall in the
realm of parabolic partial differential equations (PDEs), whereas steady-state diffusion equations
are elliptic PDEs. A noticeable difference in maximum principles for parabolic PDEs and the
corresponding ones for elliptic PDEs is that, in the case of a parabolic PDE, the maximum can
occur either on the boundary of the domain or in the initial conditions. On the other hand, for a
second-order elliptic PDE, the classical maximum principle says that the maximum occurs on the
boundary of the domain (under some appropriate conditions on the input data and domain). A
more precise mathematical treatment in Section 2]

Several papers have also addressed maximum principles for transient systems (i.e., parabolic
problems) in numerical setting. Herrera and Valocchi [48] have employed flow-oriented derivatives
with backward Euler to obtain non-negative solutions in the context of finite difference and finite
volume methods. One method that is commonly employed in the area of subsurface hydrology is by
Chen and Thomee [22]. This method is based on the standard single-field formulation but employs
lumped capacity matrix. (By the standard single-field formulation we refer to the formulation
obtained by employing the semi-discrete approach using method of vertical lines at integral time
steps, and Galerkin formalism for spatial discretization. See Appendix for more details of this
formulation.) It is noteworthy that lumping capacity matrix approach is commonly considered as
a variational crime [53]. Reference [13] also alters the capacity matrix to preserve positivity for
parabolic problems but restricts to isotropic diffusion. Other notable works are [86], 83, 33, [31],
which all focused on getting restrictions on the mesh (and in some cases on the time step) to meet
maximum principles. More importantly, they did not consider anisotropy, and such restrictions are
not possible for anisotropic and heterogeneous medium.

There are several papers that considered consistent capacity matrices, but derived restrictions
on the time step to satisfy maximum principles [68], 92], 57, 45|, 51]. A striking difference be-
tween the time step restrictions with respect to numerical stability and maximum principles is that
numerical stability places an upper bound on the selection of the time step whereas maximum
principles place a lower bound on the selection of the time step. The time step is selected based on
the following inequality:

0 < AtMP < A < AgstePility (1.1)

crit crit

where Atiiibﬂity is the critical time step to obtain stable results, and Atg/r[ilz is the critical time step
to satisfy maximum principles. It should be however mentioned that these works on deriving time
step restrictions have considered one-dimensional problems or isotropic media, and these conditions
are not applicable otherwise. To the best of our knowledge, none of the prior works presented a
methodology for transient anisotropic diffusion equations to satisfy maximum principles and the
non-negative constraint on general computational grids with no further restrictions on the time

step.



1.2. Our approach and main contributions of this report. Herein, we shall employ
the Rothe method (or the method of horizontal lines) [88] to solve transient anisotropic diffusion
equation. There are several papers in the literature that have employed Rothe method to solve
parabolic equations [45), 15}, (60}, [21]. These papers, except for Reference [45], did not apply the
Rothe method in the context of maximum principles. Although Reference [45] addressed maximum
principles by using the Rothe method, but the formulation is restricted to isotropic diffusion. In
addition, Reference [45] employed techniques from stabilized methods, which is different from
the approach taken in this research. In the proposed formulation, the temporal discretization
using the Rothe method will give rise to inhomogeneous elliptic partial differential equation, which
is solved using the approach presented in our earlier paper [73]. An attractive aspect of the
proposed methodology is that there are no additional restrictions on the time step to meet maximum
principles.

1.3. An outline and notation used in this report. The remainder of this report is orga-
nized as follows. In Section 2, we present governing equations for transient anisotropic diffusion,
and discuss maximum principles and the non-negative constraint. In Section[3] we derive a method-
ology for enforcing maximum principles and the non-negative constraint for transient anisotropic
diffusion equation using the method of horizontal lines. In Section M we illustrate the perfor-
mance of the proposed formulation using representative numerical examples. Finally, conclusions
are drawn in Section 5

The symbolic notation adopted in this report is as follows. Repeated indices do not imply
summation. (That is, we do not employ Einstien’s summation convention.) We shall employ the
standard notation for open, closed and half-open intervals [11]:

(a,b) ={xeR|a<x<b}, [a,b] :={xeR|a<x<b}
(a,b] ={xeR|a<x<b}, [a,b) :={xeR|a<x<b} (1.2)

Similar to our earlier paper [73], we shall make a distinction between vectors in the continuum and
finite element settings. We also make a distinction between second-order tensors in the continuum
setting versus matrices in the context of the finite element method. The continuum vectors are
denoted by lower case boldface normal letters, and second-order tensors will be denoted by upper
case boldface normal letters (for example, vector x and second-order tensor D). In the finite element
context, we shall denote the vectors using lower case boldface italic letters, and the matrices are
denoted using upper case boldface italic letters. For example, vector v and matrix K. Other
notational conventions adopted in this report are introduced as needed.

2. GOVERNING EQUATIONS: TRANSIENT ANISOTROPIC DIFFUSION

Let © C R™ be a bounded open set, where “nd” denotes the number of spatial dimensions.
The boundary is denoted by 92, which is assumed to be piecewise smooth. A spatial point is
denoted by x € Q. The gradient and divergence with respect to x are denoted by grad|-] and div][],
respectively. Let ¢ € [0,Z] denote the time, where Z > 0 denotes the length of the time interval.
The concentration of an inert chemical species is denoted by c¢(x,t). The (spatial) boundary is
divided into two parts: I'® and TN such that TPUTN = 9Q and TP NI'N = (). T'P is that part of the
boundary on which Dirichlet boundary condition (i.e., the concentration) is prescribed, and I'N is
the part of the boundary on which Neumann boundary condition (i.e., the flux) is prescribed. The
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unit outward normal to the boundary is denoted by fi(x). The governing equations for transient
anisotropic diffusion can be written as follows:

Oc(x,t)

5% div[D(x)grad[c(x,t)]] = f(x,t) inQ x (0,7) (2.1a)
c(x,t) = cp(x,t) on TP x (0,7) (2.1b)
i(x) - D(x)grad[c(x,1)] = g(x,t) on N x (0,7) (2.1c)
c(x,t=0) =cp(x) inQ (2.1d)

where D(x) is the diffusivity tensor, f(x,t) is the volumetric source/sink, ¢,(x,t) is the prescribed
concentration on the boundary, ¢,(x,t) is the prescribed flux on the boundary, and c¢y(x) is the
prescribed initial condition. The diffusivity tensor is symmetric, and is assumed to be bounded
above and uniformly elliptic. That is, there exists two constants 0 < & < & < 400 such that

&y'y <y'D(x)y < &y'y ¥x € Qand Vy € R™ (2:2)

The above initial boundary value problem given by equations (ZIal)-R1d)) is a linear parabolic
partial differential equation. From the theory of partial differential equations, such equations are
known to satisfy maximum principles under appropriate regularity assumptions on the input data

and the domain [85] [66].

REMARK 2.1. It should be noted that a consequence of Fickian/Fourier mathematical model is
that a thermal/chemical disturbance at a point will be felt at other points instantaneously. This is
because of the parabolic nature of the resulting partial differential equations. To put it differently,
these mathematical models predict that the information travels at infinite speed, which is against
the current accepted laws of Physics. Several modifications have been suggested in the area of heat
conduction to have finite speeds for thermal disturbances, and most of these models are hyperbolic
partial differential equations. Some notable works on this topic are by Mazwell [65], Catteneo [20],
and Gurtin and Pipkin [40]. A more detailed discussion with respect to finite speed thermoelasticity
can be found in Reference [55]. It is noteworthy that hyperbolic partial differential equations do
not possess maximum principles “similar” to the ones possessed by elliptic and parabolic partial
differential equations. This area of research is far from settled, and is beyond the scope of this

paper.

2.1. Maximum principles for parabolic equations. Maximum principles for parabolic
partial differential equations can be traced back to Levi [61] and Picone [82]. A brief history and
other references on maximum principles for parabolic partial differential equations can be found
in the book by Protter and Weinberger [85]. Herein, we shall employ an approach similar to that
of Nirenberg [76]. Before we state a maximum principle for linear parabolic partial differential
equations, we shall introduce relevant notation and definitions. The parabolic cylinder is defined
as Q7 := Q x (0,7). The parabolic boundary is defined as follows:

Iz:= {(x,t)eﬁz‘xeaQort:()} (2.3)

The parabolic cylinder and parabolic boundary are pictorially described in Figure [l Let C™ ()
denotes the set of functions defined on ) that are continuously differentiable up to m-th order. We
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" e Q= Q% (0,7)

FIGURE 1. A pictorial description of parabolic cylinder €27 and parabolic boundary I'z.

shall introduce the following function space with differing smoothness in the x- and t-variables:

de 9% Oc

2Q7) :=3¢: 0 Rle,— —— —

e C(Qg)i,j=1,--- ,nd} (2.4)
THEOREM 2.2 (maximum principle). Let ¢(x,t) € C3(Q7)NC(Qz) satisfy Oc/0t—div[D(x)grad[c]] >
0 in Q. Then c(x,t) achieves its minimum on the parabolic boundary of Qz. That is,

min  ¢(x,t) = min ¢(x,t) (2.5)
(X,t)EﬁI (X,t)EFI

PROOF. A proof can be found in standard books on partial differential equations (e.g., see

185, 66, 132]). O

REMARK 2.3. The above mazximum principle implies that if one has volumetric source every-
where and at all times (i.e., f(x,t) > 0) then the minimum will occur on the boundary of the
domain or in the initial condition. A logically equivalent statement of the above theorem can be
written as follows: If c¢(x,t) satisfies Oc/Ot — div[D(x)grad|c]] < 0, the mazimum occurs on the
parabolic boundary. That is,

max c¢(x,t) = max ¢(x,t) (2.6)
(x,t)eQr (xt)el'z

Maximum principles play a central role in the study of partial differential equations. Many
uniqueness theorems and powerful estimates for elliptic and parabolic partial differential equations
utilize some form of maximum principles [36, [79]. Maximum principles also have important physical
implications in mathematical modeling, as they place restrictions on physical quantities. One such
implication is the non-negative constraint. We now show that, under certain assumptions, the
non-negative constraint is a consequence of the maximum principle given by Theorem For the
present discussion, let us assume that IT'® = 9Q (that is, we prescribe Dirichlet boundary conditions
on the whole boundary). If f(x,t) > 0 (i.e., we have volumetric source), ¢,(x,t) > 0 (i.e., we have
non-negative prescribed Dirichlet boundary conditions on the whole boundary), and c¢o(x) > 0
(i.e., we have non-negative prescribed initial concentration); then the maximum principle given by
Theorem 2.2 implies that the quantity ¢(x,t) is non-negative in the whole domain and at all times.
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That is,
c(x,t) >0 Vx € QandVt € [0,7] (2.7)

It should be noted that the above discussion on maximum principles and the non-negative constraint
is in continuum setting. For most practical problems (which will involve complex geometries and
spatially varying coefficients), it is not possible to find analytical solutions. Therefore, one has to
resort to numerical solutions. This leads to the following questions, which are central to this paper.
Whether numerical formulations satisfy maximum principles and the non-negative constraint for
transient diffusion equation. If so, under what conditions? If not, is it possible to fix a given
numerical formulation to meet these important principles? This area of research is popularly
referred to as discrete maximum principles.

REMARK 2.4. Some recent efforts [64l, [T5], [T3] have addressed similar questions with respect to
mazimum principles and the non-negative constraint, but all these studies have considered steady
diffusion equation.

2.2. Discrete maximum principles. The discrete analogy of maximum principles is com-
monly referred to as discrete mazimum principles (DMP). Some main factors which affect numerical
solutions with respect to discrete maximum principles are:

(i) topology of the domain (e.g., shape of the domain, features like holes in the domain),
(ii) type of mesh (e.g., Delaunay, well-centered, structured vs. unstructured),

(iii) element type (simplicial vs. non-simplicial elements),

(iv) mesh size (i.e., aspect ratio),

(v) medium properties (e.g., anisotropy, heterogeneity),

(vi) order of approximation (i.e., low-order vs. high-order), and

(vii) temporal discretization (e.g., time stepping scheme, selection of the time step).

The first six factors are equally applicable to steady anisotropic diffusion equation. Systematic
studies on the effect of first five factors on maximum principles and the non-negative constraint
can be found in references [75] [73, [70]. Reference [80] discusses in detail about the sixth factor.
The last factor (in combination with other six factors) is the subject matter of this paper.

This leads to the problem statement of this paper: Develop a finite element methodology for
linear transient tensorial diffusion equation that satisfies mazximum principles and the non-negative
constraint on general computational grids for low-order finite elements with no additional restric-
tions on the time step. To the best of our knowledge, such a methodology does not exist in
the literature. In the next section, we shall extend the optimization-based methodologies that
are presented in references [75), [73] for steady diffusion equations to transient diffusion equation.
We shall explicitly enforce constraints on the nodal concentrations to satisfy maximum principles
and the non-negative. We shall restrict to low-order finite elements, which include two-node line
element, three-node triangular element, four-node quadrilateral element, four-node tetrahedron el-
ement, eight-node brick element, and six-node wedge element. However, it should be noted that
the proposed methodology is not applicable to high-order elements, as enforcing non-negative con-
straints at nodes does not imply non-negative concentrations throughout the domain for high-order
elements (e.g., three-node line element, six-node triangular element) [80].
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3. PROPOSED METHODOLOGY: DERIVATION AND IMPLEMENTATION
DETAILS

Herein, we shall employ the method of horizontal lines (also known as the Rothe method) [88]
as opposed to the commonly employed method of vertical lines [563]. The method of horizontal lines
is a discretization sequence in which the time is discretized first followed by spatial discretization.
To this end, we shall define two sets of time levels: integral and weighted time levels. The time
interval of interest [0,Z] is divided into N non-overlapping subintervals such that

N
[071] = U [tn—latn] (31)
n=1
where t, (n = 0,---,N) are referred to as integral time levels. For convenience, we shall assume

that the time step At to be uniform, which implies that
T
At = N and t, = nAt (3.2)

However, it should be noted that the proposed methodology can be easily extended to non-uniform
time steps. We shall apply the method of horizontal lines at weighted time levels, which are defined
as follows:

tngy = (L= 0)tn + Nlpta (3.3)

where the parameter ) € [0, 1]. The concentration and its rate at integral time levels are respectively
denoted as follows:

A (x) = e(x,t =ty,) (3.4a)
oc
() (x) = 2= -
v\ (x) T (x,t =ty) (3.4b)
The following notation is used to denote quantities at weighted time levels:
"D (x) = (1= )™ (x) +nel™ D (x) & e(x, tniy) (3.5a)
v (x) = (1 = o™ (x) + " (x) &~ 5 (%1 = tntn) (3.5b)
) (x) = (X, toy) (3.5¢)
FOED () = (% ) (3.5)
qil()n+?7) (x) = Qp(xa tn—l—n) (3.5e)

3.1. Derivation. In designing the proposed methodology, attention will be exercised on two
different aspects. The first aspect is to make sure that the non-negative constraint and maximum
principles are preserved after both temporal and spatial discretizations. The second aspect is to
achieve numerical stability in solving the resulting differential-algebraic equations. As we shall see
in subsection 3.2, we will be adding additional equations in the form of lower and upper bounds (i.e.,
inequality constraints). This implies that we will be dealing with differential-algebraic equations.
It is important to note that numerical time integration schemes that are designed for ordinary
differential equations may not be stable and accurate for solving differential-algebraic equations.
This point has been discussed adequately in the literature (e.g., see references [10} [42], 43]). An
important work on numerical time integration of differential-algebraic equations is by Petzold [81],
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and the title of this paper (“Differential/algebraic equations are not ODEs”) succinctly summarizes
the above discussion.

We shall employ the generalized-a method for temporal discretization. The generalized-«
method was first proposed for second-order transient systems in Reference [23], and later mod-
ified for first-order transient systems in Reference [58]. After applying the generalized-a method
to the governing equations (2.Jal)—(2.Id), we obtain the following equations:

pmram) (x) — div[D(x)grad[c" )] = fOF) (%) in Q (3.6a)
e (x) = ") (x) on I'P (3.6b)
fi(x) - D(x)grad[c" )] = ") (x) on TN (3.6¢)

where the parameters a,,, ay € [0,1]. In addition, we have the following relationship:
) (30) = o) (x) + At (1= 7)) (x) + 70D (x)) (3.7)
where the parameter v € [0, 1]. The initial condition takes the following form:
(%) =cy(x) inQ (3.8)
REMARK 3.1. Many popular time stepping schemes are special case of generalized-a method.

For example, forward Euler (o, = 1,ay = 1,7 = 0), trapezoidal rule (o, = 1,ap = 1,7 = 1/2),
and backward Euler (o, = 1,05 =1,7=1).

Herein, we shall take a,,, = . This selection is intended to inherit the non-negative property
for the resulting time discrete equations. The time discrete equations in terms of concentration
take the following form: Find ¢("*t%#)(x) such that we have

ﬁc("*'o‘f)(x) — div[D(x)grad[c"T)]] = frFen)(x) + af]‘Ath (x) inQ (3.9a)
e (x) = ch_af)(x) on I'P (3.9b)
A(x) - D(x)grad[c"ts)] = ql(,nJraf)(x) on TN (3.9¢)

The above boundary value problem (B.9a)—([3.9d) is a second-order inhomogeneous elliptic partial
differential equation with Dirichlet and Neumann boundary conditions. Specifically, equation (3.9al)
is the well-known steady-state anisotropic diffusion equation with decay, as oAt will be always
positive. The decay coefficient can be identified as 1/(a¢At), and the volumetric source term is
frten)(x)+ ﬁc(”) (x). This boundary value problem is also known to satisfy maximum principles
and the non-negative constraint. The selection «a,,, = v made it possible to preserve maximum
principles and the non-negative constraint by ensuring the decay coefficient to be positive, and the
volumetric source at discrete time levels to be non-negative.

It should be emphasized that an arbitrary temporal discretization will not preserve maximum
principles and the non-negative constraint. An important aspect is to ensure is that the resulting
equation after a temporal discretization of transient diffusion equation (Z1al) is a diffusion equation
with decay instead of a Helmholtz equation. Diffusion equation with decay takes the following form:

a(x)e(x) — div[D(x)gradc]] = f(x) (3.10)
with a(x) > 0. If a(x) < 0, the equation is referred to as Helmholtz equation. It should be
noted that Helmholtz equation does not have a maximum principle similar to the one possessed
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by diffusion equation with decay [36]. Hence, in order to preserve maximum principles and the
non-negative constraint, the temporal discretization based on the method of horizontal lines should
be carried out in such a way that the resulting decay coefficient is non-negative.

Recently, Nagarajan and Nakshatrala [73] have proposed a procedure for enforcing maximum
principles and the non-negative constraint for steady diffusion with decay equation, which we shall
modify to solve equations (3.9al)-([3.9d). We start by applying Galerkin formalism to equations
B3a)-B3d). The corresponding weak form takes the following form: Find ¢t/ (x) € Ppya ;
such that we have

1
= clntay) . (ntay)
/Qw(x)af e (x) dQ—i—/Qgrad[w] D(x)grad [c } dQ

= /Qw(x)f(”+°‘f)(x) dQ+/Qw(X) aflAtC(n)(x) dQ
+ /FN w(x)ql()mraf)(x) dI' Vw(x) € Q (3.11)
where the function spaces Py, 1q, and Q are defined as follows:
Prta, = {c(x) € H'(Q) | e(x) = cg”af)(x) on FD} (3.12a)
Q:={w(x) € H(Q) | w(x) =00onT"} (3.12b)

After executing the usual steps of the finite element method, the above weak form (BI1]) can be
converted to a system of linear equations of the following form:

Kclmtar) = plntay) (3.13)

where “ndofs” denotes the number of (free) degrees-of-freedom, c¢"t@r) ¢ R™fs denotes the
unknown vector containing nodal concentrations at the weighted time level ¢, 14, f (ntay) ¢ gndofs
is a known vector, and K is a symmetric and positive definite matrix. It will be shown in a
subsequent section that the finite element solution obtained by solving the system of linear equations
(BI3) may not satisfy maximum principles and the non-negative constraint. Using optimization-
based techniques, we now modify the above solution procedure to meet these important physical
constraints.

3.2. Enforcing maximum principles and the non-negative constraint. We shall denote
the standard inner product on finite dimensional Euclidean spaces by (-; ). We shall use the symbols
=< and > to denote component-wise inequalities for vectors. That is, for given any two (finite
dimensional) vectors a and b

a <b means that a; <b; Vi (3.14)
Similarly, one can define the symbol ». The optimization problem can then be written as follows:
minimize ! <c("+af); Kc("+af)> — <c("+af); f("+af)> (3.15a)
C(n+af)€Rndofs
subject to cﬁ:af)l < clvter) < cﬁ?;“f)l (3.15b)
where 1 is a vector containing ones of size ndofs x 1, and cﬁ:af ) and cﬁ?;“f ) are respectively the
(n+ay) (n+ay)

lower and upper bounds. For enforcing maximum principles, ¢ and cpax 77 can be taken as

min
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follows:

(ntayp) . . . (n+ay)
Crnin ‘= mn {inelg CO(X)7 ;Ielgfll Cp (X)} (316&)
et ) = max{max co(x), max c;()nJraf)(X)} (3.16b)
x€e0 x€00)
For problems involving only the non-negative constraint, one can employ the following:
) = 0 and ellf™) = o0 (3.17)

Alternatively, for enforcing the non-negative constraint, one can replace the constraint (3.15b]) with
the following:

0 =< cltor) (3.18)

where 0 denotes the vector of size ndofs x 1 containing zeros. It should be noted that the above
optimization problem (B.I5]) belongs to quadratic programming. Since, for the problem at hand, the
matrix K is positive definite (which makes the objective function ([B.I5al) convex) the optimization
problem belongs to convex quadratic programming. A sound mathematical theory is already in place
for studying convex quadratic programming [16], and several efficient algorithms are available in
the literature [78, [95], 16]. In this paper, we shall employ the built-in optimization solver available
in MATLAB [7]. Some other popular packages that can handle convex quadratic programming
optimization problems are GAMS [6], TAO [72], and DAKOTA [§].

Once the nodal concentrations are obtained at weighted time level, one can obtain the nodal
concentrations at integral time levels as follows:

cntor) — (1 — af)c(”)

(n+1) _
c o (3.19)

Although ¢("+2f) = 0, the nodal concentrations at integral time levels based on equation (BI9)
need not be non-negative if ay # 1. To put it differently, one is assured of satisfying maximum
principles and the non-negative constraint under the proposed methodology if a,, = v € (0, 1] and
ay = 1. If needed, calculate nodal rate of concentrations using the following expression:

(D) ) — el — (1 — 5)Ato™)

= 2
A (3.20)

It should also be emphasized that explicit schemes (i.e., the forward Euler) cannot be employed
under the proposed methodology to meet maximum principles and the non-negative constraint.
The various steps involved in the numerical implementation of the proposed methodology to satisfy
maximum principles and the non-negative constraint are summarized in Algorithm [Il which could
serve as a quick reference during computer code design and implementation.

4. A REPRESENTATIVE NUMERICAL RESULT

In this section, we shall illustrate the performance of the proposed methodology for enforc-
ing maximum principles and the non-negative constraint using a representative two-dimensional
problem. It should be, however, noted that the proposed methodology is equally applicable for
solving three-dimensional problems. We do not solve any three-dimensional problem here as, in
comparison with one- and two-dimensional problems, there are no additional difficulties other than
the usual book keeping that is associated with most three-dimensional problems. In our numerical
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Algorithm 1 Implementation of the proposed methodology based on ay = 1.

1: Input: Initial condition ¢(x), Dirichlet boundary conditions ¢,(x,t), Neumann boundary con-
ditions ¢,(x,t), time step At, total time of interest Z, o, = v € (0, 1].

2: Construct initial nodal concentrations ¢(%)

3 Set ¢™ +— ¢ t+—0,n+—0

4: while t <7 do

5. Calculate cf:f;l) and ca (see equations ([B.I6)—(BI7))

6 Call non-negative solver to obtain ¢!

minimize l<c(”+1); Kty — (D), plntl)y
c(n+1)eRndofs

subject to cgﬁl)l < c"th < cg‘,(;;l)l

7. If needed, obtain rate of nodal concentrations at integral time levels (but need to choose
~v > 1/2 to obtain stable results for the rates)

D) — ) — (1 — ~)Ato™

(n+1)
Y AL

Set ™ «— ") te—t 4+ At, n+—n+1
9: end while

®

simulations we have employed low-order finite elements, and have taken oy = 1. It is assumed that
o, = v = 1, unless stated otherwise.

4.1. Transient anisotropic diffusion in square plate with a hole. The computational
domain is given by € := (0,1) x (0,1) — [0.45,0.55] x [0.45,0.55]. The initial concentration in the
domain is taken to be zero (i.e., cp(x) = 0). The volumetric source is zero (i.e., f(x,t) = 0). The
inner hole is prescribed with a constant concentration of unity, and the outer hole is prescribed
with a constant concentration of zero. The diffusivity tensor is taken as follows:

D(x) = RDoR" (4.1)

where Dy and the rotation tensor are, respectively, defined as follows:

Dy = < ]Bl 132 ) (4.2a)

_( +cos(d) —sin(9)
e < +sin(f) + cos(0) ) (4.2b)

with the values k; = 10, ks = 1072 and # = —7/6. Using the maximum principle given by Theorem
22l it can be concluded that the concentration in the domain should be between zero and unity.
This test problem is used to illustrate the following aspects:

(i) The numerical results from COMSOL [71] (which is a popular commercial finite element
software package) do not satisfy the maximum principle and the non-negative constraint for
transient anisotropic diffusion.
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(ii) The proposed methodology satisfies the maximum principle and the non-negative constraint
even on unstructured meshes with no additional restrictions on the time step.

(iii) The approach of using the backward Euler time stepping scheme with lumped capacity matrix
does not guarantee non-negative solutions in the case of anisotropic diffusion.

Using numerical simulations it has been found that the transient solution is very close to the
steady-state solution for time greater than 0.05. Therefore, the time steps for this test problem are
chosen to be smaller than or equal to 0.05 so that they are appropriate for transient analyses.

We first show the results obtained using COMSOL [71]. Two different meshes are employed
in the numerical simulations, which are shown in Figure Pl The variation of the minimum concen-
tration with time is shown in Figure Bl and the numerical results from COMSOL did not satisfy
the non-negative constraint. Figures [ and [l show the spread of the violation of the non-negative
constraint and the concentration profiles using COMSOL for four-node structured mesh and three-
node unstructured mesh, respectively. From these figures, the following two observations can be
made:

(a) The magnitude of the violation of the non-negative constraint increases as the time step de-
creases.

(b) The violation reaches a steady-state value after sufficient time, which is around ¢ = 0.05 for
this problem. It should be emphasized that this steady-state value for minimum concentration
is a significant non-negative number, and the violation of the non-negative constraint is nearly

5%.

The aforementioned problem is also solved using the proposed methodology. Figure[dshows the
unstructured computational meshes used in the numerical simulation. The concentration profiles
obtained under the proposed methodology using these computational meshes are shown in Figures
[ and B Clearly, the proposed methodology satisfies the maximum principle and the non-negative
constraint at all time levels. Figure [9] clearly shows that the approach of employing the backward
Euler time stepping scheme with lumped capacity matrix is not sufficient to meet the maximum
principle and the non-negative constraint in the case of transient anisotropic diffusion. This ap-
proach will work in the case of transient isotropic diffusion provided some restrictions on the mesh
are met.

5. CONCLUDING REMARKS

We have presented a novel methodology for transient anisotropic diffusion equations that satis-
fies maximum principles and the non-negative constraint on computational grids with no additional
restrictions on the time step. The methodology has been developed using the method of horizontal
lines, and techniques from convex programming. We have shown that the semi-discrete procedure
based on the standard single-field formulation gives unphysical negative concentrations and vio-
lates maximum principles. Using several representative numerical examples we have shown that
the proposed methodology satisfies maximum principles and the non-negative constraint on general
computational grids with anisotropic and heterogeneous diffusion. The proposed methodology per-
forms gives physically meaningful non-negative concentrations even on coarse computational grids
and for small time steps.
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FIGURE 2. Anisotropic diffusion in a square plate with a hole: This figure shows the meshes
employed in the numerical simulations using COMSOL [71]. The left figure shows a struc-
tured mesh based on four-node quadrilateral elements, and the right figure shows an un-
structured mesh based on three-node triangular elements.
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F1GURE 3. Anisotropic diffusion in square plate with a hole: This figure shows the variation
of minimum concentration with time under the meshes shown in Figure[2 COMSOL [71] is
employed in the numerical simulation. The solution is very close to the steady-state response

for time greater than 0.05.
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FIGURE 4. Anisotropic diffusion in square plate with a hole: Concentration profiles using
COMSOL [71] by employing structured four-node quadrilateral mesh. The finite element
mesh is also shown. The numerical results clearly violated the non-negative constraint for
the concentration. The regions that violated the non-negative constraint are indicated in

white color.
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FIGURE 5. Anisotropic diffusion in square plate with a hole: Concentration profiles using
COMSOL [71] by employing unstructured three-node triangular mesh. The finite element
mesh is also shown. The numerical results clearly violated the non-negative constraint for
the concentration. The regions that violated the non-negative constraint are indicated in
white color.
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FIGURE 6. Anisotropic diffusion in a square plate with a hole: This figure shows the meshes
employed in the numerical simulations using the proposed numerical methodology. The left
figure shows an unstructured mesh based on four-node quadrilateral elements, and the right
figure shows an unstructured mesh based on three-node triangular elements. The meshes
are generated using GMSH [1].
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(a) At =0.0001, t = 3A¢ (b) At =0.0001, t = 0.05

(c) At =0.001, t = 3At (d) At =0.001, t = 0.05

FIGURE 7. Anisotropic diffusion in square plate with a hole: Concentration profiles using
the proposed methodology by employing unstructured four-node triangular mesh, which is
shown in figure The numerical results satisfy the maximum principle and the non-
negative constraint. The numerical results are visualized using Tecplot [2].
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(a) At =0.0001, t = 3A¢ (b) At =0.0001, t = 0.05

(c) At =0.001, t = 3At (d) At =0.001, t = 0.05

FIGURE 8. Anisotropic diffusion in square plate with a hole: Concentration profiles using
the proposed methodology by employing unstructured three-node triangular mesh, which is
shown in figure The numerical results satisfy the maximum principle and the non-
negative constraint. The numerical results are visualized using Tecplot [2].
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(a) At =0.0001, t = 3A¢ (minimum = -0.01024) (b) At =0.001, t = 3At (minimum = -0.03603)

FIGURE 9. Anisotropic diffusion in square plate with a hole: This figure shows the concen-
tration profiles obtained using the backward Euler time stepping scheme (af = a,,, =7 =1)
and lumped capacity matrix approach. The unstructured four-node quadrilateral mesh
shown in figure is used in the numerical simulation. Clearly, the numerical results do
not satisfy the maximum principle and the non-negative constraint. In the case of isotropic
diffusion, employing the backward Euler time-stepping scheme with lumped capacity matrix
approach can be employed to satisfy maximum principles and the non-negative constraint
(with some restrictions on the mesh). As it is evident from this figure, meeting these con-
ditions is not sufficient in the case of transient anisotropic diffusion. The regions of the
violation of the non-negative constraint are shown in white color. The numerical results are
visualized using Tecplot [2].
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A Report on Research Task #4.2

On achieving element-wise species balance and enforcing
maximum principles for advection-diffusion-reaction equations

6. MOTIVATION BEHIND THE RESEARCH

Many phenomena in mathematical physics and engineering science are modeled using advection-
diffusion-reaction (ADR) equation [37, 27 91 28]. For example, ADR equations naturally arise
in many chemical, biological, and technological important processes such as degradation / healing
of materials under extreme environmental conditions, coupled chemo-thermo-mechano-diffusion
problems arising in nuclear industry, contaminant transport in heterogeneous anisotropic porous
media, turbulent mixing in atmospheric sciences, diffusion-controlled biochemical reactions with
applications to medicine, ionic mobility in chemical and biological sciences, transport and dispersion
of injected tracers in hydrogeological systems. In addition, advection-diffusion-reaction equation
serves as a good mathematical model in the field of numerical analysis, as it offers various challenges
in obtaining stable and accurate numerical solutions [69, (56, 54, [67].

The typical unknown in these equations will be concentration. It should be noted the phys-
ical quantities like concentration of a chemical species or absolute temperature naturally attain
non-negative values. In certain constitutive models, these quantities satisfy the so-called diffusion-
type equations, which are either elliptic or parabolic partial differential equations. These ellip-
tic/parabolic PDEs satisfy important mathematical properties like maximum principles, compari-
son principles, the non-negative constraint, and monotone property [79]. Any robust and reliable
numerical formulation needs to satisfy these mathematical properties and the physical constraints
like the non-negative constraint. In the literature, it is well-documented that traditional numeri-
cal methods perform poorly for advection-dominated ADR equations (e.g., see reference [29]). In
the past few decades, considerable progress has been made in trying to capture various localized
phenomena and obtain sufficiently accurate numerical solution for ADR equations on coarse grids.
It is then natural to ask: “why there is a need for yet another numerical formulation for ADR
equation?”

The three main challenges to solve an ADR equation are in capturing localized phenomena and
avoiding node-to-node spurious oscillations, in satisfying the non-negative constraint and maximum
principles, and in satisfying element-wise (or local) species balance. It should be emphasized that
the current numerical formulations do not meet one or more of the aforementioned features. This
sets up the main objective of this research work, which is to develop a finite element methodology
for advection-diffusion-reaction equations that possesses the following desirable properties:

(i) No spurious node-to-node oscillations in the entire domain.
(ii) Captures the interior and boundary layers for advection-dominated problems.
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(iii) Satisfies discrete maximum principles and the non-negative constraint.
(iv) Satisfies element-wise species balance.
(v) Gives sufficiently accurate solutions even on coarse computational gridsﬂ.

6.1. An outline of the report. The remainder of the report is organized as follows. The
governing equations for ADR systems are presented in Section [l In Section Bl we propose
an optimization-based mixed finite element method to satisfy discrete maximum principles and
element-wise species balance. This involves minimizing a least-squares functional subject to a set
of constraints. In Section [@ we perform numerical h-convergence of the proposed methodology.
Finally, conclusions are drawn in Section

The standard symbolic notation is adopted in this report. We shall denote scalars by lowercase
English alphabet or lowercase Greek alphabet (e.g., concentration ¢). We shall make a distinction
between vectors in the continuum and finite element settings. Similarly, a distinction is made
between second-order tensors in the continuum setting versus matrices in the context of the finite
element method. The continuum vectors are denoted by lower case boldface normal letters, and
the second-order tensors will be denoted using upper case boldface normal letters (e.g., vector x
and second-order tensor D). In the finite element context, we shall denote the vectors using lower
case boldface italic letters, and the matrices are denoted using upper case boldface italic letters
(e.g., vector v and matrix K). Other notational conventions adopted in this report are introduced
as needed.

7. GOVERNING EQUATIONS: ADVECTION-DIFFUSION-REACTION SYSTEM

Let © C R™ be a bounded open domain, where “nd” denotes the number of spatial dimensions.
The boundary of the domain is denoted by 92, which is assumed to be piecewise smooth. Mathe-
matically, 0 := Q — Q, where a superposed bar denotes the set closure. A spatial point is denoted
by x € Q. The gradient and divergence operators are, respectively, denoted by grad[] and div[].
Let ¢(x) denote the concentration field. The boundary is divided into two parts: I'® and I'? such
that T°UTY = 9Q and T°NT7 = (). T'° is that part of the boundary on which the concentration is
prescribed, and I'? is the part of the boundary on which the total flux is prescribed. The governing
equations take the following form:

a(x)c(x) + div [e(x)v(x) — D(x)grad[c(x)]] = f(x) in (7.1a)
c(x) =c’(x) onI* (7.1b)
(¢(x)v(x) — D(x)grad[c(x)]) - n(x) = ¢°(x) on I (7.1c)

where n(x) is the unit outward normal to the boundary, v(x) is the known velocity field, «a(x) is
the decay co-efficient, f(x) is the prescribed volumetric source, D(x) is the anisotropic diffusivity
tensor, cP(x) is the prescribed concentration, and ¢P(x) is the prescribed total flux. The diffusivity
tensor is assumed to be symmetric, uniformly elliptic and bounded above.

1One may expect some subjectivity in calling a mesh to be coarse. But in a subsequent section, we will define
precisely what is meant by a “coarse mesh” for advection-diffusion-reaction equations in terms of P-matrices.
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7.1. Single-field Galerkin formulation. Let us define the following function spaces, which
will be used in the remainder of this report:

C:={c(x) € H'(Q) | ¢(x) = P(x) on T} (7.2a)
W = {w(x) € H(Q) | w(x) =0on T} (7.2b)
Q:= {q(x) c (Hl(Q))"d} (7.2¢)

where H'(Q) is a standard Sobolev space [32]. Given two fields a(x) and b(x) on K, the standard
Lo inner product over K is denoted as follows:

(a;0) e = /K a(x) - b(x) dK (7.3)

The subscript for the inner product will be dropped if K = . The single-field Galerkin formulation
for advection-diffusion with (linear) decay reads as follows: Find ¢(x) € C such that we have

(w; ac) + (w;div]ve]) + (grad[w]; Dgrad[c]) = (w; f) Vw(x) € W (7.4)

It is well-known that the single-field Galerkin formulation does not perform well, as it produces
spurious node-to-node oscillations on coarse grids [29]. The formulation also violates the non-
negative constraint and maximum principles for anisotropic medium, and does not possess element-
wise species balance property.

8. PROPOSED NUMERICAL METHODOLOGY: DMP AND ELEMENT-WISE
SPECIES BALANCE

Let the computational domain §2 be discretized into a set of “Nele” non-overlapping open sub-
domains, which will be referred to as elements. We shall denote the mesh discretization by 7. The
mesh parameters for a given Q. € T, are defined as follows:

Nele
Th = U Q. (8.1a)
e=1
h = di Qe 8.1b
dnax {diam(Qc) } (8.1b)
diam(€2.) = the longest edge of mesh cell Q. (8.1c)

where a superposed bar denotes the set closure. The boundary of €2, is denoted as 99, := Q. — ..
We now present a finite element methodology to obtain numerical solutions for ADR equations
that satisfies maximum principles and element-wise species balance.

8.1. First-order mixed formulation. We shall rewrite the governing equations for ADR in
first-order mixed form, which take the following form:

q(x) — v(x)c(x) + D(x)grad[c] =0 in (8.2a)
div[g(x)] = f(x) — a(x)c(x) inQ (8.2b)
c(x) =cP(x) onl* (8.2¢)
q(x) -n(x) =¢°(x) onI1 (8.2d)

The various components of the proposed computational framework for ADR equations are as fol-
lows:
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(i) Construct a least-squares functional for the above first-order equations

(ii) Use low-order finite element interpolation for ¢(x) and q(x)

(iii) Enforce maximum principle as constraint: cpin < ¢ < ¢pax in Q

(iv) Enforce local mass balance: div[q] = f(x) — a(x)c(x) in each mesh cell Q.

/Bﬂe q(x) -n(x)dl' = /Qe f(x)dQ — /e a(x)c(x) dQ

We now construct various least-squares functionals and analyze the influence of various con-
straints on the performance of these least-squares. Hsieh and Yang [52] have proposed a similar
least-squares functionals for a different set of first-order mixed form of isotropic advection-diffusion
equations. Even for isotropic case, they did not consider the effects of maximum principles and
element-wise (or local) species balance on the performance of these least-squares. In this report,
we investigate how do these least-squares functionals perform when one includes anisotropy, het-
erogeneity, linear reaction term, non-solenoidal velocity field, and influence of constraints.

2. Weighted primitive LSFEM. The weighted primitive least-squares functional Fpyim(c, q) :
C x @ — R based on Lo—norm is given by:

Fprim (¢, Q) =5 HA q(x) — ¢(x)v(x) + D(x)grad|c(x)]) H2

2
Jw (x)e(x) + divla(x)] - £(x)) |

+ﬂh@%n@%wW@V

where the second-order tensor A(x) and the scalar function ((x) are the weights, and are defined
as follows:

Q

Q

. (8.3)

- 1 LS Type-1
Alx) = { D~ /2(x) LS Type-2 (84a)
1 LS Type-1
B(x) = 1 if a(x) =0 (8.4D)

a_1/2(x) if a(x) # 0} LS Type-2

8.3. Weighted stabilized LSFEM. The weighted stabilized least-squares functional Fstan (¢, q) :
C x @ — R based on Lo—norm is given by:

Sstab (¢, Q) =3 HA (a(x) — c(x)v(x) + D(x)grad[c(x)]) H;
Jw a(x)e(x) + divla()] ~ £00)];
+5%@»mw—fuw;
+ % Z 70 ||div[c(x)v(x) — D(x)grad[c(x)]] + a(x)c(x) — f(x)‘ ; (8.5)
Q€T ¢
where the element dependent stabilization parameter o, > 0 is given as:
0. = co hd, (8.6)
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8.4. Weighted streamline diffusion LSFEM. The weighted streamline diffusion least-
squares functional Fsupir(c,q) : C x Q@ — R based on Ly—norm is given by:
1 ) 2
Ssupif (¢, Q) == 3 Z HA(X) (a — ¢v + Dgrad[d] — g, v (div[ev — Dgrad[d]]) ) ‘
Q€T ‘

P13 [se0ae + divial - £ - £,)|
Qe€Th ’

_|_% Z Hq-n—qp—(SQV n(f—ozc)‘ze (8.7)
chTh|Fq

where the element dependent streamline diffusion parameter dg, < 0 and the term fs, is given as
follows:

éth%
00, = — : 8.8
%~ Dl (8.84)
S5, = So, (gradlf — ac] -v + div[v] (f - ac)) (3.8b)

8.5. Weighted negatively stabilized streamline diffusion LSFEM. The weighted neg-
atively stabilized streamline diffusion least-squares functional §ngsn(c,q) : C x Q@ — R based on
Lo—norm is given by:

1 ) 2
SNesth (¢, Q) = 3 Z HA(X) (a — ¢v 4 Dgrad[d] — dq,v (div[ev — Dgrad|[d]]) )‘
Q€T ‘
1 ) 2
+5 2 |86 (ac+ divial - £ - £,
Q€T ‘
1 b_s 2
PL S e savent-aoff
Qee’rh‘rq
1 2
+ = Z 70, ||div[cv — Dgrad|c]] + ac — f‘ (8.9)
2 Qe
Q€T
where the element dependent parameters 7o, < 0 and dg, < 0 are given as:
Co.hi)
Q. = — s (8.10a)
D00
0. = —Ca b, (8.10b)

In the subsequent sections, we will present representative numerical results for steady-state
advection-diffusion-reaction equations. In particular, we shall consider several canonical problems
that exhibit localized phenomena such as steep interior and boundary layers. The performance
of the four least-squares formulations (primitive, stabilized, streamline diffusion, and negatively
stabilized streamline diffusion) are analyzed when subjected to the non-negative constraint and the
local species balance constraint.
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9. NUMERICAL h-CONVERGENCE STUDY

Consider the computational domain to be a unit square 2 = (0,1) x (0,1). The diffusivity D is
assumed to be a constant. The velocity field is taken as v(x) = &,. The boundary conditions can
be written as follows:

c(x) = (9.1)

sin(7x) fory =0
0 forxc=0orx=1lory=1

A pictorial description of the boundary value problem is given in Figure Using the method
of manufactured solutions, we construct the analytical solution to the concentration field. The
corresponding analytical solution for ¢(x) which satisfies the boundary conditions given by equation

@1 is as follows [35]:

sin(7mx) _
(:y) = Gy (€727 = ) 9:2)
where

1—+1+4r2D?

my = (9.3a)
2D

1+ V1+4n2D?

mo = °D (93b)

By using equation (@.2]), we calculate the corresponding flux vector and volumetric source . The
analytical expressions for q(x) and f(x) are given as follows:

_ Dmcos(mx) (6m2_m1 emy _ emgy)
:1;" = . em27ml—1 94&
CI( y) enf;ri(:zf)_l ((1 o TrL1D) em2—m1gmiy _ (1 - sz) emQy) ( )
sin(mx)

f(z,y) = m( (m1 —miD + ?D) ™™ e™Y — (my — m3D + D) em29> (9.4b)

In the present study we have taken D = 1. From figures [[1HI]], one can conclude that the per-
formance of four-node quadrilateral finite element mesh is much better than that of the three-node
triangle finite element mesh. The proposed methodology works well.

10. CONCLUDING REMARKS

We have presented a methodology for advection-diffusion equation that satisfies the non-
negative constraint and maximum principles even for anisotropic medium, possesses element-wise
species balance property, and provides physically meaningful numerical solutions without node-to-
node oscillations even on coarse computational grids. Numerical h-convergence is performed on a
series of hierarchical meshes, and the proposed methodology performed well. It is noteworthy that
four-node quadrilateral meshes performed better than three-node triangular meshes.
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F1GURE 10. Numerical h-convergence study: A pictorial description of the two-dimensional
boundary value problem used in the convergence analysis.

F1GURE 11. Numerical h-convergence study: This figure shows the typical three-node tri-
angular and four-node quadrilateral meshes used in the numerical convergence study. The
meshes shown in the figure have 21 nodes along each side of the computational domain.
A series of hierarchical computational meshes is employed in the study: 11 x 11, 21 x 21,
41 x 41, 81 x 81, and 161 x 161 meshes.
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F1GURE 12. Numerical h-convergence study: This figure shows the concentration and flux
profiles for stabilized least-squares finite element method for T3-mesh with 161 nodes on
each side of the domain. The numerical results obtained are very similar to that of the
primitive least-squares. The concentration and flux profiles match with the analytical solu-
tion when there are no mass balance constraints. But when local mass balance is enforced
as a constraints one obtains negative values for concentration. The flux profile for stabi-
lized least-squares with local mass balance constraints differ considerably as compared to

analytical solution.
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FI1GURE 13. Numerical h-convergence study: This figure shows the concentration and flux
profiles for stabilized least-squares finite element method. In this case, we use Q4-mesh with
161 nodes on each side to perform the numerical simulation. This formulation based on the
Q4-element is able to predict the nature of the analytical solution both qualitatively and
quantitatively. There are no violation of the non-negative constraint when one enforces the
local mass balance constraints.
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FI1GURE 14. Numerical h-convergence study: This figure provides information in regards to
the error incurred in satisfying local mass balance for stabilized least-squares functional. The
left figure shows the error for T3-mesh while the right figure shows the error for Q4-mesh.
One can observe that the maximum and minimum values of error in local mass balance for

T3-mesh is much bigger than that of Q4-mesh.
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A Report on Research Task #4.3

Mesh restrictions on T3 element to satisfy maximum principles
for heterogeneous anisotropic diffusion

11. INTRODUCTION AND MOTIVATION

Diffusion-type equations are commonly encountered in various branches of engineering, sciences,
and even in economics [27), 54|, 67, [69], 91, @, 87]. These equations have been well-studied in
Applied Mathematics, and several properties and estimates have been derived [32, [79]. Numerous
numerical formulations have been proposed and their performance have been analyzed both the-
oretically and numerically [37, B34], [47, [46], 17, 18, 25] 26], 59]. Several sophisticated software
packages have been developed to solve these type of equations [3}, 5, [4]. Special solvers for solving
the resulting discrete equations have also been proposed and studied adequately [90), [41].

This paper concerns with numerical solutions. Despite the aforementioned advances, it should
be noted that a numerical solution will always lose some mathematical properties that the exact
solution possess. In particular, the aforementioned numerical formulations do not satisfy compari-
son principles, maximum principles, and the non-negative constraint. There are two possible routes
to satisfy maximum principles and the non-negative constraint under the finite element method.
The first approach is to employ optimization-based methodologies to explicitly enforce the desir-
able properties as constraints. Some notable works in this direction are presented in references
[75), [73, [74]. One of the main advantages of these methods is that there is no need to place
restrictions on the mesh. But this comes with an additional computational cost. Although it has
been shown that the additional computational cost is less than 10% [74].

The second approach is to place restrictions on the mesh to meet maximum principles and the
non-negative constraint. Ciarlet and Raviart [24] have shown that numerical solutions based on the
single-field Galerkin finite element formulation, in general, does not converge uniformly. It should
be, however, noted that the single-field Galerkin formulation is a converging scheme. Ciarlet and
Raviart have also shown that a sufficient condition for single-field Galerkin formulation to converge
uniformly for isotropic diffusion is to employ a well-centered three-node triangular elements with
low-order interpolation. The obvious advantage of the second approach is that one can use the
single-field Galerkin formulation without any modification. The drawback is that an appropriate
computational mesh may not exist because of the required restrictions on the shape and size of
the finite element. For example, it is a herculean task (sometimes impossible) to generate a well-
centered triangular mesh for any given two-dimensional domain [93]. Note that requiring a mesh
to be well-centered is a more stringent requirement than requiring the mesh to be Delaunay.
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11.1. Main contributions and outline of the report. Herein, we shall focus on the second
approach. In particular, we shall derive sufficient conditions for restrictions on the three-node
triangle finite elements to meet comparison principles, mazrimum principles, and the non-negative
constraint in the case of heterogeneous anisotropic diffusion. The remainder of this research report
is organized as follows. In Section [[2] we shall present the governing equations for anisotropic
diffusion and associated comparison principle, maximum principle, and the non-negative constraint.
In Section [I3] we shall present discrete versions of the comparison principle and maximum principle.
We then derive restrictions on the mesh for three-node triangle element to meet maximum principles
and comparison principles for heterogeneous anisotropic diffusion. Conclusions are drawn in Section

14

12. ANISOTROPIC DIFFUSION EQUATION AND ASSOCIATED
MATHEMATICAL PRINCIPLES

12.1. Anisotropic diffusion equation. Let Q@ C R"™ be a bounded open domain, where
“nd” denotes the number of spatial dimensions. The boundary of the domain is denoted by 0f2,
which is assumed to be piecewise smooth. Mathematically, 09 := Q — 2, where a superposed
bar denotes the set closure. A spatial point is denoted by x € €. The gradient and divergence
operators are, respectively, denoted by grad[-] and div[]. Let ¢(x) denote the concentration field.
The boundary is divided into two parts: I'P and I'N such that TP UTN = 9Q and I'°® N T'N = ¢ for
well-posedness. I'P is that part of the boundary on which Dirichlet boundary condition is prescribed
(i.e., the concentration is prescribed), and I'N is the part of the boundary on which the Neumann
boundary condition is prescribed (i.e., the flux is prescribed). For uniqueness of the solution, we
shall assume that meas (FD) > 0. The governing equations take the following form:

—div [D(x)grad[c(x)]] = f(x) inQ (12.1a)
¢(x) =cP(x) onTP (12.1b)
—n(x) - D(x)grad[e(x)] = ¢°(x) on TN (12.1¢)

where n(x) is the unit outward normal to the boundary, f(x) is the prescribed volumetric source,
D(x) is the anisotropic diffusivity tensor, ¢P(x) is the prescribed concentration, and ¢P(x) is the
prescribed flux. Physics of the problem demands that the diffusivity tensor be symmetric. That is,

DT(x) =D(x) ¥xeQ (12.2)

In addition, the diffusivity tensor is assumed to be uniformly elliptic and bounded above. That is,
there exists two real numbers 0 < v; < 79 < 400 such that we have

0<mME-E<E-DX)ESE-E VEE R"d\{O} and Vx € Q (12.3)

From the theory of partial differential equations, it is well-known that the aforementioned boundary
value problem satisfies the so-called maximum principles, the non-negative constraint, and com-
parison principles. We shall present the relevant results in the form of theorems without proofs.
For complete details, see references [32], [79].

THEOREM 12.1 (A comparison principle). Let L[c] := —div[D(x)grad[c]]. Let ¢1(x), ca(x) €
C2(Q)NCOQ). If Llc1] > Llez]) in Q and ¢1(x) > ca(x) on IS then we have
c1(x) > ea(x) VxeQ (12.4)
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THEOREM 12.2 (A maximum principle and the non-negative condition). Let ¢P(x) > 0 on 02
and D(x) be continuously differentiable. If c(x) € C?(Q)NC°(Q) satisfies the differential inequality
—div[D(x)grad[c]] = f(x) > 0 in Q, then c(x) satisfies the following conditions:

min ¢(x) = min ¢(x) (12.5)
xeQ x€0N
c(x) >0 inQ (12.6)

Various numerical formulations such as finite element methods, finite volume methods, and
finite difference methods exist to solve these governing equations (I2.1al)-({IZId). It is well-known
that the framework offered by finite element methods are successful in obtaining accurate numerical
results for elliptic and parabolic partial differential equations. Among them single-field Galerkin
formulation is a very popular method for self-adjoint operators because of its rich mathematical
literature and amenability for computer implementation. Herein, we will outline the single-field
Galerkin formulation and derive mesh restrictions based on this methodology. It should be noted
that restrictions imposed on a mesh change as one alters the numerical formulation.

12.2. Single-field Galerkin formulation. We shall need the following function spaces to
precisely write down the single-field Galerkin formulation:

C = {c(x) € H'(Q) | ¢(x) = P(x) on r} (12.7a)
W= {w(x) € H'(Q) | w(x) =0 on FD} (12.7b)

where H'(Q) is a standard Sobolev space [32]. Given two fields a(x) and b(x) on K, the standard
Lo inner product over K is denoted as follows:

(a:b)c = /K a(x) - b(x) dK (12.8)

The subscript for the inner product will be dropped if K = 2. The single-field Galerkin formulation
for anisotropic diffusion equation reads as follows: Find ¢(x) € C such that we have

(grad[w]; D(x)grad|c]) = (w(x); f(x)) + (w(x); ¢"(X))px = Vw(x) € W (12.9)

It is well-documented that the single-field Galerkin formulation violates the non-negative constraint
and maximum principles on general computational grids [24), [73), [75]. The violation is more severe
if the diffusion tensor is anisotropic. In the next section, by appealing to theory of nonnegative
matrices [12), 50}, 94], we shall derive sufficient conditions on T3 elements to satisfy comparison
principles, maximum principles, and the non-negative constraint.

13. MESH RESTRICTIONS TO SATISFY COMPARISON AND MAXIMUM
PRINCIPLES

13.1. Discrete equations. In this subsection, we will outline the discrete versions of the
governing equations for anisotropic diffusion and the corresponding mathematical principles. To
this end we use low-order finite elements to discretize the anisotropic diffusion equations (I2.1al)—
([I2Id) based on single-field Galerkin formulation (IZ.9]). One of the important reasons for the
use of low-order finite elements (linear simplicial elements) for anisotropic diffusion is that they
play a prominent role in satisfying maximum principle. They are also of utmost importance in
mesh generation of complex geometries, error analysis, and adaptive local mesh refinement. The
low-order finite element discretization of anisotropic diffusion leads to a system of linear equations
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given by K¢ = f, where K is the stiffness matrix, ¢ is the nodal concentration vector, and f is
the volumetric source vector.

Based on this standard finite element methodology, we analyze the properties that the stiffness
matrix inherits and has to possess from the continuous boundary value problem. From the equations
([22) and ([IZ3]), diffusivity tensor being symmetric and positive definite implies that the stiffness
matrix K is also symmetric and positive definite. One of the most important property that the
discrete system needs to have inorder to mimic the mathematical properties that continuous system
possess is that the stiffness matrix K has to be a monotone matrix. This is a necessary and
sufficient condition for the discrete equations to satisfy comparison principles, maximum principles,
and to meet the non-negative constraint. On general computational grids, it is well-known that
the stiffness matrix obtained via low-order finite element discretization of anisotropic diffusion will
not be a monotone matrix. So one of the ways to make sure that the stiffness matrix belongs to
the class of monotone matrices is that we impose restrictions on the element shape and size in a
computational mesh. In next subsection, we will discuss on a subclass of monotone matrices which
are easily amenable for deriving mesh restrictions.

13.2. Monotone matrices. The stiffness matrix K is said to be monotone if K ! exists and
K1 > 0. This means that (K _l)ij >0 Vi,j. Soin order to make sure that the stiffness matrix
be monotone, we have to impose restrictions on K ~!. This means we have to find a computational
mesh such that (K _1)”. >0 Vi,j. In general, to get an explicit analytical formula for (K _1)”. is
extremely difficult and not viable. Hence, it is not a feasible option to find mesh restrictions based
on the condition that (K _l)ij > 0. So a practicable route to obtain monotone stiffness matrices
through mesh restrictions is to consider strictly diagonally dominant matrices, which form a subset
to the class of monotone matrices [94] Section 3, Corollary 3.20 and Corollary 3.21]. The matrix
K is said to be strictly diagonally dominant if it satisfies the following conditions:

(a) Positive diagonal entries: (K),, > 0,

(b) Non-positive off-diagonal entries: (K);; <0 Vi # j, and

(c) Strict diagonal dominance of rows: | (K),; | > Z | (K)
i#]

One should note that the above three conditions are sufficient but not necessary for the stiffness

matrix to be monotone. The obvious advantage of considering strictly diagonally matrices is that

there is no need to compute (K _l)ij explicitly because it is known aprior that these matrices are

gl Vi

monotone. Hence, through the manipulation of the entries of the stiffness matrix we can derive the
restrictions on the computational mesh to achieve strict diagonal dominance. We will now present
the discrete versions of the comparison principle and maximum principle outlined in Theorems [I2.1]
and

THEOREM 13.1 (A discrete comparison principle). A numerical formulation is said to possess a
discrete comparison principle, if for any two finite-dimensional volumetric source vectors f, and f,
which satisfy the relation f{ = fo, then the finite-dimensional numerical solutions satisfy c¢; >~ ca.

THEOREM 13.2 (A discrete maximum principle and the non-negative constraint). A numerical
formulation is said to possess a discrete mazximum principle and meets the non-negativity constraint,
if for any finite-dimensional volumetric source vector f = 0 and for a given Dirichlet boundary
conditions vector cP (x) = 0 on 0N), then the finite-dimensional numerical solution c(x) satisfies
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the following conditions:

min ¢ (x) = min cP (x) (13.1a)
xe0) xEIN
c(x)=0 v¥xeQ (13.1b)

REMARK 13.3. It should be noted that if a numerical formulation satisfies discrete comparison
principle then it automatically obeys discrete mazimum principle and non-negativity constraint.
This can be shown by constructing a volumetric source vector fo >= 0 based on the monotone
stiffness matrix K and the non-negative Dirichlet boundary conditions vector cP (x). The explicit
formula for f, is given by fo = KcP. Hence, this results in ca = cP = 0. So from the Theorem[13.1],
it is evident that for any finite-dimensional numerical solution c; we have the relation ¢y = ¢ = cP.
The non-negative constraint on the concentration vector ¢y follows from the fact that cP > 0.

REMARK 13.4. In the continuous setting, the comparison principle implies the mazximum princi-
ple and vice-versa. The maximum principle implies the non-negative constraint. In discrete setting,
a numerical methodology may inherit one or more of discrete versions of these principles, and in
some cases, none. Here are some of the examples:

(i) The single-field Galerkin formulation for anisotropic diffusion on general computational grids
does not possess any of the discrete versions of the comparison principle, the mazimum prin-
ciple or the non-negative constraint.

(ii) Le Potier’s method [84] and Lipnikov et al. [62] [63] satisfy the non-negative constraint but
does not possess the discrete version of the comparison principle and the mazximum principle.

(iii) The optimization-based methods based on low-order finite elements [64} [T5l, [T3] satisfies the
non-negative constraint and possess a discrete version of the mazximum principle. However, the
methods do not inherit the comparison principle (a counterexample is shown in the Reference
[74], Section 4, Figure 1]).

(iv) The single-field Galerkin formulation for isotropic diffusion based on well-centered triangular
meshes possess discrete versions of all the three principles (the comparison principle, the
mazximum principle, and the non-negative constraint).

13.3. Sufficient conditions on local stiffness matrix. In this subsection, we will obtain
sufficient conditions that insures the local stiffness matrix for a T3 element to be weakly diagonally
dominant. We will employ low-order Lagrange finite elements to derive the local stiffness matrix.
The reason for using low-order finite elements is that the shape functions for these elements are
monotonic and do not change their sign within the element [75, [73]. Note that this reasoning will
not hold for higher-order Lagrange finite elements as the shape functions for these elements can
change their sign within the element and hence need not satisfy the discrete maximum principle
(for more details see Reference [80]). Once we make sure that all of the local stiffness matrices are
weakly diagonally dominant then the standard finite element assembly process guarantees that the
global stiffness matrix is strictly diagonally dominant. After all if the stiffness matrix K is strictly
diagonally dominant, from subsections [3.IHI3.2] we are ascertained that the the nodal values for
the concentration vector are non-negative. Thus we have non-negative solution everywhere in the
T3 element which results in non-negativity on the whole computational domain.

A pictorial description of the T3 element on which we derive sufficient conditions is given in
Figure The mesh element PQR corresponds to an arbitrary T3 element of the computational
mesh in (X,Y) coordinate system. Through a sequence of angle-preserving affine transformations
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and scaling operations this arbitrary mesh element is transformed to an actual element ABC in
(z,y) coordinate system. This transformation is composed of rigid body motion of the triangle
PQR and homogeneous deformations of its sides. Based on the principles of continuum mechanics
[39], 38|, [49], we will now outline the corresponding mathematical equations for this transformation
and scaling operations:

x=Qp-+c (13.2a)
||lui|]| = Ail|vil]| where \; € Ry and i = {1,2,3} (13.2b)

where p is the coordinates of a point in (X, Y") coordinate system, x is the coordinates of a point in
(x,y) coordinate system, c is the translation vector, Q is a proper orthogonal transformation matrix,
||vi|| is the length of a side of the triangle PQR, [|u;|| represents the length of the transformed side
of PQR, and \; relates the length of a side in PQR to that of the corresponding transformed side
in ABC. Note that such type of transformation does not change the angles of the triangle PQR.
Hence the angles and their orientation are preserved during such transformations.

Such transformations are needed due to the fact that we want to reduce the number of variables
on which we derive mesh restrictions. By performing these type of transformations, we only need
to consider the coordinates (a,b) to derive restrictions on the T3 element. But if we consider a
general arbitrary mesh element given by triangle PQR, we need to consider all the coordinates
of the triangle. This make the problem complicated and the derived mesh restrictions based on
the arbitrary mesh element will be difficult to analyze and interpret. Important information such
as the lower and upper bounds on the angles of the triangles of the computational mesh, which
is need to generate quality triangulations might be difficult to deduce if one considers analyzing
the arbitrary mesh element. Note that this is one of the most influential factors in generating
triangular meshes. In our case, for two-dimensional domains, a quality triangulation means that
one can obtain a lower bound on the angles of the triangles in the computational mesh [93]. If one
does not preserve the angles during the transformation then it might result in small angles in the
triangle PQR (needle-like or degenerate triangles) and hence achieving a quality triangular mesh
is daunting. These needle-type triangles and the corresponding triangulations gives rise to highly
ill-conditioned stiffness matrices and causes inherent difficulties in developing error estimates.

Our objective is to find the coordinates (a,b) such that the local stiffness matrix is weakly
diagonally dominant for a given type of diffusivity tensor. The local stiffness matrix for anisotropic
diffusion equation based on single-field Galerkin formulation is given by:

K. = / BD(x)B" d0 (13.3)
Qe

where the matrix B in terms of the coordinates (a,b) is given as follows:

b (a—1)
b —a (13.4)
0 1

1
B =—
b
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Since the entries in the matrix B are constants. We have the local stiffness matrix K. given as
follows:

K.=B D(z) dQ) | B (13.5)
Qe

In the subsequent subsections, we present various sufficient conditions through which we can find
these coordinates (a, b) and glean information on the possible angles, corresponding shape and size
of the triangle ABC.

13.3.1. T8 element for heterogeneous isotropic diffusivity. In this subsection, we consider the
case where the diffusivity is isotropic and heterogeneous in the total domain. For this case, we
show that the diffusivity does not have any influence on determining the coordinates (a,b). This
means that the restrictions we obtain on the coordinates and the angles of the triangle ABC is
independent of how the diffusivity is varying across the domain. The following is the local stiffness
matrix for scalar heterogeneous isotropic diffusion:

1 V+(@-1)% a—a?>-b (a—1)
K.=— /D(az) dQ | a—a®—b? a® + b? —a (13.6)
b2
Qe (CL - 1) —a 1

where the integral of the diffusivity D(x) over the actual T3 element 2. (triangle ABC) is given
as follows:
1

D =
meas(€).)

/ D(x) dQ (13.7)
Qe

where meas(§2.) = % is the area of the actual T3 element ABC is always positive. As the scalar
diffusivity D(x) > 0, so its definite integral over Q. which is D is also greater than zero. Hence the
simplified expression for the local stiffness matrix is given as follows:

) V+(a—1)?% a—a?>-b* (a—1)
a—a?® — b a’ + v? —a (13.8)

o
2\ @-1 —a 1

We shall now present the sufficient conditions so that the matrix K, is weakly diagonally dominant:

Condition No-1. Positive diagonal entries: (K.),; >0 Vi =1,2,3. This restriction gives us
the following inequalities:

D

(Ko = o (B*+(a—1)*) >0 (13.9a)
(Ke)yy = 2% (a®+b%) >0 (13.9b)
(Kogy = 3 >0 (13.9¢)

As D > 0and b > 0, it is evident that all of the inequalities given by equations (I3.9a)(I3:9d) are
trivially satisfied. Hence this condition has no effect on obtaining restrictions on coordinates (a, b).
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Condition No-2. Weak diagonal dominance of rows: |(K,); | > Z | (Ke);; | Vi, j where
i#]
i =1,2,3 and j = 1,2,3. This restriction gives the following inequalities:
(0*+ (a—1)*) > (a®* +b* —a) + (1L —a) (13.10a)
(a® +b%) > a+ (a®+b* —a) (13.10b)
1>(1—-a)+a (13.10c)

Note that these inequalities (I[3:10al)-(I3:10c]) are trivially satisfied. Hence this condition has no
influence on obtaining restrictions on triangle ABC.

Condition No-3. Non-positive off-diagonal entries: (K e)ij <0 Vi#jwherei=1,2,3 and
7 =1,2,3. This restriction gives the following inequalities:

(Ko =% (a—a?=1?) <0
(Ke)i_j: (Ke)13 :%(a_l)ﬁo Vi# j
(Ke)yy =25 (—a) <0

using the fact that D > 0 and b > 0, and rearranging the above relations we get the following

inequalities:
1\? 5, [1)\?
— = > = 13.11
(a 2> +b* > <2> (13.11a)

a<1 (13.11b)
a>0 (13.11c)

The region in which the coordinates (a,b) satisfy the above inequalities given by the equations
(I31Ta)—-([I3IIc) is shown in Figure According to these inequalities (I3.11al)-({I3.11dl), het-
erogeneity of the scalar diffusivity has no role in obtaining the feasible region for the coordinates
(a,b). Tt is evident from the Figure [I6] that the interior angles of the triangle ABC are either acute
or atmost right-angle. Based on the sufficient conditions, one can notice that an obtuse-angled
triangle is not possible. So in order to satisfy discrete comparison principle, discrete maximum
principle, and non-negative constraint the triangulation of a given computational domain must
contain acute-angled triangles or right-angled triangles. These three sufficient conditions show that
well-centered or acute-angled triangulation inherit all the three discrete versions of the continuous
properties of scalar heterogeneous isotropic diffusion equations.

13.3.2. T8 element for heterogemeous anisotropic diffusivity. In this subsection, we consider

the case where the diffusivity D(x) = (gzzgg gﬁg) is anisotropic and heterogeneous across the

domain. For sake of brevity and ease of manipulations, we drop the symbol (x) in the components
of the diffusivity tensor. Note that the symbol ‘x’ in the components of D(x) is dropped for sake of
convenience and should not be interpreted as though the diffusivity tensor is constant. As discussed
in Section[I2] the diffusivity tensor satisfies certain properties. Based on these equations (I2.2]) and
([I23), we derive various results related to D(x) that we will be using in deriving mesh restrictions.

LEMMA 13.5 (Necessary conditions on the components of anisotropic diffusivity tensor). If D(x)
is symmetric, uniformly elliptic, and bounded above. Then its components satisfy the following
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relations:

Dy >0 (13.12a)
Dy, >0 (13.12b)
DyoDy, > D2, (13.12¢)

PROOF. Since D(x) is symmetric from Spectral Theorem [44] Section 79, Theorem 1], the
eigenvalues of D(x) are real. According to the equation (I23)), D(x) is uniformly elliptic, and
bounded above. Hence the eigenvalues are positive and bounded above. The eigenvalues in terms
of Dyy, Dyy, and Dy, are given as follows:

(Dx:p + Dyy) + \/(Dmm - Dyy)2 + 4D%y

A= 5 (13.13a)
. (Dag + Dyy) — \/ (12?“ — Dy,)* +4D2, (15.130)
Now using the fact that A\ > 0 and Ay > 0 we get the following relations:
Dyy+ Dyy >0 (13.14a)
(Daw + Dyy)? > (Do — Dyy)? + 4D2, (13.14b)

On algebraic manipulations of the above equations results in the relations (I3.12al)-([I312d) which
completes the proof. O

DEFINITION 13.6 (Positive linear maps). Let U and V be two vector spaces defined over a field
K. A function ® : U — V is called a linear map if it satisfies the following conditions:

Plx +y] = Plx] + Ply] Ve,yclU (13.15a)
Plax] = a®[x] Ve eld,acK (13.15Db)

Let ML, := M, (R) be the set of all real matrices of size “n xn” defined over a field of real number
R. This space of matrices M, is a vector space[d4]. A linear map ® : M,, — My, is called positive if
®(A) is positive semi-definite whenever A is positive semi-definite and is strictly positive if ®(A)
is positive definite whenever A is positive definite [14] Section 2.2].

THEOREM 13.7 (Strictly positive linear mapping of anisotropic diffusivity). Let ®[e] := [, [o]dQ.
Show that ®[e] is a linear map and ®[D(x)| is symmetric, uniformly elliptic, and bounded above.

PRrROOF. From the definition [I[3.6] it is evident that ®[e] is a linear map and ®[D(x)] is sym-
metric. Note that from equation ([I23]), the scalar & - D(x)€ > 0 and meas(€2.) > 0. As it is well
known that Lebesgue integration of a scalar for a strictly positive measure is always greater than
zero [89]. Hence er £-D(x)€ >0 Vx e Q.. Integrating the equation (I2.3]), over Q. result in the
following relation:

1

0< ’71£ . 5 < m /E : D(X)£ < ’726 . E Vﬁ € Rnd\{O} and Vx € €, (13.16)
Qe
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Since the vector £ independent of  and (), we can interchange the order of integration. This gives
us the following equation:

1

meas(,) & PIP@E =128 & VE< R"\{0} and Vx € €, (13.17)

0<m&-€<
this shows that ®[D(x)] is a strictly positive linear map of D(x) and indeed preserves its properties.
This completes the proof. ]

Let us denote D := mﬂD(m)], €:= g—zz, and n := g—Z' Note that the matrix components
of D are constants. From Theorem [3.7]and Lemma [[3.5] it is evident that D,, > 0, D,, > 0, and
DyyDyy > D%y. So from equation (I312d), we have 1 € (—/¢,1/€). These two non-dimensional
quantities eand 7 govern the mesh restrictions that we impose on the coordinates (a,b). From

equations (I3.3) and (I3:4), the stiffness matrix for anisotropic diffusivity tensor is given as follows:

Dyub?—2Dgyb(a—1)+Dyy(a—1)2 o Dyzb?+Dyy(b—2ab)+Dyyala—1)  —Dyyb+Dyy(a—1)
_ _ 2b _ _ _2b _ _
K. = _Dzzb2+Dzy(b—2gzb)+Dyya(a—1) Dzzb2—2ngab+Dyya2 Dzyb—bDyya (1318)
- 2 . 2b_ 2
—Dgyb+Dyy(a—1) Dyyb—Dyya Dyy
2b 2b 2b

We now present the sufficient conditions so that the matrix K. is weakly diagonally dominant:

Condition-4: Positive diagonal entries: (K.),, > 0 Vi = 1,2,3, gives the following rela-

tions:
Dyzb®—2D 4y b(a—1)+ Dy (a—1)2
(Ke)n — y (2b ) uy ( ) >0
_ Dapb?—2Dgyab+Dyya?
(KG)ZZ - (K@)22 - 2g ae > 0

Dy,
(Ke)sg =5+ >0

As Dy, > 0, from (K.)s3 > 0 we need to have b > 0. So rearranging the above relations
we have the following restrictions:

(Ke) = <b\/l~)7m —|a—1| f)yy>2 + 2bla — 1] (@@ — Sgn [ja — 1] Dmy> >0 (13.19a)
(Ko = (0/Dor = Dyy)2 +2lal (\/Decy/ Dy, ~ Senlall Dsy ) > 0 (13.19)

_ Dy
2b

where Sgn|e| is the standard signum function. From Lemma [I335] it is evident that

V/Dyy\/Dyy > Dyyy. Hence equations ([3.19a)-(I3.I9d) are trivially satisfied for b > 0
and for any abscissa a.

Condition-5: Non-positive off-diagonal entries: (Ke)ij <0 Vi# j wherei=1,2,3 and
j =1,2,3. This restriction gives the following relations:

>0 (13.19¢)

D 3b% + Dy (b—2ab)+ Dy, —
(K€)12 = —~D ":D yl 22ba )+Dyya(a—1) <0
—Dayyb+Dyy(a—1
(Ke)yj = (Ke)ys = NTW(G) =0
(Ke)yy = 2252m <0
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using the paramters €, 7, and the fact that ordinate b > 0 we have the following inequalities:

<a - %)2 v <\%>2 — 2 (g) <a - %) > <%>2 (13.20a)

a—1 n
— 13.20b
b S ( )
257 (13.20c)

b~ €

these inequalities dictate the feasible region for coordinates (a,b). For a given € and by
varying n which lies between —./e and /e, we get different feasible regions for (a,b).
Herein, we have choosen € = 10 and n € {—1,0,1}. For these values, we have plotted the
feasible region based on the inequalities (I3:20al)-([I3:20c). From figures 07 [I8] and 19
the following can be inferred based on the feasible region:

e If = 0 the possible T3 elements are either acute angled or right angled triangles.

o If either n < 0 or n > 0 then there is no restriction on the angles of the triangle.

Condition-6: Weak diagonal dominance of rows: Z|
i#]

U Vi,j where

t=1,2,3 and j = 1,2,3. This gives the following relations:
(b* = 2nb(a — 1) + €(a — 1)*) > (> +n(b — 2ab) + ea(a — 1)) + (nb — €(a — 1)) (13.21a)
(b* — 2nab + €a®) > (b* + n(b — 2ab) + ea(a — 1)) (ea — nb) (13.21b)
e>(nb—ela—1))+ (ea — nb) (13.21c¢)

if Condition-1 and Condition-2 are satisfied then this condition is trivially satisfied.

14. CONCLUDING REMARKS

We have shown that a well-centered mesh (or acute-angled triangle) need not be sufficient or
in some cases too restrictive to satisfy maximum principles and the non-negative constraint for
anisotropic diffusion equation. This work will invaluable in two respects:

(i) It will give guide the existing users on the restrictions to be placed on the mesh to meet the
maximum principles.

(ii) The presented study has clearly shown that placing restrictions on computational grids is not a
viable approach to achieve physically meaningful non-negative solutions for highly anisotropic
medium. We hope that this research note will motivate researchers to develop new method-
ologies to satisfy maximum principles and the non-negative constraint without any restricts
on the mesh.
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FI1GURE 15. T3 element: A pictorial description of the mesh element, actual element, and
reference element. The mesh element PQR corresponds to an arbitrary T3 element of the
computational mesh in (X,Y") coordinate system. This mesh element PQR is transformed
to an actual element ABC which is given in (z,y) coordinate system. Analysis is performed
on the actual element ABC such that one obtains restrictions on coordinates (a,b). This
is accomplished via imposing conditions on local stiffness matrix to be weakly diagonally
dominant. Finally, after one obtains the coordinates (a, b), the actual element is transformed
back to the original mesh element.
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FIGURE 16. T3 element for heterogeneous isotropic diffusivity: A pictorial description of
the feasible region (left figure) is shown in lightblue color. The right figure indicates that
the point (a,b) can lie either on the circle with center (3,0) and radius 3 or outside the
circular region. The points within the circular region are unfeasible. This results in two
possibilities for choosing a T3 element in the realm of the feasible region, which is either a

right-angled triangle or a acute-angled triangle.
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FIGURE 17. T3 element for anisotropic diffusivity when f)my = 0: A pictorial description
of the feasible region (left figure) for the coordinates (a,b) is indicated in lightblue color.
Analysis has been performed for the case when Dmy = 0. The numerical values for the two
parameters which decide the feasible region are chosen to be ¢ = 10 and n = 0. In this
case, the right figure indicates that acute-angled and right-angled triangles are possible. As
€ increases the coordinate b has to increase proportionally to satisfy the inequality given
by the equation ([3:20al). For higher values of e, it is very difficult to find a suitable T3
element.
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FI1GURE 18. T3 element for anisotropic diffusivity when Dzy < 0: The left figure indicates
the feasible region for the coordinates (a,b) in lightblue color. The right figure indicates

that when Dzy < 0, angles in the T3 element can be acute-angle or right-angle or even
obtuse-angle. In this case, we have chosen ¢ = 10 and n = —1. For a fixed 7 as € increases
the value of coordinate b also increases. So it is a daunting task to find a viable T3 element.
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FIGURE 19. T3 element for anisotropic diffusivity when Dzy > 0: The left figure indicates
the feasible region for the coordinates (a,b) in lightblue color. The right figure indicates
that when Dwu > 0, angles in the T3 element can be acute-angle or right-angle or even
obtuse-angle. In this case, we have chosen ¢ = 10 and n = 1. For a fixed 7 as € increases the
value of coordinate b also increases. Finding a T3 element in such cases is nearly impossible.
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FIGURE 20. T3 element for fixed n and varying e: A pictorial description of the feasible
region (lightblue color) for a fixed n and varying e. Analysis is performed for n = —1 and
e = {2,10, 50,100, 200, 500}. It is evident there is a drastic variation in the feasible region as
€ increases. Note that for higher values of € it is very difficult to find a suitable T3 element
which can mesh a given computational domain.
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SUMMARY & PLANS

The following are the completed research tasks.

(D)

(111)

(IV)

Deriving mesh restrictions to meet maximum principles: We completely finished
this aspect of the research in the second year, which was started towards the end of the first
year. This research is about deriving mesh restrictions to meet maximum principles and the
non-negative constraint for advection-diffusion and linear reactions. [Status: Finished. The
paper is available on arXiv.]

Numerical methodology for transient diffusion equation to meet maximum prin-

ciples and the non-negative constraint: One of main tasks on the numerical modeling

front is to the develop numerical methodologies for satisfying maximum principles and the
non-negative constraint for transient problems.

(a) We finished the development of a robust methodology for linear transient diffusion equa-
tions. The research is also submitted for review to an international journal. [Status:
Finished. The paper will soon be placed on arXiv.]

(b) In the second year, we started developing non-negative methodologies for semi-linear
diffusion-type equations. We completed the theoretical aspects, and we are in process
of generating numerical results. This will be finished in the first quarter of third year,
and will be submitted to a journal. For sake of brevity of the yearly report, we did not
include these results in this report.

(¢) In the third year, we will develop non-negative formulations for steady-state and transient
quasilinear diffusion-type equations.

On achieving element-wise species balance and enforcing maximum principles for

advection-diffusion-reaction equations: This is research is one of the main ingredients

of the computational modeling of degradation of materials. A robust predictive framework for
advective-diffusive-reactive systems is vital to predict the various degradation mechanisms.

This part of the research has been started in the first year, and will continue to the early

part of the third year. We are currently working on to numerical challenges posed by choatic

advection, which can arise in, for example, moisture degradation mechanism. The duration
of the research topic should be a reflection of the transformative nature of the research. This
will also be completed by the end of first quarter in the third year.

A chemo-thermal-deformation model for degradation of materials/structures:

We have been developing a hierarchy of mathematical models to model various mechanisms

of degradation. The models will account for coupled chemo-thermal-deformation response,

which is crucial for mathematical modeling of degradation of materials. As discussed in our
proposal, this mathematical model in consistently derived using mechanics and thermody-
namics principles. In particular, the model will satisfy the second law of thermodynamics,
which is not the case with some of the current models for degradation. In the fourth quarter

of second year, the effect of degradation on stress concentration is studied. To this end, a

plate with a circular hole subjected to uniaxial tension is considered. This problem is classical

and well-studied in the absence of degradation. However, it not addressed in the literature
how degradation affects the stress concentration, and the distribution of stresses and strains.

In the next quarter, we will calibrate the model using the hygrothermal data published in

the literature on concrete.



I1.

12.

13.

C1.

C2.

C3.

C4a.

C4b.

C5.

C6.

CT.

C8.

Invited Talks

Rice University: “Importance of non-negative solutions in degradation modeling, ground-
water modeling, and reactive transport,” Graduate seminar, Department of Civil and En-
vironmental Engineering, February 7, 2014.

M.K. Mudunuru, and K.B. Nakshatrala, “Why need physics-compatible numerical formu-
lations for flow and transport in subsurface and material modeling?” Indian Institute
of Science (IISc), July 30, 2014.

J. Chang, and K.B. Nakshatrala, “A locally conservative finite element formulation and
its parallel implementation in PETSc,” Los Alamos National Laboratory, August 4,
2014.

Conferences Talks

S. Karimi, and K. B. Nakshatrala, “Monolithic multi-time-step coupling methods
for second-order transient systems,” 17th US National Congress of Theoretical and
Applied Mechanics, Michigan State University, June 15-20, 2014.

M. K. Mudunuru, and K. B. Nakshatrala, “On mesh restrictions for mixed formula-
tions for mixed formulations for anisotropic diffusion equation in high contrast
heterogeneous media,” 17th US National Congress of Theoretical and Applied Mechan-
ics, Michigan State University, June 15-20, 2014.

J. Chang, and K. B. Nakshatrala, “Computational performance of locally conser-
vative methods for large-scale flow and transport through porous media,” 17th
US National Congress of Theoretical and Applied Mechanics, Michigan State University,
June 15-20, 2014.

S. Karimi, and K.B. Nakshatrala, “On the development and performance of multi-
time-step coupling methods for transient multi-scale problems,” FExperimental
and Computational Nonlinear Dynamics session, 51st SES Annual Technical Meeting, Pur-
due University, October 1-3, 2014. [Student poster competition]

S. Karimi, and K.B. Nakshatrala, “Monolithic multi-time-step coupling methods
for transient problems in solid mechanics and transport,” Ezperimental and Com-
putational Nonlinear Dynamics session, 51st SES Annual Technical Meeting, Purdue Uni-
versity, October 1-3, 2014. [Oral presentation)|

J. Chang, and K.B. Nakshatrala, “A methodology to ensure local mass conser-
vation for porous media models under finite element formulations based on
convex optimization,” AGU Fall Meeting, December 15-19, 2014. [Poster presenta-
tion)|

S. Karimi, and K.B. Nakshatrala, “A monolithic multi-time-step computational
framework for transient advective-diffusive-reactive,” AGU Fuall Meeting, Decem-
ber 15-19, 2014. [Poster presentation)|

S. Karra, J. Chang, and K.B. Nakshatrala, “On the performance of maximum-
principle enforcing methods applied to large-scale subsurface problems,” AGU
Fall Meeting, December 15-19, 2014. [Poster presentation|

K.B. Nakshatrala, “On enforcing maximum principles, comparison principles,
monotone property, and the non-negative constraint for linear /nonlinear steady-
state/transient diffusion-type equations,” AGU Fall Meeting, December 15-19, 2014.

3



P1.

P2.

P3.

Al.

MI1.

M2.

Ms.

MA4.

Peer-Reviewed Conference Papers/Extended Abstracts

M. K. Mudunuru, and K. B. Nakshatrala, “On mesh restrictions for mixed formula-
tions for mixed formulations for anisotropic diffusion equation in high contrast
heterogeneous media,” 17th US National Congress of Theoretical and Applied Mechan-
ics, abstract number C-06-703, 2014.

J. Chang, and K. B. Nakshatrala, “Computational performance of locally conser-
vative methods for large-scale flow and transport through porous media,” 17th
US National Congress of Theoretical and Applied Mechanics, abstract number C-06-523,
2014.

S. Karimi, and K. B. Nakshatrala, “Monolithic multi-time-step coupling methods
for second-order transient systems,” 17th US National Congress of Theoretical and
Applied Mechanics, abstract number C-06-840, 2014.

Awards / Honors

Saeed Karimi (a Ph.D. student under Dr. Kalyana B. Nakshatrala) got travel grant from
the prestigious Society of Industrial and Applied Mathematics to attend 2015 STAM Con-
ference on Computational Science and Engineering (CSE15). He won the award based on
the conference talk abstract on “Monolithic multi-time-step coupling methods for transient
systems,” S. Karimi, and K. B. Nakshatrala. The award consists of $650 and waiver of
conference registration fee.

Mini-symposia organization at national/international conferences

“Continuum scale modeling of flow and reactive transport in porous media,” Organizers: S.
Karra, and K.B. Nakshatrala, American Geophysical Union Fall Meeting, San Francisco,
December 9-13, 2013.

“Continuum scale modeling of flow and reactive transport in porous media,” Organizers: S.
Karra, and K.B. Nakshatrala, American Geophysical Union Fall Meeting, San Francisco,
December 15-19, 2014.

“Modeling flow and transport in heterogeneous porous media,” Organizers: K.B. Nakshatrala

(Chair), S. Karra, and H. Viswanathan, 13th US National Congress on Computational Me-
chanics, San Diego, California, July 26-30, 2014.

“Mathematical and numerical modeling of degradation of materials and structures,” Or-
ganizers: K.B. Nakshatrala (Chair), D.Z. Turner, K.J. Willam, and R. Ballarini, 13th US
National Congress on Computational Mechanics, San Diego, California, July 26-30, 2014.




On modeling of material degradation due to moisture

Abstract

In this paper, we derive a chemical degradation model under small strain and isothermal con-
ditions by appealing to the maximization of entropy production. In this process, we shall provide a
thermodynamic status of the degradation model recently proposed by Mudunuru and Nakshatrala
(IJNME, DOI: 10.1002/nme.3282, 2012). In order to illustrate the advantage of this model, the
results obtained from this framework will be compared with that of metric-based meshes based on
the standard Galerkin method. Furthermore, we shall study the behavior of degrading slabs under
self-weight, which is a 3D problem. To crystalize ideas, we shall assume the degradation is due
to moisture, which is a predominant degradation mechanism in slabs and nuclear containments.
Employing this model, we shall solve various representative boundary value problems pertaining
to moisture degradation, which provide valuable information on the structural response of build-
ing materials. We shall compare the behavior of an infinite degrading slab with the behavior of
a finite-sized degrading slab. We shall highlight the limitations of typical semi-inverse solutions,
which are commonly employed in practice. We shall also discuss the implication of the results from
our study on degradation of slabs with respect to better design codes.

1. INTRODUCTION AND MOTIVATION

A robust infrastructure is vital for economic growth. Modeling infrastructural materials and
the ability to predict their response in severe environmental conditions is of great importance to
the infrastructure industry. Most of the well-known manifestations, such as “wear out ” and “frac-
ture”, are related with a phenomenon called degradation of materials [7]. Degradation is a major,
widespread, and an important engineering problem. There is a recent surge in research activities
to develop new infrastructural materials that have better resistance to various degradation mech-
anisms. There is also a growing research interest to understand the general behavior of degrading
structural members. For various types of infrastructure (e.g., transportation infrastructure, res-
idential and commercial buildings), slab is one of the essential load bearing structural members.
To give specific examples, slabs are used as the building blocks for highway pavements, floors and
roofs of buildings, decks in bridges, and as walls in water tanks. Therefore, this paper will simulate
one of the most typical degradation phenomenons, two-way coupled chemical degradation problem.
Especially, we shall study the behavior of slabs subjected to degradation.

1.1. Main contributions and outline of the paper. The main contributions of this paper
are as follows:

(i) We derived a chemical degradation model under small strain and isothermal conditions by
appealing to the maximization of rate of entropy production. Many exisiting models (some
of them not necessarily degradation models) will be special cases of the proposed degradation
model. In this process, we shall provide a thermodynamic status of the degradation model
proposed by [30].

(ii) We illustrated the performance of metric-based meshes in solving coupled deformation-diffusion
problems in terms of matrix condition number, and the overall quality of solutions.

(iii)) We illustrated that material degradation gives rise to secondary effects like bulging, which
play an important in design considerations.
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(iv) We illustrated the deficiencies of commonly employed semi-inverse methods in the prediction
of deformations of degrading slabs. We showed that the behavior of an infinite slab (which is a
common idealization made in obtaining analytical solutions) is qualitatively and quantitatively
different from that of a finite-sized slab, especially in the presence of degradation.

(v) We are currently developing a computational framework to model unsteady motions of struc-
tures subject to matrial degradation. This research will be reported in the next quarter.

2. MATHEMATICAL MODELS FOR DEGRADATION AND THEIR
THERMODYNAMIC STATUS

Let © € R™ be a bounded open domain, where “nd” denotes the number of spatial dimensions.
Let 09 denote the boundary of the domain, and a spatial point in € is denoted by x. As we are
concerned with linearized theory of degradation models, the unit outward normal to the boundary
is denoted as n(x) (instead of n(x,t)). The gradient and divergence operators with respect to x
are, respectively, denoted as grad|-] and div[-]. We shall denote the time by ¢ € [0,Z], where Z is
the length of the time interval. In the view that degradation of a material will involve multiple
coupled processes. We shall now define various physical and chemical quantities that are need to
document the relevant balance laws and constitutive models.

Denote the temperature by 9(x, t) and the specific entropy by 7(x,t). The mass concentration
of the chemical species [10] is denoted by c¢(x,t), which is also referred to as mass fraction in
some books [38]. The corresponding chemical potential is denoted by »(x,t). The displacement,
velocity, and acceleration of the solid are respectively, denoted by u(x,t), v(x,t), and a(x,t). The
temperature, concentration, entropy, and chemical potential are scalar fields, while the displace-
ment, velocity, and acceleration are all vector fields.

For the deformation problem, the boundary is divided into I'? and T'Y such that I'D UTY = 9Q
and TP N TN = (. T'D is that part of the boundary on which displacement is prescribed and I')Y
is part of the boundary on which traction is prescribed. Similarly, for the transport problem, the
boundary is divided into I'? and T'N such that TP UTY = 9Q and TP NT'Y = . T'D is that part
of the boundary on which concentration is prescribed and I'Y is part of the boundary on which
transport flux is prescribed. As for the thermal problem, the boundary is divided into FB and Fy
such that Fg Uy = 0Q and Fg NnTr y =0.T 5 is that part of the boundary on which temperature
is prescribed and I’ y is part of the boundary on which heat flux is prescribed.

2.1. Balance laws for chemo-mechano degradation. In chemo-mechano degradation prob-
lems, several balance laws should be obeyed. The following summarizes different balance laws in
homogenized sense:

e Balance of mass and linear momentum for solid in the degrading body can be stated as
follows:

p+ pdiv[v] =0 (2.1)
pv = div[T] + pb (2.2)

where () denotes the material time derivative [18], p is the density of the solid, b(x,t) is
the specific body force, and T(x,t) is the Cauchy stress in the solid.
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e As the system under consideration is open and the chemical species cannot taken partial
stresses, we only have balance of mass for chemical species in the degrading body. This is
given as follows:

pé+divih] = h (2.3)

where h(x, t) is the diffusive flux vector and h(x,t) is the volumetric source of the chemical
species.
e The balance of energy for the degrading body takes the following form:

0A ) : .
p (8? -E; + 1977) =T E; —diviq] — grad[»]-h +¢ (2.4)
l
where A is the specific Helmholtz potential, E; is the linearized strain, n is the specific
entropy, (x,t) is the chemical potential, q(x,t) is the heat flux vector, and ¢(x,t) is the
volumetric heat source.
e Finally, the second law of thermodynamics in its reduced form is given as follows:

0A . 1
p <8—El : El> =T -E — Egrad[ﬁ] -q — grad[s]-h —( (2.5)

where ( is the rate of dissipation functional, which is always non-negative. Additionally,
we have the following relations for chemical potential and specific entropy:

0A
0A

2.2. A linearized two-way coupled chemical degradation model. We shall appeal to
the axiom of mazimization of rate of entropy production [46] to derive constitutive relations that
satisfy the second law of thermodynamics aprior. To this end, we need to prescribe two scalar
functionals: A functional to describe how the material stores energy and a functional to describe
how the material dissipates energy. In our case, we shall specify ‘A(El, ¢, v)’ the specific Helmholtz
potential and ‘¢ (Eg, 9, ¢, El,grad[ﬂ],grad[%])’ the rate of dissipation functional. Our model will
be restricted to case when the degradation process is taking place very close to the equilibrium.
Mathematically, this assumption takes the following form:

s (00 \2 | Plgrad)P | Pleradid? )"
e := | [lgrad[ul||” + o M— +— <1 (2.8)

ref

ref

where ¥of and cef are, respectively, the reference temperature and reference concentration, which
will be problem specific. From the above near equilibrium assumption (based on equation (2.8)),
it is evident that strain in the solid is linear and is defined as follows:

E; = % (grad[u] + grad[u]T) (2.9)
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Correspondingly, the specific Helmholtz potential for a linearized chemical degradation model is
given as follows:

A 1 1c 1
A= A(Ey, ¢, 0) :%E, - C(c)E; — 51971 (0 — Do) + p (9 — Dyer) Mg, - By
1 1
+ ; (C - cref) McEl . El + ERsﬁref(C - Crof)2 (210)

where Ry = %. R, and R are,respectively, the specific gas constant and the universal gas constant.
M is the molecular mass of chemical species, ¢, is the coefficient of heat capacity, Myg, is the
anisotropic coefficient of thermal expansion (which is assumed to be independent of temperature,
concentration, and strain), and Mg, is the anisotropic coefficient of chemical expansion due to
concentration (which is assumed to be independent of temperature, concentration, and strain).

REMARK 2.1. In chemoelasticity and in modeling degradation of materials due to transport and
reaction of chemical species, coefficient of chemical expansion Mg, plays a vital role. It should
be noted that induced-strains due to chemical expansivity will be significant in harsh environmental
conditions and cannot be neglected [39]. Considerable inquest has been made in literature to ex-
perimentally measure Mcg, in ceramics [6, 8, 29], laminated and polymer composites [9, 12, 39],
elastomers and biological materials [19, 24, 81], and concrete structures [40, 41, 43]. But seldom
progress has been accomplished to develop constitutive models and computational frameworks for
such chemoelastic materials or materials undergoing chemical-induced degradation. Herein, we
shall take a step forward to address this issue.

Furthermore, the rate of dissipation functional for a linearized chemical degradation model is
taken as follows:
¢ = é(El, 9, ¢, By, grad[], grad|s])
c
RV ot
where Dyy is the anisotropic heat conduction, and D,,,, is the anisotropic diffusivity tensor.

= %grad[ﬁ] - Dyggrad[d] + grad[s] - D, grad[s] (2.11)

2.2.1. Mazimization of rate of entropy production. Among various methodologies to derive
constitutive relations [28], axiom of maximization of rate of entropy production put-forth by
Ziegler [46] is an attractive and simple procedure. Using this procedure, constitutive equations
can be generated by specifying A(E;, ¢,¥) and C(E;, 9, ¢, By, grad[9], grad[s]). Accordingly, the
mathematical statement of the maximization of rate of entropy production can be written as fol-

lows:
maximize (B, 9, ¢, By, grad[9], grad|s]) (2.12a)
E, grad[d],grad|>]
. 0A . 1
subject to P\ aE E )=T E — g grad[¥] — grad[»]-h —( (2.12b)
l

Based on the method of Lagrange multipliers, the above constrained optimization problem can be
written as follows :

 extremize CA(EZ, 9, ¢, By, grad[9], grad|s])
E; grad[d¥],grad[>],A

0A . o1
+A (p <8—El : El> -T-E + 74 grad[d] + grad[s] - h + C) (2.13)
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where A is the Lagrange multiplier enforcing the constraint of (2.12b). Compute the partial deriv-
ative of this problem with respect to each variable, we can have the following equations:

L o, 04 (L) A
OBi: T=pop+ < < > oF, (2.14a)
1 I+ A ¢

Ograd[d] : 594= "~ < 3 ) Dgrad] (2.14b)
B I+ A ¢

Ograd[»]: h=— < 3 > Dgrad (2.14c¢)

0A . o1
ox: p <8T : El> -T-E + el grad[¥] + grad[»]-h+ (=0 (2.14d)
l

The Lagrange multiplier can be obtained from these above equations:
-1

> ¢ > —1 (2.15)

A= 9 B 4+ 9% . rad[ﬂ]—kic- rad ]
OE, l Ograd[9I] g Ograd|x] &

If we assume that the rate of dissipation functional is a homogenous function of order 2, (2.15) can
be rewritten as follows.

¢ o o¢ a¢
_— . E > . =2 2.1
o5 Bt ) S+ g -radld = % (2.16)
Since A = —2, the constitutive relations take the following form:
0A 1 0¢
T= pa—:El + EO—EI - (C(C)El + (19 - 19ref)M19El + (C - Cref)McEl (2173)
9 OC
=————=-D d[v 2.17b
4= 72 grad[] sograd) (2.175)
h= L_ % = c D, . .grad[~] (2.17¢)

2 Ograd || Ryt

2.3. Status of the degradation model in [30]. The balance laws in this model should be
checked. The specific entropy, Cauchy stress,chemical potential under the assumption of equation
(2.8) can be written as follows:

0A c 1
n= _% = 79:; {19 - 79ref} + ;MﬂEl - Ey (218)
0A
T=p—= (C)El + (C — Cref)McEl (2.19)
0E;
0A 1
= % = ;McEl B + Rsﬂrof(c - Cref) (220)

Since the solid is linear elastic, the balance of mass for solid (2.1) stands automatically in steady
state. The balance of linear momentum can be written as follows:

pv = div[C(c)E; + (¢ — ¢ret)McE,] + pb (2.21)
The balance of species (2.3) can be written as follows:
pé+divih] = h (2.22)
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The balance of energy can be written as follows under the assumption of equation (2.8) :

PV ﬁcpflé + IMyg, - By — cgrad[c] - D,.grad[s] = ¢ (2.23)

The isothermal assumption can be taken based on the equation (2.24), that is:
q = —cgrad|c| - D, grad[s] (2.24)
Therefore, the steady-state governing equation for this model can be written as follows:
div[C(c)E] + pb(x) =0 (2.25)

divih(x)] = h(x) (2.26)

2.4. Constitutive specifications in the model [30]. The first and second invariants of the
strain tensor are defined as follows.

IEl = tl“[El] (2.27&)

Ilg, = \/ §(3tr[E2l] — (t[E])2) (2.27D)

Since the solid is assumed to be linear elastic, the Cauchy stress, which depends on the concentration
and position, takes the following form:

T. = A%, 0)Ig, I+ 2u(x, c)E; (2.28)

where I is the second-order tensor, and the Lamé parameters are given by the following expressions:

A(x,¢) = Ao(x) — —A1(x) Cif (2.29a)
() = pro(x) — — o (%) — (2.29b)

Cref

where \g and pg are the lamé parameters of materials with c¢.or. A1 and p1 are the parameters that
account for the effect of diffusion on deformation. Since this is a degradation model, A\; and pjare
all positive.

The effect of deformation on diffusivity is modeled as follows.

When tensile strain is predominant:

D =Dy + (DT — D()) (1 — eXp[T]T[El]) + (DS — DO) (1 — exp[nSIIEl]) (230)

where 17 and 7ng are non-negative parameters, Dy, D7 and Dg are, respectively, the reference
diffusivity tensors under no, tensile, and shear strains.
When compression is predominant:

D =Dy + (D¢ — Do) (1 — explnclg,]) + (Ds — Do) (1 — exp[nsIg,]) (2.31)

where n¢ is a non-negative parameter and D¢ is the reference diffusivity tensor under compressive
strains.
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3. ON THE PERFORMANCE OF METRIC-BASED MESHES AND
NON-NEGATIVE FORMULATIONS IN DEGRADATION MODELING

In solving chemical degradation problem, Newton Raphson and standard Galerkin method can
produce negative concentration values, since the diffusivity tensor is anisotropic. Usually, there are
two methods can be used to avoid this situation. The first one is to design a proper numerical
scheme, and the other is to build a proper mesh [25]. In this section, several case studies will be
done to show the performance of all these methods: the Newton Raphson method and the Galerkin
method using the regular mesh and the metric-based mesh, as well as the non-negative formulation.

3.1. Plate with a square hole. The first case study is a bi-unit square plate with a hole of
length % under self-weight. The boundary condition for deformation subproblem is that the internal
boundary is fixed, and external is traction free. For the diffusion subproblem, the concentration at
the hole is maintained at 1, whereas at the boundary of the plate is 0. The tensile strain is assumed
to be predominant, therefore equation (2.30) will be applied. Dy, D7, and Dg have been chosen

Do (S () () ) .12

)
o (5 ) (55 ) e

as follows.

Do — cos(f)
T ( sin(6)
— sin N coS sin
Ds = < Z?I?((Z)) cos(g?) ) < d/()1 d(;g > < —sié?g) cos((g)) > (3:1c)

The parameters are assumed as follows.
9= %, nr =1, ng =1, di = 10000, ds = 1, dF = 20000, d =5, d¥ = 15000, d5 = 2,
p=10% g=10, cret =1, Ao = 10", o =2x 10", X\ =9 x 10'°, 1y = 1.8 x 10%° (3.2)

Two different kinds of mesh has been shown in Figure 1. The restriction on the metric-based mesh
should be the inverse of the diffusivity tensor. However, the diffusivity tensor varies from element
to element, since it depends on the strain, which is different for each element. Since it is difficult
(or impossible) to apply the corresponding diffusivity tensor to each element, the mesh is generated
based on the inverse of Dy.

For the Newton Raphson method, the residual variations have been shown in Figure 4. It can
be found that only the regular mesh can be used to solve this problem, since the metric-based
mesh leads to high condition numbers. The concentration distribution results have been depicted
in Figure 2. Table 1 shows the number of elements and nodes, the condition number of stiffness in
both deformation and diffusion subproblems, the healing index, and the minimum concentration in
all four methods. The healing index is the percentage of nodes with negative values. The variation
of condition number of stiffness in deformation and diffusion subproblems with the iteration number
have been described in Figure 3.

From above results, we can find out that, for the diffusion subproblem, although the healing index is
reduced by the metric-based mesh, negative concentration values still exist. Moreover, the adapted
mesh does not simulate the deformation problem very well. Not only the maximum displacement
cannot be captured, but also the condition number of stiffness in deformation subproblem is much
higher than the other methods.
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TABLE 1. Square plate with hole: Comparison of four methods

Number of Number  Condition number of stiffness Healing Minimum

Method Mesh type elements of nodes  Deformation Diffusion index concentration
subproblem subproblem
Newton Regular 1868 998 5504194221.99 29.46 -0.035
Raphson
Standard Regular 1868 998 402360.54 807.06 29.75 -0.035
Galerkin
Standard Metric- 2502 1395 5813905.18 1005.15 18.99 -0.02
Galerkin based
Non-negative  Regular 1868 998 400934.66 807.07 0 0
formulation

3.2. Plate with a circle hole. This is a very classical problem in material’s mechanics. A
bi-unit square plate with a circular hole with radius 0.2. For the deformation subproblem, the
top and the bottom surfaces are subjected to uniaxial tension. For the diffusion subproblem, the
concentration at the circular hole is maintained at 1, whereas at the boundary of the square plate
is 0.

The tensile strain is assumed to be predominant, and then all the parameters are assumed as
follows.

0==, nr=10, ng=1, d, =2x10°, dy =1, dl =1x10°%, di =2, df =5 x 10°,

T
3

di =2 p=1x10% g=10, cres =1, Ao =po =1 x10°, \; = pu; = 9 x 10° (3.3)
The regular mesh and metric-based mesh for the plate have been depicted in 5. The restriction
on the metric-based mesh is still the inverse of Dy. Newton Raphson method cannot solve this
problem using either regular mesh or metric-based mesh. The concentration distribution results
have been described in Figure 6.

3.3. Concrete beam with cracks. Since there is always several cracks in the concrete beam
in practice, we will study the behavior of a cantilever beam with several random generated cracks
under self-weight. The length of the beam is 5.0 and the height is 2.0. For the beam, the boundary
condition for deformation subproblem is that the left end of beam is fixed, and other edges are
traction free. For the diffusion subproblem, the concentration at the left edge is maintained at 1,
whereas at other sides of the beam is 0. As for the cracks, all the surfaces are traction free and
diffusion flux free.

The tensile strain is assumed to be predominant, and then all the parameters are assumed as
follows.

9:%, nr =10, ng =10, di =1 x 102, dy = 1, d¥ =2 x 10'2, d¥ = 5,
di =15 x10'%, d5 =2, p=24x10%, g =10, cret = 1,
Ao =101 pg=2x10", A\ =9 x 10", p; =1.8 x 10'° (3.4)

The regular mesh and metric-based mesh for the beam have been depicted in 8. The restriction
on the metric-based mesh is still the inverse of Dy. Newton Raphson method cannot solve this
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problem using either regular mesh or metric-based mesh. The concentration distribution results
have been described in Figure 9.

TABLE 2. Concrete beam with cracks: Comparison of three methods

Number of Number Condition number of stiffness Healing Minimum
Method - - ;
elements of nodes Deformation Diffusion index concentration
subproblem subproblem
Standard 924 514 736183.57 9472.80 49.22 -0.0645
Galerkin
Metric-based 10506 5863 115979203.94 12726536.93 16.60 -0.0249
mesh
Non-negative 924 514 741879.48 9472.80 0 0
formulation

From the above results, we can see that: first, the negative concentration area in the Galerkin
method using regular mesh is extended in this case. Although the metric-based mesh reduced the
area effectively, the negative concentration values still exist. Second, the maximum displacements
in Galerkin method using metric-based mesh are smaller than those obtained by non-negative
formulation. Last but not least, the number of elements and nodes in metric-based mesh is much
bigger than the regular mesh, which implies the computational complexity of Galerkin method
using the metric-based mesh.

4. CONCLUDING REMARKS

In this paper, a chemical degradation under small strain and isothermal condition is derived,
which provides a thermodynamic status of the degradation model proposed by Mudunuru and
Nakshatrala. Since there are two methods to avoid the negative concentration generated by the
standard Galerkin method, we compare the performance of this non-negative formulation with the
Galerkin method based on metric-based mesh. Furthermore, we extend the non-negative formula-
tion to 3D problem. The behavior of degrading slabs under self-weight is analyzed. The analytical
solution has been obtained by semi-inverse method for an infinite degrading slab, whereas the nu-
merical solution has been obtained for a finite-sized slab. The comparison between them has been
conducted. From the results, we can conclude as follows.

(i) The metric-based mesh can reduce the negative concentration values effectively, however, they
still exist.

(ii) The Galerkin method based on metric-based mesh cannot simulate the deformation subprob-
lem very well.

(iii) The analytical solution can not simulate the materials with isotropic or anisotropic diffusivity
appropriately.

(iv) The assumption of zero displacement in x and y directions is another significant limitation of
the semi-inverse method. For large structures in reality, especially the anisotropic materials,
the deformations along x and y directions can not be ignored.

(v) The deformation in z direction is not uniformly distributed on the plane, as the analytical
solution assumed. Moreover, the maximum deformation can occur on the edge of the slab.
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(b) The metric-based mesh.

FIGURE 1. Square plate with a hole: This figure shows the computational meshes employed
in the numerical simulation. The regular mesh is a Delaunay-type mesh generated using
Gmsh [1]. The metric-based mesh is generated using FreeFem++ corresponding to the
diffusivity tensor given by equation (3.1a).
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(a) Newton Raphson method using the regular (b) Newton Raphson method using the metric-
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(c) Galerkin formulation using the regular (d) Galerkin formulation using the metric-
mesh. based mesh.

| 1 [
0.0 0.2 0.4 0.

.6 0.8 1.0

1.0

(e) Non-negative formulation using the regular
mesh.

FIGURE 2. Square plate with a hole: This figure compares the concentration profiles ob-
tained using the Newton Raphson method, Galerkin formulation and the non-negative for-
mulation. The computational meshes (the regular and metric-based meshes) are shown in

Figure 1. 15
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FIGURE 3. Square plate with a hole: The variation of condition number with iterations
for deformation and diffusion subproblems under the Galerkin formulation and the non-
negative formulation. From this figure, it evident that metric-based meshed give rise to
matrices with large condition numbers, particularly for the deformation subproblem. This
substantiates one of the main conclusions of this paper: metric-based meshes, which work
well for anisotropic diffusion equations, may not produce accurate results for the deformation
subproblem.
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FI1GURE 4. This figure compares the residual obtained using the Newton Raphson method.
The computational meshes (the regular and metric-based meshes) are shown in Figure 1,
Figure 5, and Figure 8.

17



1.0

0.9

0.8

0.7

0.6

NAVAVAVAVAVAYA
L 08 0.9

°%.

2
o
o

0.7 1.0

(a) The regular mesh.

0.7 0.8
X

(b) The metric-based mesh.

FI1GURE 5. Plate with a circular hole: This figure shows the computational meshes employed
in the numerical simulation. The regular mesh is a Delaunay-type mesh generated using
Gmsh [1]. The metric-based mesh is generated using FreeFem++ corresponding to the
diffusivity tensor given by equation (3.1a).
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FIGURE 6. Plate with a circular hole: This figure compares the concentration profiles ob-
tained using the Galerkin formulation and the non-negative formulation. The computational
meshes (the regular and metric-based meshes) are shown in Figure 5.
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(e) Strain: Galerkin formulation using the (f) Stress: Galerkin formulation using the
metric-based mesh. metric-based mesh.
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(i) Strain: Newton Raphson using the metric- (j) Stress: Newton Raphson using the metric-
based mesh. based mesh.

-0.00420 -0.00258 -0.00096 0.00066 0.00228 0.00390 -5500 -4100 -2700 -1300 100 1500
1.0 3

0.?1

5

0%

(k) Strain: Non-negative formulation using the (1) Stress: Non-negative formulation using the
regular mesh. regular mesh.

F1GURE 7. Plate with a circular hole: This figure compares the contours of trace of stress
obtained using the Galerkin formulation and the non-negative formulation. The computa-

tional meshes (the regular and metric-based meshes) are shown in Figure 5.
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(a) The regular mesh.
-

(b) The metric-based mesh.

F1GURE 8. Concrete beam with cracks: This figure shows the computational meshes em-
ployed in the numerical simulation. The regular mesh is a Delaunay-type mesh generated
using Gmsh [1]. The metric-based mesh is generated using FreeFem++ corresponding to
the diffusivity tensor given by equation (3.1a).
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(c) Galerkin formulation using the regular (d) Galerkin formulation using the metric-
mesh. based mesh.
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(e) Non-negative formulation using the regular
mesh.

F1GURE 9. Concrete beam with cracks: This figure compares the concentration profiles ob-
tained using the Galerkin formulation and the non-negative formulation. The computational
meshes (the regular and metric-based meshes) are shown in Figure 8.

23



On mesh restrictions to satisfy maximum principles, comparison
principles, and the non-negative constraint for a general linear
second-order elliptic equation

Research highlights

e Various versions of discrete comparison principles and their relationship to discrete maxi-
mum principles and non-negative constraint are discussed.

e Necessary and sufficient conditions on stiffness matrix K to satisfy discrete weak and
strong comparison principles for a general linear uniformly elliptic partial differential equa-
tion are constructed.

e A general relationship between various discrete comparison principles, discrete maximum
principles, and non-negative constraint within the context of mesh restrictions, numerical
formulations, and post-processing methods are discussed.

e Various important aspects of numerical solution spaces pertinent to different discrete prop-
erties are provided.

e Pros and cons of using nonobtuse, acute, well-centered triangulations for heterogeneous
isotropic diffusivity and anisotropic M-uniform meshes (which are constructed based on a
Riemannian metric tensor depending on the components of anisotropic diffusivity tensor)
for heterogeneous anisotropic diffusivity to satisfy various discrete properties are discussed
in detail.

e Finally, two different methodologies are proposed to extend the numerical framework of a
general linear second-order elliptic partial differential equation to a general semilinear and
quasilinear second-order elliptic partial differential equations of monotone type.

Abstract

In this research report, we derive restrictions for three-node triangular (T3) element and a
four-node quadrilateral (Q4) element to satisfy comparison principles, maximum principles, and
the non-negative constraint for a general linear second-order elliptic equation under the standard
single-field Galerkin formulation. It is well-known that an acute-angled triangle or (in some cases)
a right-angled triangle is sufficient to satisfy the discrete weak maximum principle for isotropic
diffusion. Herein, we show that this condition can be either too restrictive or not sufficient to
satisfy various discrete maximum principles, discrete comparison principles, and the non-negative
constraint for a general linear second-order elliptic equation. We shall also pictorially show that
the feasible region for T3 and Q4 elements to satisfy various discrete principles is based on a metric
tensor whose components are a function of anisotropic diffusivity tensor, velocity field, and linear
reaction coefficient with respect to a suitable coordinate system. Finally, we critically review some
of the recent developments in the field of discrete maximum principles, derive new results, and shed
light on to the possible future developments on this research area.

5. INTRODUCTION AND MOTIVATION

Diffusion-type equations are commonly encountered in various branches of engineering, sciences,
and even in economics [14]. These equations have been well-studied in Applied Mathematics, and
several properties and estimates have been derived [15,35]. Numerous numerical formulations have
been proposed and their performance has been analyzed both theoretically and numerically (e.g.,
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see [17]). Several sophisticated software packages, such as ABAQUS [2], ANSYS [3], COMSOL [4],
and MATLAB's PDE Toolbox [5], have been developed to solve these types of equations. This report
is concerned with numerical solutions for anisotropic advection-diffusion-reaction equations. De-
spite the aforementioned advances, it should be noted that a numerical solution always loses some
mathematical properties that the exact solution possesses. In particular, the aforementioned soft-
ware packages and popular numerical formulations do not satisfy the so-called discrete comparison
principles (DCP), discrete maximum principles (DMP), and the non-negative constraint (NC).

5.1. Mesh restrictions and time step constraints. The first approach is to place restric-
tions on the mesh to meet maximum principles and the non-negative constraint. For isotropic
homogeneous diffusivity, Ciarlet and Raviart [13] have shown that numerical solutions based on
the single-field Galerkin finite element formulation, in general, does not converge uniformly. It
should however be noted that the single-field Galerkin formulation is a converging scheme. Ciarlet
and Raviart have also shown that a sufficient condition for single-field Galerkin formulation to
converge uniformly for isotropic diffusion is to employ a well-centered three-node triangular ele-
ments with low-order interpolation. The obvious advantage of this approach is that one can use the
single-field Galerkin formulation without any modification. The drawback is that an appropriate
computational mesh may not exist because of the required restrictions on the shape and size of
the finite element. For example, it is a herculean task (sometimes impossible) to generate a well-
centered triangular mesh for any given two-dimensional domain [42]. Note that requiring a mesh
to be well-centered is a more stringent requirement than requiring the mesh to be Delaunay. In the
scientific literature one can find numerous commercial and open-source mesh generators that pro-
duce premium quality structured and unstructured meshes for various complicated domains. For
example, see the survey report by Owen [34], which accounts for more than 70 unstructured mesh
generation software products. However, the use of these mesh generators in the area of numerical
analysis and engineering, in particular, to construct mesh restrictions for diffusion-type equations
to satisfy DCPs, DMPs, and NC is hardly known.

5.2. Non-negativity, monotone, and monotonicity preserving numerical formula-
tions. The second approach is mainly concerned with developing new innovative numerical method-
ologies based on certain physical and variational principles so that they satisfy DCPs, DMPs, and
NC. Broadly, these methods can be classified into the following three categories:

e Non-negative formulations: A numerical method belongs to the class of non-negative
formulations if the resulting numerical solution satisfies certain DMPs and NC.

e Monotone formulations: A numerical method is said to be monotone if the resulting
numerical solution satisfies certain DMPs, DCPs, and NC.

e Monotonicity preserving formulations: A numerical formulation is said to monotonicity
preserving if the resulting numerical solution does not exhibit spurious oscillations within
itself.

It is evident from the above set of definitions that a non-negative formulation need not satisfy a
monotone condition and a monotone numerical method may not be monotonicity preserving. A
general relationship between non-negative formulations, monotone formulations, and monotonicity
preserving formulations is pictorially described in Figure 10.
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FIGURE 10. Non-negativity, monotone, and monotonicity preserving numerical formula-
tions: A pictorial description of various class of numerical formulations satisfying certain
discrete properties. The shaded region in the Venn diagram represents a set of formulations
for which the numerical solutions obeys all the three important properties. Typically, de-
signing a numerical methodology so that it falls in to the shaded region category is still an
open problem.

5.3. Post-processing methods. The third approach is post-processing (PP) based methods.
In literature, there are various types of PP methods which can be used to recover certain discrete
properties for diffusion type equations. Some of the research works in this direction include

e Local and global remapping/repair methods (e.g., see [23]

e Constrained monotonic regression based methods [11].

e Cutoff methods (also known as the clipping methods) [22,27].

e A combination of remapping/repair methods and cutoff methods [44,45].

It needs to be emphasized that a posterior cutoff analysis is a serious variational crime. In
general, this method is neither conservative nor satisfies DMPs and DCPs. The primary objective
of this method is to cutoff the values of a numerical solution if it is less than a given number
(which is the cutoff value). Hence, it is called as the cutoff method. In case of highly anisotropic
diffusion problems and for distorted meshes this method predicts erroneous numerical results [32,
33]. By specifying the cutoff value to be zero, it is always guaranteed to satisfy NC through this
methodology. In addition, if nature of the solution is known aprior, then one can also prevent
undershooting and overshooting of the numerical solution by chopping off those values.

Herein, we shall focus on the first approach. In particular, we shall derive sufficient conditions
for restrictions on the three-node triangle finite elements to meet comparison principles, maxi-
mum principles, and the non-negative constraint in the case of heterogeneous anisotropic advection-
diffusion-reaction equations.

6. LINEAR SECOND-ORDER ELLIPTIC EQUATION AND ASSOCIATED
MATHEMATICAL PRINCIPLES

Let © ¢ R™ be a open bounded domain, where “nd” denotes the number of spatial dimen-
sions. The boundary of the domain is denoted by 0f), which is assumed to be piecewise smooth.
Mathematically, 9 := Q — Q, where a superposed bar denotes the set closure. A spatial point
is denoted by x € Q. The gradient and divergence operators with respect to x are, respectively,
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denoted by grad[-] and div[]. Let ¢(x) denote the concentration field. We shall assume that Dirich-
let boundary condition is prescribed (i.e., the concentration is prescribed) on the entire boundary.
The remainder of this paper deals with the following boundary value problem, which is written in
terms of a general linear second-order differential operator in divergence form:

L[c] := —div [D(x)grad[c(x)]] + v(x) - grad[e(x)] + a(x)c(x) = f(x) inQ (6.1a)
c(x) =cP(x) on o0 (6.1b)
where £ denotes the second-order linear differential operator, f(x) is the prescribed volumetric
source, a(x) is the linear reaction coefficient, v(x) is the velocity vector field, D(x) is the anisotropic

diffusivity tensor, and ¢P(x) is the prescribed concentration. Physics of the problem demands that
the diffusivity tensor (which is a second-order tensor) be symmetric. That is,

DT(x) =D(x) VxeQ (6.2)

REMARK 6.1. In mathematical analysis, the divergence form is a suitable setting for energy
methods. However, some studies on maximum principles do employ the nondivergence form, which
can be written as follows:

nd nd
0?c Jdc
Llc] = P)i—— ; r(x)c 6.3
= 30 Pl a0, + L@y, + 70 (6.3)

i,j=1

where the coefficient (P);j, (q)i, and r(x), which can be related to the physical quantities such as
the diffusivity tensor, velocity field, and linear reaction coefficient. It should be, however, noted
that the nondivergence form exists irrespective of differentiability of the diffusivity tensor. If D(x)
18 continuously differentiable, then there exists a one-to-one correspondence between the divergence
form and the nondivergence form. In such cases, the operator L in the divergence form given by
equation (6.1a) can be put into the following nondivergence form [15, Chapter 6]:

L[c] = —=D(x) - grad [grad[c(x)]] 4+ (v(x) — div [D(x)]) - grad[c(x)] + a(x)c(x) (6.4)
where we have used the following identity in combination with equation (6.2) to obtain equation
(6.4)

div [DT(x)grad[c(x)] = D(x) - grad [grad[c(x)]] 4+ div [D(x)] - grad[c(x)] (6.5)

Based on the nature of the coefficients and connectedness of the physical domain, different
versions of maximum and comparison principles exist in the mathematical literature [15,16,36,37].
As stated earlier in this paper, we shall restrict ourselves to the boundary value problem given by
the equations (6.1a)—(6.1b). Further analysis pertaining to Neumann boundary conditions and
mixed boundary conditions within the context of maximum principles, comparison principles, and

the non-negative constraint is beyond the scope of this paper.
We shall say that the operator L is elliptic at a point x € € if

0 < Amin(X)€ - € < €-D(X)€ < Apax(x)€ - € V€ € R™\{0} (6.6)

where Apin(x) and Apax(X) are, respectively, the minimum and maximum eigenvalues of D(x). The
operator L is said to be strictly elliptic if there exists a constant Ay such that

0< )\0 < )\min(x) Vx e (67)
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and uniformly elliptic if

Amax (X)
)\min (X)

In the studies on maximum principles, it is common to impose the following restrictions on the

0< <400 VxeQ (6.8)

velocity field v(x) and the reaction coefficient a(x):

a(x) >0 VxeQ (6.9a)
a(x) — %div [v(x)] >0 VxeQ (6.9b)
0§%§50<+00 VxeQ and Vi=1,---.,nd (6.9¢)

where f is a bounded non-negative constant. If (D);; and (v); are continuous in 2, then the
operator £ is uniformly elliptic for any bounded subdomain Q' cc Q (which means that Qs
compactly embedded in ) and the condition given in equation (6.9¢) holds. The restrictions given
in equation (6.9b) can be relaxed in some situations (e.g., see references [21,26]). But the constraint
on a(x) given by equation (6.9a) cannot be relaxed. If a(x) < 0 then equation (6.1a) is referred
to as Helmholtz-type equation, which does not posses a maximum principle. From the theory of
partial differential equations, it is well-known that the aforementioned boundary value problem
given by equations (6.1a)—(6.1b) satisfies the so-called (weak and strong) comparison principles,
(weak and strong) maximum principles, and the non-negative constraint. For future reference and
for completeness, we shall briefly outline the main results. For a more thorough mathematical
treatment, one could consult references [15,16,35].

THEOREM 6.2 (Continuous weak and strict weak maximum principles). Let £ be a uni-
formly elliptic operator satisfying the conditions given by equations (6.9a)—(6.9c). In addition, let
D(x) be continuously differentiable. Suppose that c(x) € C?(Q) N CY(Q) satisfies the differential
inequality L[c] < 0 in Q, then the mazimum of ¢(x) in Q is obtained on 0S). That is, c(x) possesses
the weak mazimum principle (WMP ), which can be written as follows:

max [c¢(x)] < max [0, max [c(x)]] (6.10)
x€N x€0N2
Moreover, if a(x) = 0, then we have the strict weak mazimum principle (WMP ):
= 6.11
max [o(x)] = max [e(x)] (6.11)
PROOF. For a proof see references [15,16]. 0

Several results pertaining to mesh restrictions are provided in the next set of figures. More
results can found in the forthcoming paper.
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(a) Delaunay-Voronoi mesh: Nv = 539 and Nele = 906 (b) v=1(0,0) and « =0

0 025 05 075 1 125 15 1.75 2 225 25 0 025 05 075 1 125 15 1.75 2 225 25

(¢) v=1(0.1,1.0) and « = 0 (d) v=1(0.1,1.0) and o = 1.0

FI1GURE 11. Test problem # 1: The top left figure shows a coarse triangulation used in the
numerical study. The top right figure and the bottom two figures show the concentration
profiles obtain for various values of velocity field and linear-reaction coefficient using this
mesh. The white region in the figures indicate the area in which the value of concentration
is negative and also violated the maximum constraint. The coarse Delaunay-Voronoi mesh
obtained using the open source mesh generator Gmsh [1], satisfies NC and DMPs in case of
pure diffusion. But this is not true for AD and ADR cases. In such scenarios, it produces
unphysical values for concentration field. Moreover, the % of nodes that have violated the
NC and maximum constraint is also very high.
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(a) Element maximum angles: Nv = 539 and Nele =906  (b) Delaunay-type condition: v = (0,0) and o =0

-0.44-0.15 0.14 0.42 0.71 1.00 1.29 1.58 1.86 2.15 2.44 -0.43-0.15 0.14 0.42 0.71 0.99 1.27 1.56 1.84 213 2.41

(¢) Delaunay-type condition: v = (0.1,1.0) and « =0 (d) Delaunay-type condition: v = (0.1,1.0) and « = 1.0

FIGURE 12. Test problem # 1: The top left figure shows the maximum angle possible in
each element of the mesh. The top right figure and the bottom two figures show the element
mazximum generalized Delaunay-type condition, which is a weaker condition as compared to
the element mazimum anisotropic nonobtuse angle condition.
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FiGURE 13. Test problem # 2: The computational domain under consideration is a bi-
unit square with one of its vertices at origin O = (0,0). Homogeneous Dirichlet boundary
conditions are prescribed on all sides of the square. The volumetric source f(x) is zero
inside the domain except for the square region (including the boundaries) at vertex H =
(0.375,0.375). In this region, f(x) is equal to unity. Herein, we assume that the velocity
vector field and linear reaction coefficient are equal to zero everywhere in the computational
domain.

(a) Background mesh: Nv =47 and Nele = 68 (b) Anisotropic triangulation: Nv = 593 and Nele =
1088

FIGURE 14. Test problem # 2: The left figure shows the background mesh on which BAMG
operates to give an anisotropic triangulation, which is shown in the right figure. As the ratio
of the minimum eigenvalue of anisotropic diffusivity tensor to its maximum is 0.1, which
is not very high, so the resulting triangulation consists of a mixture of skinny and normal
triangles.
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(a) Background mesh: v = (0,0) and a =0 (b) Anisotropic triangulation: v = (0,0) and « =0

FIGURE 15. Test problem # 2: This figure shows the concentration profile for pure
anisotropic diffusion. Numerical simulations are performed based on the background mesh
and anisotropic triangulation as shown in the Figure 14. The white region in the figures
depicts the area in which the value of concentration is negative. As the mesh generator
BAMG did not converge in MaxIters, the resulting mesh still violates the non-negative con-
straint. The minimum concentration and the percentage of nodes that have violated the
non-negative constraint on the background mesh is about —4.8 x 10~ and 2.13%. Corre-
spondingly, these values on the anisotropic triangulation is around —1.35 x 108 and 0.34%.
But it should be noted that this violation based on the anisotropic triangulation is very low
as compared to that of the numerical results obtained using the background mesh.
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.cP(x) = 0.0

(4

FIGURE 16. Test problem # 3: A pictorial description of the computational domain with
relevant boundary conditions. The circular hole and the circular domain are centered at
origin O = (0,0). The radius of the circular hole and the circular domain are given by 7, =
0.1 and r4 = 1.0. Numerical simulations are performed for four different cases of velocity
field and linear reaction coefficient, which are given by v(x) = (0.0,0.0) and a(x) = 0.0,
v(x) = (1.5,1.0) and a(x) = 1.0, v(x) = (5.0,0.5) and «a(x) = 1.0, and v(x) = (0.0,0.0)
and «a(x) = 1000.

(a) Background mesh: Nv = 5079 and Nele = 9918  (b) Anisotropic triangulation: Nv = 297 and Nele = 436

FIGURE 17. Test problem # 3: The left figure shows the background mesh and the right
figure shows the anisotropic triangulation obtained using BAMG for all the four cases. For
this test problem, we obtain skinny triangles as the ratio of the minimum eigenvalue of D(x)
to its maximum is 0.001, which is related to the aspect ratio of the sides of the triangle in
the anisotropic mesh. Moreover, it is evident that the triangles in the mesh are aligned and
oriented along the principal axis of the eigenvectors of the diffusivity tensor.
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(a) Background mesh: v = (0,0) and (b) Anisotropic triangulation: v = (0, 0)
a=0 and a =0

(¢) Anisotropic triangulation: v = (d) Anisotropic triangulation: v =
(1.5,1.0) and a = 1.0 (5.0,0.5) and a = 1.0

(e) Anisotropic triangulation: v = (0, 0)
and o = 1000

FI1GURE 18. Test problem #3: This figure shows the concentration profiles for four different
cases based on the background and anisotropic meshes shown in Figure 17. The white
region in the figures (circular annulus) shows the area in which the value of concentration
is negative. The minimum concentration and the percentage of nodes that have violated
the non-negative constraint for the background mesh is about —1.67 x 10~2 and 30.28%.
As the anisotropic mesh is coarse and the Algorithm did not converge in MaxIters for the
advection-dominated advection-diffusion-reaction and reaction-dominated diffusion-reaction
problems, the resulting mesh not only violdtes the non-negative constraint and but also
produces spurious oscillations. The minimum concentration and the percentage of nodes
that have violated the non-negative constraint for the case when v = (5.0,0.5) and oo = 1.0
is about —1.78 x 10~! and 13.47%, where as for the case when v = (0.0,0.0) and o = 1000
is around —2.79 x 10~! and 20.54%. From these values, it is evident that the extent of this
violation is very high for the reaction-dominated diffusion-reaction problems.
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Material degradation due to moisture and temperature: Mathematical model,
analysis, and analytical solutions

ABSTRACT. The mechanical response, serviceability, and load bearing capacity of materials and
structural components can be adversely affected due to external stimuli, which include exposure to
a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing),
cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several
branches of engineering — ranging from aerospace engineering, civil engineering to biomedical engi-
neering — to have a fundamental understanding of degradation of materials, as the materials in these
applications are often subjected to adverse environments. Due to recent advancements in material
science, new materials like fiber-reinforced polymers and multi-functional materials that exhibit
high ductility have been developed and have been widely used; for example, as infrastructural ma-
terials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these
materials will not be adequate. In this paper, we study degradation of materials due to an expo-
sure to chemical species and temperature under large-strain and large-deformations. In the first
part of our research work, we present a consistent mathematical model with firm thermodynamic
underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate
the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

1. INTRODUCTION AND MOTIVATION

Material and structural degradation is a major wide-spread problem in infrastructure and var-

“wear out” and

ious other real-life applications. Most of the well-known manifestations, such as
“fracture” are related to the phenomenon of degradation [Batchelor et al., 2003]. Virtually, every
material degrades when subjected to hostile environment and external stimuli. Importance of this
phenomena has triggered a surge in research to develop more resistible materials. Consequently,
understanding the general behavior of degrading materials has attracted the interest of researchers.
A fundamental study of degradation is crucial to several branches of engineering: aerospace, me-
chanical, civil, and biomedical. Due to recent advancements in material science, new materials
like fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been
developed. They have been widely used; for example, as infrastructural materials or in medical
devices (e.g., stents). Traditional small-strain assumption to model these materials will not be
adequate.

Herein, we develop a coupled continuum mathematical model for thermal and chemical-induced
degradation of hyperelastic solids. It should be emphasized that elasticity is an idealization. There
is no material whose response is perfectly elastic. But there are situations in which the response
of certain materials under normal conditions can be idealized to be hyperelastic. For example,
large blood arteries, and rock. Many of these materials function in hostile environments, and are
constantly subjected to adverse external stimuli. One often is interested in the unsteady response
of the bodies made of hyperelastic materials subject to degradation/healing and/or aging. The
application areas in mind are the response of high performance cementitious materials (which
undergo large strains and large deformations) and several important coupled deformation-transport
processes in biomechanics and biomedicine.

1.1. Degradation mechanisms. The reason that more and more research has been con-

ducted on degradation is that Degradation not only reduces the durability of materials but also
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alters material properties. For instance, material damage can induce anisotropy in thermal con-
ductivity and diffusivity. Some degradation factors and consequence of concrete structures have
been listed in the following table.

TABLE 1. Primary degradation factors that can impact safety- related concrete structures

[Naus, 2007]
Degradation factor Primary manifestation
cracking reduced durability
salt crystallization cracking/loss material
freezing and thawing cracking/scaling /disintegration
Physical processes abrasion /erosion /cavitation section loss
thermal exposure/thermal cycling | cracking/spalling/strength loss
vibration cracking
settlement cracking/spalling/misalignment
efflorescence/leaching increased porosity
sulfate attack volume change/cracking
delayed ettringite formation volume change/cracking
Chemical processes acids/bases disintegration/spalling /leaching
alkali-aggregate reactions disintegration /cracking
aggressive water disintegration/loss material
phosphate surface deposits

There are many mechanisms that can result in the degradation of materials. In general, the
degradation mechanisms can be divided into four catalogs: mechanical processes, chemical re-
actions, biological degradation [Gu et al., 1998|, and radiation [Kaplan, 1989]. For mechanical
processes, the performance of materials can be affected adversely by fatigue [Jung et al., 2000],
pressure loading [Rajagopal et al., 2007], and swelling of solid mixtures [Buonsanti et al., 2011].
Examples of chemical degradation include humid and alkaline effects [Bjork et al., 2003], exposure
to chlorides and carbon-dioxide [Glasser et al., 2008], and calcium leaching [Gawin et al., 2009].
The coupling effects between these mechanisms can have a significant impact on the rate of dete-
rioration of materials and structures. Therefore, developing an appropriate and general model of
material degradation is very useful to predict the life span of a given structure. A comprehensive
understanding degradation of materials not only plays a pivotal role in improving the reliability of
existing infrastructure, but also has a tremendous impact on the economy. We shall assume that
predominant degradation mechanisms are moisture and temperature. To this end, we propose a
general three-way strongly coupled degradation model based on a thermodynamic framework. The
three-way coupling is between mechanical, thermal and transport phenomena.

A material is said to be undergoing thermal degradation at a spatial point x € 2 if the available
isothermal density is lower than the reference available isothermal power at that particular point.
That is,

dA

dA
- <
dt

< —
V>V et dt
6

for x € Q (1.1)
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Similarly, the chemical/moisture degradation can be defined as follows.

dA dA
<

e <7 for x € Q (1.2)

C>Cref C=Cref

where A denotes the specific Helmholtz potential of the material.

Numerical research has been done on thermal degradation. Some of them focus on the effect
of thermal degradation on the performance of the materials, where the thermal conductivity is a
function only depends on temperature. For instance, the interaction of thermal and mechanical
damage processes in heterogeneous concrete materials has been examined in [Willam et al., 2005],
the behavior of one-way reinforced concrete slabs exposed to fire has been invested in [Allam et al.,
2013], and effective thermal properties has been predicted in particular composites in a micro
mechanical model [Khan and Muliana, 2010; Khan et al., 2011].

On the other hand, experiments have been done to show the effect of an environment of alka-
linity and humidity on concrete slabs of different components [Bjork et al., 2003]. Several moisture
damage mechanisms occurring within asphalt pavement have been listed in [Cho and Kim, 2010],
and corresponding experiments have been done to show consequences. However, no model based on
thermodynamics or empiricism is proposed in [Bjork et al., 2003; Cho and Kim, 2010]. The thermal
and moisture effects on structural stiffness and damping of laminated composites are investigated
in [Bouadi and Sun, 1990]. An empirical model is established, but the transferability is an issue.
A variety of experiments have been done to show the relation between the fluid-induced internal
damage and anomalous fluid absorption in polymeric composites [Weitsman and Guo, 2002; Weits-
man, 2006]. Analytical diffusion models based on equivalent diffusivity and capillary action have
been presented. The overall damage parameter is used to simulate the effect of micro-cracks on
diffusivity, which is hardly tell the effect of non-uniform deformation.

It is apparent that none of the mentioned paper of thermal or chemical degradation above have
a proper thermodynamic basis.

1.2. Thermodynamics of chemo-thermo-mechano degradation. Typically, there are
two approaches to build a thermodynamically-consistent degradation model. The first one is based
on the theory of the internal variable, such as micro-cracks [Weitsman, 1987], damage parameter
[Grasberger and Meschke, 2004]. A theoretical model is presented to investigate the mechano-
chemical coupling involved in the adhesion of thin-shell structures in [Springman and Bassani,
2009]. The adhesive traction is used to simulate the coupled effect between chemical and mechan-
ical problems. However, it cannot be a general case for other structures. Moreover, this model
involves the multi-scale modeling approach, which require attentions to more issues such as the
interdependence between the overall adhesive state and effective adhesive properties.

The other is to investigate the dependence of material properties on concentration of chemical
species. The main disadvantage of the first approach is that it is difficult (or sometimes impossible)
to measure the internal variables through experimentation. However, the second approach can
circumvent this drawback. Moreover, the degradation parameters based on the second approach
have a physical basis as compared to the first method. Therefore, we shall use the second approach
to construct a thermodynamically- consistent degradation model in which all the damage param-
eters can be measured in experiments. Several studies have been conducted for this approach.
The material moduli of linearized elastic bodies at a particular location is assumed to depend on

the concentration of fluid at the location in [Muliana et al., 2009; Darbha and Rajagopal, 2009].
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Others studies the effect of strain on thermal conductivity. Dating back to 1970s, people started
to study the thermal conductivity of polymer solid under large strain [Picot and Debeauvais, 1975;
Peng and Landel, 1975]. Bhowmick and Shenoy [Bhowmick and Shenoy, 2006] presented a method
to model the effect of uniform pressure on the thermal conductivity, Xiaobo Li et al. [Li et al.,
2010] studied the strain effects on the thermal conductivity of nano structures, and the thermal
conductivity of metal degradation due to torsional fatigue has been shown in [Naderi and Khonsari,
2011]. A deformation-dependent diffusion model in composite media at finite strains is developed in
[Klepach and Zohdi, 2014]. However, all of them are one-way coupled models. Some fully two-way
coupled chemical degradation models have been developed [Karra and Rajagopal, 2012; Mudunuru
and Nakshatrala, 2012]. The proposed model in this paper shall recover the model developed
by Mudunuru and Nakshatrala [Mudunuru and Nakshatrala, 2012] since the degradation problem
should be considered in an open system and not in a closed one [Karra and Rajagopal, 2012].

1.3. Objectives and scope of the paper. The main contributions of this paper are as
follows:

(i) We derive a general chemo-thermo-mechano degradation model by appealing to the maxi-
mization of dissipation, which is capable of providing a thermodynamic status of many ex-
isting models. It will be shown that many popular models are special cases of the proposed
mathematical model. For example, the small-strain moisture degradation model proposed in
[Mudunuru and Nakshatrala, 2012] will be shown to be a special case of the proposed model.
This also illustrates the thermodynamics basis of the degradation model in [Mudunuru and
Nakshatrala, 2012], which is not addressed earlier.

(ii) A systematic mathematical analysis is performed on the proposed model, which includes
showing that the unsteady solutions under the proposed degradation model are bounded. The
analysis will take into account large/finite deformations, and the stability will be established
in the sense of Lyapunov.

(iii) We will calibrate the proposed degradation model with existing experimental data sets. These
calibration and validation studies will illustrate that the proposed constitutive model can be
used with confidence in studying various brittle and quasi-brittle materials like ceramics, glass
fibers and concrete.

(iv) Last but not the least, semi-analytical solutions to several canonical problems are presented,
which can be valuable for developing better design and safety codes.

2. NOTATION, PRELIMINARIES, AND BALANCE LAWS

Let us consider a body 9B. The body occupies a reference configuration Qy(%8) C R™?, where
“nd” denotes the number of spatial dimensions. A point in the reference configuration is denoted
by p € Qp(B). We shall denote the time by ¢t € [0, 7], where 7 is the length of the time interval
of interest. Due to motion, the body occupies different spatial configurations with time. We shall
denote the configuration occupied by the body at time ¢ as ©;(8) C R™. A corresponding spatial
point will be denoted as x € Q,(8B). The gradient and divergence operators with respect to p are,
respectively, denoted by Grad[e] and Div[e]. Similarly, the gradient and divergence operators with
respect to x are, respectively, denoted by grad[e] and div]e].

The motion of the body is mathematically described by the following invertible mapping:

x=¢(p;1) (2.1)
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The displacement vector field can then be written as:

u=x-p=¢[Pt)—p (2:2)
The velocity vector field is defined as:

.. Op(p1)
v=ki=—0— (2.3)

where a superposed dot indicates the material /total time derivative, which is the derivative with
respect to time holding the reference coordinates fixed. The gradient of motion (which is also
referred to as the deformation gradient) is defined as:

F = Grad[x] = %;),t) = I+ Grad|u] (2.4)

where I denotes the second-order identity tensor. The corresponding right Cauchy-Green tensor is
denoted by:

C=F'F (2.5)

where (o)1 denotes the transpose of a second-order tensor. The velocity gradient with respect to
x and the symmetric part of the velocity gradient are, respectively, defined as follows:

L := grad[v] = FF! (2.6)
D := % (L+LT) (2.7)

The Green-St. Venant strain tensor is defined as:
1 1

E=-(C-1) =-

2( ) 2

In those situations in which the following assumption holds:

(Grad[u] + Grad[u]T + Grad[u]TGrad[u]) (2.8)

1) —pl|? Grad 2«1 2.9
peQﬁ%ﬁteR\/Hw(p ) =PI+ [[Grad{u]] 29

one is justified to employ the following linearized strain tensor:
1 1
E = 3 (Grad[u] + Grad[u]") ~ 5 (grad[u] + grad[u]®) (2.10)

where || o || denotes the Frobenius norm [Antman, 1995].

Since we will be dealing with processes in addition to the mechanical deformation, we need to
introduce quantities other than the ones that are associated with the kinematics. We will denote
the temperature by ¢ and the specific entropy by 7. The mass fraction of the chemical species
is denoted by ¢ and the corresponding chemical potential is denoted by 3. The temperature,
mass fraction of chemical species, entropy, and chemical potential are all scalar fields, while the
displacement, velocity, and acceleration are vector fields. In some situations, it may be needed to
explicitly indicate the functional dependence of these quantities. We employ a standard notation,
which will be illustrated through the temperature field. The temperature in terms of reference
coordinates and spatial coordinates will be denoted as follows:

¥ =9(p,t) = J(x,1) (2.11)
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2.1. Balance laws. For our study, we shall consider the thermodynamic system to be the
entire degrading body. Moreover, we shall assume that this thermodynamic system to be an open
system. That is, heat and mass transfers can occur across the boundary of the system. We now
present the balance laws that govern the evolution of the chosen system.

The balance of mass of the solid in the degrading body takes the following form:

p+ pdivfv] =0 (2.12)

where p is the density of the solid in the deformed configuration ;(8). The balance of a chemical
species, which is being transported in the degrading body, can be mathematically written as:

pé+ divlh] = h (2.13)

where h is the mass transfer flux vector in the deformed configuration, and h is the volumetric source
of the chemical species in the deformed configuration. We assume that the chemical species cannot
take partial stresses, which is a reasonable assumption in the degradation of materials due to small
concentrations of moisture. One can handle large moisture contents by introducing partial stresses
and using the theory of interacting continua (which is often referred to mixture theory) [Bowen,
1976]. We do not address such issues, as our focus is degradation due to small concentrations of
moisture or chemicals. The balance of linear momentum of the solid can be written as:

pv = div[T] + pb (2.14)

where b is the specific body force, and T is the Cauchy stress in the solid. Assuming that there is
supply of internal couples, the balance of angular momentum of the solid reads:

T=T" (2.15)

Assuming that the balance of linear momentum (i.e., equation (2.14)) holds, the balance of energy
of the system (i.e., the first law of thermodynamics) can be written as:
d

Py (A+9n) =T e D — div[sh] + »xh — div[q] + ¢ (2.16)
where A is the specific Helmholtz potential, q is the heat flux vector in the deformed configuration,
and ¢ is the volumetric heat source in the deformed configuration. In our study, we assume that
the Helmholtz potential A to depend on F, ¢, and ). We also have the following relations for the
chemical potential and specific entropy:

0A

— 72 2.17

» =+ Jc ( )
0A

= 2.1
U 59 (2.18)
Assuming the balance of chemical species to hold, we then have the following:
A
p (g—FFToD—H???) =T eD — div[q] — grad[»] eh + ¢ (2.19)

The localized version of the second law of thermodynamics in the deformed configuration takes the
following form:

0A 1
p <B_FFT o D) =TeD — Egrad[ﬁ] eq —grad[x] eh — p( (2.20)
where ( is the specific rate of dissipation functional, which is non-negative. The above equation is

a stronger version than the second law of thermodynamics, which is a global law and not a local
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one. The second law of thermodynamics does not assert that the rate of entropy production be
non-decreasing at each and every point in the system/body.

2.2. The maximization of rate of dissipation. Among the various methodologies to de-
rive constitutive relations (e.g., see [Maugin, 1998]), the axiom of maximization of rate of dis-
sipation put-forth by Ziegler [Ziegler, 1983] is an attractive procedure. Herein, we extend this
procedure to the open thermodynamic system under consideration. We obtain the constitu-
tive relations using the maximization of dissipation hypothesis, which needs the prescription of
two functionals — the Helmholtz potential and the dissipation functional. We assume the func-
tional dependence of the Helmholtz potential and the dissipation functional to be A(F,c,ﬂ) and
¢(D, grad[9], grad[s]; F, 9, ¢).

The mathematical statement of maximization of rate of dissipation can be written as follows:

maximize ,grad[0], grad[s]; F, 9, ¢ 2.21a
D, grad[9],grad[>] L= pC( & [ ] 8 [ ] ) ( )

0A 1

subject to <6F Fle D) =TeD — Egrad[zﬂ eq —grad[»x] eh — p (2.21b)

Using the method of Lagrange multipliers, the above constrained optimization problem is equivalent
to the following unconstrained optimization problem:

extremize *(D, grad[V9], grad[s]; F, 9, ¢
D,grad[v],grad[s],A¢ pC( g [ ] g [ ] )

A 1
+ Ay <p (g_FFT o D) —TeD+ Egrad[ﬁ] e q+grad[»| eh + pC) (2.22)

where A; is the Lagrange multiplier enforcing the constraint (2.21b). The first-order optimal con-
ditions give rise to the following relations:

T = paFF + < A, )paD (2.23a)

I 14+ Ay ¢

9= ( Iy > P Sgrad[d] (2.23)
B 14+ A ¢

h=- ( Ay > p@grad[%] (2:23¢)

p 8FF eD)-—TeD+ Egrad[ﬁ] eq+grad[»]eh+p( =0 (2.23d)

The above equations can be obtained by taking (Gateaux) variation of the objective function
in equation (2.35) with respect to D, grad[v¥], grad[s] and Ay, respectively. By straightforward
manipulations on equations (2.23a)—(2.23d), the Lagrange multiplier A; can be explicitly calculated
as follows:

-1
¢
A = —1 (2.24)
L?_]g oD + agraafi[ﬁ] °® grad[ﬁ] + agritgi[%} ° grad[%]
If the rate of dissipation functional ¢ is a homogeneous functional of order 2 with respect to D,
grad[v¥] and grad[s], we then have
a¢ a¢ a¢
—eD 4 ——— dld]| + ———— dlx] =2 2.25
oD ° * Ograd[d]  grad(y] + Ograd|]  gradl] = 2¢ (2:25)
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which further implies that A; = —2. The constitutive relations under A; = —2 will simplify to:

_ 0A ¢ 1 ¢

T = p—aFF + ) (2.26a)
0 ¢

4= _§p6grad[19] (2.26b)
1 ¢
N _ipagrad[%] (2.26¢)

REMARK 2.1. It should be emphasized that the dissipation functional need not be a homogeneous
functional of order two in terms of ¥, ¢ and 9. The maximization of the rate of dissipation certainly
does not require such an assumption. However, we shall make such an assumption, as it is conve-
nient and the resulting constitutive relations can still model the desired degradation mechanisms.

2.3. Governing equations in the reference configuration. Since we are also interested
in developing a computational framework and obtaining numerical solutions, it will be convenient
to write the balance laws in the reference configuration. To this end, we introduce:

J = det[F] (2.27)

where det[e] denotes the determinant. The balance of mass in the reference configuration can be
written as:

po = Jp (2.28)

where pg is the density of the undeformed solid. The balance of chemical species in the reference
configuration can be rewritten as:

PoC + DiV[ho] = hyo (2.29)

where hg = JF~'h is the diffusive flux vector in the reference configuration and hg = Jh is the
volumetric source in the reference configuration. The balance of linear momentum in the reference
configuration takes the following form:

POV = DiV[P] + pob (2.30)

where P = JTF~T is the first Piola-Kirchhoff stress. The balance of angular momentum in the
reference configuration takes the following form:

PFT = FP" (2.31)
In the reference configuration, the balance of energy can be written as:
0A . i . .
P\ 5F ® F +9Yn | =P eF — Div[qy] — Grad[s] e hy + ¢ (2.32)
where qy = JF!'q is the heat flux vector in the reference configuration and ¢y = Jgq is the

volumetric heat source in the reference configuration. In the reference configuration, the second
law can be rewritten as:

00 <g—§ . F> =PeF — %Grad[ﬂ] e qo — Grad[sx] e hg — po(p (2.33)

where (o = ( is the non-negative rate of dissipation functional in the reference configuration.
12



2.3.1. Mazimization of rate of dissipation in the reference configuration. The mathematical
statement of maximization of rate of dissipation can be written as follows:

maximize  polp = C(F, Grad[9], Grad[s]; F,, c) (2.34a)
F,Grad[v],Grad[]

. 0A 1
subject to rol o ® F)|=PeF — EGrad[ﬂ] e qo — Grad[s] e hg — po(o (2.34b)

Using the method of Lagrange multipliers, one can obtain the following equivalent unconstrained
optimization problem:

~ extremize poC (F, Grad[9], Grad[x]; F, 9, c)
F,Grad[v],Grad[»],Aq

+ Ay <p0 <g—;{‘ ° F> —PeF + %Grad[vﬂ] e qo + Grad[s] e hy + poCo) (2.35)

where A is the Lagrange multiplier enforcing the constraint given by equation (2.34b). The first-
order optimality conditions give rise to the following constitutive relations:

0A 1+A 0
P — o + ( v °> poa—if (2.36a)
1 14+ Ag 0
—aqn = — 2.36b
9 ( Ao > P05 Grad[] (2.36b)

B 1+ A o
ho =~ < Ao ) po 0Grad|] (2:36¢)
0A .1

00 <8_F o F) —PeF + EGrad[ﬁ] e qo + Grad[s] e hg + pg(yp =0 (2.36d)

Similar to the derivation presented earlier in the context of current configuration, the Lagrange
multiplier Ay can be explicitly calculated as follows:
—1
Moo= |57 5 o 5 —1 (2.37)
oF oF + BGrag.[ﬂ] ® Grad[ﬁ] + BGrag.[%} ® Grad[%]

If the rate of dissipation functional in the reference configuration (j is a homogeneous functional
of order 2, we have
0 o,

oF °F 1 9Grady

9o

* Grad[d] + 0Grad|]

o Grad[s] = 2(p (2.38)

which further implies that Ay = —2. The constitutive relations under Ay = —2 take the following
form:

P = L0 OF + 5'006—]? (2.39&)
v 9Go

= TP 5Grad[d] (2.39D)

h ! %o (2.39¢)

0= om0 0Grad ||
13



3. A GENERAL CONSTITUTIVE MODEL FOR CHEMO-THERMO-MECHANO
DEGRADATION

We will develop the proposed constitutive model by appealing to the maximization of rate of
dissipation. Under the maximization of rate of dissipation hypothesis, the constitutive relations can
be obtained by prescribing two functional — the Helmholtz potential and the dissipation functional.
Philosophically, the Helmholtz potential quantifies the way in which the material stores energy,
whereas the dissipation functional quantifies the way in which the material dissipates energy. For
our proposed chemo-thermo-mechano degradation model, we prescribe the following functional
forms for the specific Helmholtz potential and the rate of dissipation functional:

A= A(F,e,0) = Lp— 22 1y 9.2 - % {0 = Dot} Myp ® E + dige {0 — Fper} {¢ — crer)
Rsﬁref

0 2 ﬁref
2

1
- % {c=Cret} Mg o E + {c— Cref}2 (3.1)

R 1
¢ = {(D, grad[9], grad[<): F, v, c) = Lgrad[i]  Dyggrad[v] + evad[i] e Dy,grad(

1
+ Egrad[%] e D, yerad[v] + grad[s] e D, .grad[»]| (3.2)

sﬁref
where Ry = R/M. Rs and R denote the specific vapor constant and the universal vapor constant
respectively, M is the molecular mass of chemical species. ¥ef and cor are the specified reference
temperature and reference mass concentration, which depend on the underlying boundary value
problem. We denote ¢, as the coefficient of heat capacity, dy. as the thermo-chemo coupled parame-
ter, Myg as the anisotropic coefficient of thermal expansion (which is assumed to be independent of
temperature, concentration, and strain), and Mg as the anisotropic coefficient of chemical expan-
sion due to concentration (which is also assumed to be independent of temperature, concentration,
and strain). Both Myg and M g are assumed to be symmetric. Dyy is the anisotropic thermal con-
ductivity tensor and D,,, is the anisotropic diffusivity tensor. Dy, corresponds to the anisotropic
Soret effect tensor, which characterizes the transport of chemical species caused by temperature
gradient. Similarly, D,y is the Dufour effect tensor, which represents the heat flow caused by a
concentration gradient.

REMARK 3.1. In chemo-thermo-elasticity and in modeling degradation of materials due to trans-
port and reaction of chemical species, coefficient of chemical expansion Mg and thermo-chemo
coupling parameter dy. play a vital role (see [Sih et al., 1986, Chapter-5] and references therein).
Induced-strains due to chemical expansivity will be significant in harsh environmental conditions
and cannot be neglected [Sih et al., 1986]. Considerable inquest has been made in literature to ex-
perimentally measure Mcg in ceramics [Adler, 2001; Morozovska et al., 2011; Blond and Richet,
2008/, laminated and polymer composites [Sih et al., 1986; Bouadi and Sun, 1989; Cai and Weits-
man, 1994/, elastomers and biological materials [Harper, 2002; Myers et al., 1984; Lai et al., 1991],
and concrete structures [Ulm et al., 2000; Cerny and Rovnanikovd, 2002; Swamy, 2003]. However,
adequate progress has not beenm made yet to develop constitutive models and computational frame-
works for such chemo-thermo-elastic materials or materials undergoing chemical-induced degrada-
tion. Herein, we shall take a step forward to address this issue.

REMARK 3.2. It should be noted that in the absence of electrical and magnetic fields, all of the

above tensors are symmetric [Bowen, 1976; Coussy, 2004; Jarkova et al., 2001]. Moreover, from
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the Onsager reciprocal relations (which was put-forth by Onsager in 1930s [Onsager, 1931a,b]) we
have the following relationship between the Soret effect tensor and the Dufour effect tensor.

Dy,., =D,y (3.3)
Additionally, physics demands that the tensors Dyy and D, are positive definite.

REMARK 3.3. Note that the specific Helmholtz potential and correspondingly the dissipation
functional for diffusion can also be modelled using the following expressions:

Ae = RsVperc{Inc] — 1} (3.4)
Ce =

Rs;ref grad[s] e D, grad || (3.5)

Both equations (3.1)—~(3.2) and (3.4)—(3.5) result in similar partial differential equation structure
for modeling Fickian diffusion.

Under the proposed model, the specific entropy and chemical potential take the following form:
oA 1 31/1 cp

TTT00 T 00 D
04 19w

{’19 ﬂref} —|— MgE o — dﬁc{c Cref} (3.6)

= = pr + RsVret{c — Cret} — %MCE o E + dy. {1V — Vet } (3.7)

From equations 2.26a-2.26¢, we have the constitutive relations in deformed configuration as:
T = gﬁ F' = }gﬁ {19 Dot} FMygFT — = {c — Cret } FM gFT (3.8a)
a=-2p agfil[ 7 = —peuDorad(s] = §Do.erad e — 5§D, ograd( (3.8b)
h = _%pagrzfi[%] =-z i;refD%%grad[ »] — 19D79},grad[79] - %D%qggrad[ﬂ] (3.8¢)

The rate of dissipation functional for the degradation model in the reference configuration is taken
as follows:

¢ = g:(F7 Grad[v], Grad[s]; F, 9, ¢)

= %Grad[ﬁ] ° ﬁMGrad[ﬁ] + %Grad[ﬁ] ° ﬁﬁ%Grad[%]

+ %Grad[%] e D, yGrad[¥] + Grad[x] e D, Grad[~] (3.9)

1
Rs "9ref

where ﬁag = FilDagF*T, « and [ represent 9 or ». Correspondingly, the constitutive relations
in the reference configuration take the following form:

A
P = gF 31/1 — {0 — Vet } FMyg — {c — cret } FMg (3.10a)
Qo = —gpoL = —poc,DyyGrad[v] — @ﬁﬁ Grad[»]| — ) 5) 9 Grad[] (3.10b)
27 9Grad[v)] P 2 Y 27
ho = —— X _ P 5 Gradx - 2D, Gradl] — 22D, ,Cradd]  (3.100)

~2™8Grad] T Ryt 29 29
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3.1. Constitutive specifications for the degradation model. The following hyperelastic
material models will be employed in this paper:

Y = %(tr[E])2 +uEeE St. Venant-Kirchhoff model (3.11a)

b= g(ln[J])2 +UE o E Modified St. Venant-Kirchhoff model (3.11D)
A

Y = g(tr[C] —3) + pn[J] + E(IH[J])2 Neo-Hookean model (3.11c)

where 1 is the stored strain energy density functional, A and p are the Lamé parameters, and
K=+ %“ is the bulk modulus. Recall that J = det[F]. The Lamé parameters in the degrading
model are given by the following expressions:

A(x,¢) = Ao(x) — Ai(x) < Ao (x) 7;9 (3.12a)
Cref ref

(. €) = o) — (%)~ — oa(x) (3.12b)
Cref ref

where \g and po are the Lamé parameters of the virgin material. A; and p; are the parameters
that account for the effect of concentration of chemical species on degradation of solid. Ao and puo
are the parameters that account for the temperature effect on the degrading solid. It should be
noted that Ay, g1, A9, and us are all positive. Furthermore, these parameters are constrained such
that the bulk modulus and shear modulus are strictly positive.

3.1.1. Deformation dependent diffusivity. The effect of deformation on diffusivity is modeled as
follows: When tensile and shear strains are predominant, we have the following constitutive model

(explnslig] — 1)
(exp[nSErefS] - 1)

(exp[nrlg] — 1)
(exp[?]TErefT] - 1)
(explnysI11Tg] — 1)
+ (Dms — Do) (exparsEretmrs] — 1)

D,, =Dg+ (DT - DO) + (DS - DO)

(3.13)

where Ig, IIg, and I1lg are the first, second, and third invariants of the Green—St-Venant strain
tensor. These are defined as follows:

Ig := tr[E] (3.14a)

IIg := \/2dev[E] e dev[E] = \/ %(3tr[E2] — (tr[E])?) (3.14b)

Iy := det [idev[E]} (3.14c)

where dev[E] := E — %tr[E]I is the deviatoric part of E. These invariants are used to model the

effect of dilation, magnitude of distortion, and mode of distortion on the diffusivity of the solid.
nr, ns, and Ny are non-negative parameters. Eier, Erets, and Fieeprs are reference measures of
the tensile strain, shear strain, and mode of shear strain respectively. Do, D7, Dg, and Dj;g are,

respectively, the reference diffusivity tensors under no strain, tensile strain, and shear strain.
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When compression and shear strains are predominant, deformation dependent diffusivity is
modeled as follows:

(exp[prle] —1)
(exp[nr Ererr] — 1)
+ (Dass — Do) (exp[nmsIIIg] — 1)
(exp[nrrs Eretars] — 1)
where 7o is a non-negative parameter, F oo is a reference measure of the compression strain, and

) (exp[nslIg] — 1)

D,, —Dy+ (Dy—D
e 0+ (Do o) (exp[nsErets]) — 1)

+ (Dg —

(3.15)

D¢ is the reference diffusivity tensor under compressive strain.

REMARK 3.4. In [Mudunuru and Nakshatrala, 2012/, a constitutive model has been developed
for deformation dependent diffusivity based on small-strain assumption. However, it should be
noted that the model proposed by the authors is a special case and is obtained by linearizing the
equations (3.13) and (3.15). This model is developed based on the experimental evidence that the
relative diffusion rate varies exponentially with respect to the trace of strain [McAfee, 1958a,b].
In this paper, we will take a step further to calibrate these materials parameters according to the
experimental data for finite strains based on the model given by equations (3.13) and (3.15). It
should be noted that the model proposed in [Mudunuru and Nakshatrala, 2012] is a special case of
the model given by equations (3.13) and (3.15).

REMARK 3.5. Note that deformation dependent diffusivity given by equations (3.13) and (3.15)
can be constructed using a different set of invariants of a given strain tensor. This invariants can
be either principal or Hencky type [Lurie, 1990; sek and Kruisovd, 2006; Criscione et al., 2000]
based on the nature of material and associated experimental data. The proposed framework can
accommodate such models with minor modifications.

In case of transversely isotropic materials with fibers running along the direction Myy, the fol-
lowing invariants are needed to model deformation dependent diffusivity in addition to the invariant
set given by equations (3.14a)—(3.14c)

IVi := M;; « EMy; (3.16a)
Vi := My ¢ E*My; (3.16D)

For more details on selection of invariants for transversely isotropic or orthotropic materials see
[Lurie, 1990; Holzapfel, 2000; Ogden, 1997].

3.1.2. Deformation dependent thermal conductivity. The effect of deformation of the solid on
thermal conductivity is modeled as follows [Bhowmick and Shenoy, 2006]:

Dyy = Kog(1 + Ig)~° (3.17)

where § is a non-negative parameter. Kgy is the reference conductivity tensors under no strain.
Based on molecular dynamics simulations, Bhowmick and Shenoy [Bhowmick and Shenoy, 2006]
suggested that § to be 9.59 and Koy = 4.619~ 14 (for certain brittle-type materials). For various
other ductile or brittle-type materials, these parameters can be determined by experiments or can
be constructed using Lennard-Jones potential in molecular dynamics.

REMARK 3.6. Due to the lack of experimental data, we assume that Dufour and Soret tensors
do not depend on the deformation of solid. However, it should be noted that the proposed thermo-
dynamic and computational framework can accommodate deformation dependent Dufour and Soret
tensors with minor modifications (whenever such an experimental evidence is available).
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3.1.3. Status of the degradation model in [Mudunuru and Nakshatrala, 2012]. The small-strain
chemo-mechano degradation model proposed in [Mudunuru and Nakshatrala, 2012] is a special
case of the proposed chemo-thermo-mechano degradation, and can be obtained under a plethora
of assumptions. These assumptions include steady-state response, small strains, and isothermal
conditions with negative volumetric heat source in the entire degrading body. One also needs to
neglect chemo-thermo, chemo-mechano, and thermo-mechano couplings. Moreover, the functional
forms of the specific Helmholtz potential and rate of dissipation functional need to be:

1 Rs 791ref

A= %1# S i Gl Cref } (3.18)

¢ grad[s] e D, .grad|x] (3.19)

B Rsﬁref
where the stored strain energy density functional is given by:
- A
)= ¢(El7 C) = %tr[El]Q + ,U,(C)El o E; (320)

Under the small strain assumption given by equation 2.9, the Cauchy stress, chemical potential,
and mass transfer flux vector can be written as:

oA
= 24 OB+ (0B (321)
o8,
oA
» = e = RsVet{c — cret} (3.22)
_ L% M h erad] (3.23)

2P0 Ograd || Ryt

The balance of chemical species and the balance of linear momentum for the solid are given by
equations (2.13) and (2.14). Under the isothermal condition, the balance of energy simplifies to the
following expression:

__Po
Rs"gref

q= grad[x»]| e D, grad[s] (3.24)

which means that ¢ needs to be non-positive in order to maintain the isothermal condition.
3.2. Non-dimensional parameters to measure the strength of coupling. The evolution

equations for the linearized chemo-thermo-mechano non-degrading and degrading materials are
given follows:

poV = diV[)\(C, ﬁ)tr[El]I + ,U,(C, ﬁ)El — {79 — ﬁref} Myg — {C — Cref} McE] + pob (3.25&)

PoR sV et = poRsOrerdiv]D,  grad|c]] + podiv[(dyeD,... + RsD,.9) grad[d]] + RsVreth (3.25b)
pocpﬁ = %div[(chsDM +2Rsdy.D,.y + d%cD%%) grad[V]] + q + Vrerdych

+ div[(poﬁrefdﬁcD%% + pORsﬁrefDnﬁ) grad[c]] - 'IgrefMﬁE L4 El (3250)

where the Onsager reciprocal relation given by equation (3.3) has been used to obtain (3.25b) and
(3.25¢). Based on equations (3.25a)—(3.25¢), the measure of strength of thermomechanical, chemo-

mechanical, and chemo-thermomechanical coupling for non-degrading linearized elastic materials
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are given by the following non-dimensional parameters

M2 a0 ef
Eppy = —— BT Thermomechanical couplin 3.26a
" pocp(No + 240) pane ( )

2

m
Eern = 4 Chemomechanical couplin 3.26b
T poRsYret (Ao + 240) PHRg ( )
deﬂc + RQSﬂ .
Eq = s Ch -th 1 3.26
- d%c T ORudyeSy + Focy Lo emo-thermo coupling ( c)
&
Ectm = gt—m Chemo-thermomechanical coupling (3.26d)
cm
Dy

where Le := 522 is the standard Lewis number [Sih et al., 1986; Taylor and Krishna, 1993; Cussler,
2009]. Sy := g—"i is called the Ludwig-Soret number [Platten and Legros, 1984; Platten, 2006].

2.

REMARK 3.7. Note that there are some materials which have high value of m.g. For instance,
in certain ceramics, m.g s 10 times higher than myg. In those cases, chemoelasticity play a
predominant role.

To derive these non-dimensional quantities, we have taken M.g = m.gl and Myg = mygl.
In addition, relevant transport and thermal coefficients are assumed to be constants, which is the
case for isotropic materials. Similar non-dimensional numbers can be constructed for anisotropic
materials by choosing an appropriate norm. In case of degradation, in addition to Eup, Eem, Ect, and
Ectm, the following non-dimensional parameters determine which degradation process dominates

AL+ 2
Evg, = )\31725; Thermo-mechano degradation (3.27a)
Ao + 2
Em, = Aot 2hiz Chemo-mechano degradation (3.27b)
Ao + 2p0
g
Egul, = Eﬁil Chemo-thermo-mechano degradation (3.27¢)
»Ey

It should be noted that these non-dimensional parameters are of paramount importance in deter-
mining whether the underlying problem is strongly coupled or weakly coupled. For instance, the
following provide the range of these parameters for various materials:

e For metals such as steel, we have &, ~ O(1072).
e For infrastructural materials such as standard cementitious concrete mixtures, we have
Etm ~ O(1073), Een ~ O(1072), £ ~ O(10Y), and Exy, ~ O(1071).
e For brittle materials such as glass, &, ~ O(1074).
e For epoxy-based polymeric composites, we have &, ~ O(1073), Eup ~ O(1074), E ~
0O(1072), and Eupy ~ O(101).
The order of the dimensionless parameters given by equations (3.26a)—(3.26d) are estimated based
on the values provided by Table 2.

REMARK 3.8. It should be noted that the non-dimensional parameters given by equations (3.26a)—
(3.26d) and (3.27a)—(3.27c) provide a foundation for demarcating linearized and finite strain theo-
ries. If the non-dimensional numbers (which form the basis for chemo-thermo-mechanical coupling)

are small (generally in the order of 1072 or less), then it is justified to use the linearized theory.
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TABLE 2. Summary of typical (average) material parameters for steel [Totten et al., 2002],
glass [Groza et al., 2007], concrete [Nawy, 2008], and epoxy-based polymer composites (EPC)
[Sih et al., 1986] at Yot = 300 K. The specific vapor constant R is equal to 461.5J kg 'K!
[Cussler, 2009].

Parameter Steel Concrete Glass EPC
po (kgm™3) 7860 2400 2320 2700
cp (Jkg 1K1 420 880 840 1300
mye (Jm 3K 856 x 105  1.22x10°  0.52 x 105  0.42 x 106
meg (Jm™3) N/A 7.14 x 10% N/A 14 x 108
Ao (GPa) 185 14 26.2 1.4
o (GPa 79.3 21 26.2 1.4
Dyy (m?s71)  455x107% 0.8 x 1077 4.58 x 1077 2.53 x 107°
D, (m?s71) 1x10712 4%x1077  726x10713 1.42x10°6
D,y (m?s1) N/A 3.32x 1077 N/A 1.02 x 1076
dge (Jkg K1) N/A N/A N/A 1.37 x 10°
Le 4.55 x 106 0.2 6.31 x 10° 17.82
Sy N/A 0.805 N/A 0.718
Eim 1.94x 1072 3.78 x 1073 5.29x107% 3.6 x 1073
Eem N/A 2.74 x 1072 N/A 1.25 x 1074
Eet N/A 2.11 N/A 5.83 x 1072
Ectm N/A 1.37 x 107! N/A 2.88 x 10!

In all other cases, finite strain chemo-thermo-mechano degradation model has to be used. In addi-
tion, it should be noted that within the context of thermoelasticity, we recover the non-dimensional
parameter proposed by Armero and Simo [Armero and Simo, 1992].

4. SEMI-ANALYTICAL SOLUTIONS TO CANONICAL PROBLEMS

In this section, we shall appeal to semi-inverse methods to obtain solutions to some popular
canonical boundary value problems [Ogden, 1997]. Incompressible neo-Hookean chemo-thermo-
mechano degradation model is consider here. Similar analysis can be performed for other com-
pressible and incompressible chemo-mechano, thermo-mechano, and chemo-thermo-mechano degra-
dation models. Coordinate system under consideration is either spherical or cylindrical. In all the
problems discussed below, we assume concentration and temperature are only a function of time
t and radius r (which is a current configuration variable). This assumption is often made because
the underlying problem has either cylindrical or spherical symmetry. We also assume that the vol-
umetric sources corresponding to temperature and concentration are equal to zero. In this paper,
as we are mainly interested in degradation of solid due to temperature and transport of chemical
species, we shall neglect Dufour effect, Soret effect, thermo-chemo coupling parameter dy., and
anisotropic coefficient of thermal and chemical expansions. In order to reduce the complexity of
finding solutions based on semi-inverse method for deformation sub-problem, we shall neglect the

inertial effects and body forces.
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Based on these assumptions, the governing equations for transport sub-problem reduce to the
following partial differential equations in  and ¢ in cylindrical coordinates:

Oc 10rh,
—~ 4z = 4.1
ot i r or 0 (4-1a)
clr=ryt)=¢ (4.1b)
c(r=ret) =c (4.1c)
e(r,it =0) =co (4.1d)

where h, is the mass transfer flux in the radial direction. Similarly, the governing equations for
thermal sub-problem in cylindrical coordinates are given as follows:

on  10rg.  0Ox

ot T T _Ehr (422)
79(7“ =Ty, t) 192 (4.2b)

79(T = To, t) =, (4 2C)
I(r,t =0) =g (4.2d)

where ¢, is the heat flux in the radial direction.
In spherical coordinates, the governing equations for transport sub-problem are given as follows:

dc 1 0r2h,
4 =0 4.3
Pot T 2 ar (4-3)
c(r=ri,t)=¢ (4.3b)
C(?“ = To, t) = Co (4 3C)
e(r,t=0)=co (4.3d)
Similarly, the governing equations for thermal sub-problem in spherical coordinates are given as
follows:
on 1 0rq, O
el =_——"h, 4.4
Pt T2 or or (4-4a)
I(r=rit) =19; (4.4b)
Hr =r1o,t) =0, (4.4c)
I(r,t =0) =g (4.44d)

Another quantity of interest in material degradation is the extent of damage at a particular location
or along the cross-section of the degrading body. In case of incompressible neo-hookean chemo-
thermo-mechano degradation model, this quantity can be defined as follows:

p pac f120 >
Dyx,t)=—=1—( —— | — 4.5
ﬂ( ) Ho <ﬂOCref> <1u019ref ( )

For virgin material, D, = 1. If D, approaches zero, then the material has degraded the most. In

addition, equation (4.5) also provides the following information:

e Amount of degradation at a given location and time,
e The parts of the body that suffered extensive damage, and
e The effect of temperature and moisture (or concentration of chemical species) on the
mechanical properties of materials.
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4.1. Bending of a degrading beam. Herein, we shall consider pure bending of a degrading
beam. At time t = 0, a finite degrading beam is suddenly bent by an action of pure end moments.
For ¢ > 0, the centerline of the beam becomes a sector of a circle of radius r.. This centerline
is held fixed for all the time. Subsequently, the stresses in the degrading beam are allowed to
relax. In addition, it is assumed that the material remains isotropic with respect to the reference
configuration throughout the degradation process. These assumptions enable us to employ the
counterpart of universal deformations (also known as semi-inverse method) [Ogden, 1997] to study
such degrading beams.

A pictorial description of the initial boundary value problem is shown in Figure 3. In the
reference configuration, the degrading beam is defined as follows:

_L<X<L -W<Y<W, -H<Z<H (4.6)

where (X,Y, Z) are the Cartesian coordinates in the reference configuration. We assume that the
deformation in the current configuration is described as follows:

2X Y
a y

where (r,0, z) are the cylindrical polar coordinates in the current configuration. When X = 0, we

T =

have 3 = r2. It should be noted that a and « are all unknown time-dependent parameters. These
unknowns are evaluated from the incompressibility constraint, traction boundary conditions, and
pure end moments. To reduce the complexity in finding semi-analytical solutions, we shall assume
7. is given. The faces X = —L and X = L are subjected to ambient atmospheric pressure ‘Datm -
Upon deformation, the corresponding deformed faces r; and r, are maintained at p,tm, where
ri = /12— 2vyL and r, = \/r2 + 2yL are the inner and outer radius of the degrading beam. This

gives the following traction boundary conditions:
TTT(X = —L,t) = TTT(X - Lat) = Patm (4.8)

The deformation gradient F, right Cauchy-Green tensor C, and left Cauchy-Green tensor B for
the degrading beam are given as follows:

1 1
= 00 @z 00

F=| 0 £ 0 C=B=| 0 Z 0 (4.9)
0 0 1 0 0 1

Using the condition of incompressibility, we have ay = 1. The Cauchy stress tensor for incompress-
ible neo-Hookean chemo-thermo-mechano degradation model is given as follows:

T = —pI+ pu(c,v)B (4.10)

The governing equations (balance of linear momentum) in cylindrical coordinates for deformation
sub-problem are given as follows:

8Trr + laTer aTzr + Trr - TOG _

4.11
or r 00 0z r 0 ( 2)
0Ty 10Ty 0T 2T,
or ' r 00 0z ro 0 (4.11b)
O 10T | 0o T (4.11c)

or r 00 0z r
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For incompressible degrading neo-Hookean material, the non-zero components of the Cauchy stress
tensor are given as follows:

(e, )y (e, )~
T = —p+ OS5 KOTY 4.12
P r2 bt 29X + 12 ( a)
,0)r? c,9) (2yX + r?
Tyo = —p + M(c Z)T — _p+ M( ) ( Z ) (4.12b)
i
T..=—p+ u(c,?9) (4.12c¢)

The balance of linear momentum given by equation (4.11a)—(4.11c) reduces to the following

aTrr Trr - T@G

St =0 (4.13)
op
56 =0 (4.14)
Op
S=0 (4.15)

From (4.14) and (4.15), we have p = p(r,t). Using equations (4.13), (4.7), (4.8), (4.12a), and
(4.12b), we have the following non-linear equation in ~y

Tou(e(X, 1), 9(X, 1) (v* = (29X +12)?
Trr(X = —L,t) —Trr(X = Lat) = / ,Y(Q,y)g +742)2 )
L ¢

where ¢(X,t) and 9(X,t) are evaluated from the values of ¢(r,t) and ¥(r,t). From (4.16), v|i=o is
given as follows:

dX =0  (4.16)

Yimo = \/—212 + /AT £ 73 (4.17)

which is the case for homogeneous neo-Hookean material. Once ¢, 9, and v are known, the Lagrange
multiplier p = p(r,t) enforcing the incompressibility constraint can evaluated from (4.13) and (4.8)
as follows:

ple, 92 [ ple,d) (Y4 —r
p(ryt) = pam + =57 = 7§T3 )dr (4.18)

Ti

where r; = \/r2 — 2yL. The bending moment in the deformation sub-problem can be evaluated
based on the following formula:

Mbeam (t) - / T@G (T - 7aneu)dA

ACI‘OSS
L
5
—2H / Too(— /72 + 27 Xneu + V72 + 29X ) ——=dX (4.19)
J ¢ ¢ V2 + 29X

where dA = 2HdAr. Tpey = /72 + 27 Xpeu is the neutral axis location, and Xy, is the value at
which Tyg = 0. As r. is given, the parameter + is bounded above and below as follows:
c << ﬁ

TS
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which can be used in finding the solution for the non-linear equation given by (4.16). It should be
noted that 7|;,—o satisfies the inequality given by (4.20).
The chemical potential and specific entropy are given as follows:

1 0y 1 v r?
= —— Rsﬁre — Cre = =\ & — —2 Rs"gre - Cre 4.21
CXE * e = Cuer} 2p0Cref <7°2 ’ 7 " rie = et} (210)
1oy ¢ M1 o p
i o ¥ — Dot} = e — ¥ — Ve 4.21b
K Po ov * ﬁref{ f} 2p019ref 2 * 72 * ﬁref{ f} ( )

From equations (4.21a)—(4.21b) and appealing to incompressibility condition, the mass transfer and
heat transfer fluxes in radial direction can be written as follows:

D%% 2
he=— L0 p 0% D (i - l) oD, % (4.222)

_Rsﬂref %%E B Rs"grefcref 72 73 %%E
o
& = —pocpDiy 5 - (4.22b)

From equation (4.1a) and (4.2a), the final form for the governing equations for transport and
thermal sub-problems for degrading beam are given as follows:

dc (pOD%;{ + 8D%%> dc d%c 0D, (72 T )

Mot ~ ar Jor T e TV 0B el
1 A2
2
pocpV\ 0V pocpDyy 0Dyy \ 0V 0% dc
—_— | = — | — — | = — Dyy—— = poRsVret D, | —
( Uyef > ot r +pocp ar ) ar P0G T PORSUret P | 5
2
}%sﬁme%%W2 72 r ")/2 r\ Oc
+ T 7"_3 - ? + 2R319refWD%% ﬁ - ? E (424)
where w = Rsﬁuilfcf' In deriving (4.24), we have assumed that % < ‘?9—13 (in order to reduce

the complexity in finding semi-analytical solutions). We take pg, 7¢, Rs, Uref, Cref, and Dg as the
reference quantities. These reference quantities give rise to the following non-dimensional quantities:

r e ) T y Y Tc, P DO ’ 99 DO ( )
— M1 _ Ko _ c = ¥ - Dot
= — =——— ¢= , 0= , b= 4.26
! pORsﬂref 0 pORsﬂref Cref q91"ef T? ( )
The above non-dimensionalization introduces the following non-dimensional parameters:
= (4.27)
POCref
R 2
7= et (4.28)
Cp

Correspondingly, the non-dimensionalized governing equations for transport and thermal sub-
problems for degrading beam are given as follows:

oc D,, 0D,,\ 0¢ — 0% oD, (7> F — 1 7

— — == — — D,y =w L — =) -2WD,,. =+ = 4.2

ot ( R >BF g2~ Y o7 (F?’ 72> W e (72+F4> (429)
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90 (Dgy ODgg\ 00 — 029 _— [de\? — (7 T\ o¢
= (=2 Dy =7D,,. [ — 27w D - )=
V5 < P T or )8? W grz = T\ g | AT e 72 ) oF

_ _\ 2
+ 7D, (;—3 - %) (4.30)

where ag% and a[a)%w are given as follows:

0D, (exp[nrlg] — 1) Olg (exp[nsIIg] — 1) Ollg

= =nr (Dr — D — +ng (Ds — D —F(4.31
ar m 0) (exp[nr Eretr] — 1) OF s ( 0) (exp[nsErets] — 1) OF (4.31)
= (0Kopy(1+T = 1.32
or < 00(1+7Ie) or (432)
where the first and second invariants, Iy and Ig, are given as follows:
Ig==-(=+= -2 4.
E=5 <F2 + 72 > (4.33)
o 1 72 2 72 2 72 72 2
TTe=.>-(% -1 -1 LA 4.34
"T\6 <<FQ ) i <72 \E 7 (34

The partial derivative of the first and second invariants with respect to 7 are given as follows:

0T

o9
___ 4.35
or 72 F3 ( )

oIl 1 (7 (7 T 7T\ (P T
e L (L) (2 D) (20w
or 311g r r Y Y r v r v

Correspondingly, the non-dimensional equation to obtain 7 at each time is given as follows:

e, 0% D) (7 - (27X +1)°)
/ B L X =0 (4.37)
i 5 (27X + 1)

The non-linear equation (4.37) enables us to find 7 at various # given (X, ?) and J(X, 7). However,
it should be noted that ¢(X,#) and J(X,#) are also a function of ¥ in case of strong coupling. This
is because diffusivity and thermal conductivity depend on the invariants of strain E. Hence, the
integral equation (4.37) and partial differential equations (4.29) and (4.30) are strongly coupled.

4.1.1. Steady-state analysis for beam degradation. In case of steady-state, we have h,.r = C}
and q,r + »xh,r = C3, where C; and Cy are integration constants. Equations (4.29) and (4.30)
imply that ¢ and 9 are the solutions of the following ODEs:

__ _dE — 72 FZ o

D%;{T%_D%}zw (7_2_¥>+01:0 (438&)

— _dy w (72 T _

Dy +7 (= (L + 2 —2) —e+1 — 4.
ﬂﬂTdF—FT(Q <F2+72 > ¢+ >Cl+02 0 (4.38Db)
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Assuming Dyy is independent of 9, the analytical solutions to the above set of ODEs are given as

follows:
92 — -~
_ _ (7 T Cq _

=~ — /=9 — = _ el
5:/<_T_Cl <z<;3+;2_3>_6_1>__€2 > dr (4.39b)
Dys \ 2 \T ¥ T T TDyy

where the integration constants C and C4 are determined from the respective boundary conditions
for the transport and thermal sub-problems. In case of weak coupling (where Dyy and D,,,, are
constants), a simplified form for ¢ and ¥ is given as follows:

— /=2 =2
c=-2 1—2 + 1—2 + BiIn[F] + Ay (4.40a)
2\7T ¥
0= - L2 4 ZyInfr] + Y3 (4.40b)
2Dyy

where the constants A, Bi, Y7, and Z; are given in terms of the boundary conditions ¢;, ¢,, ¥;,
and 9, as follows:

— -9 _
Ay = — Biln[r] + = (Y—Z + i—i> (4.412)
2 \T; ¥y
1 _ _ w (¥ T T
Bl=——— (e,--—=- &5+ -1 — =2 4.41b
"7 InfF,] — Infr] (C G773 <F§ tTETE TR (4.41b)
— 2_
Y = Ez @IH[FZ']Q — len[ﬁ] (4410)
1 — —  TB{D
7 =—— <190 _ g, - P (InfF;]* — 1n[?0]2)> (4.41d)
In[r,] — In[r;] 2Dyy

4.1.2. Quasistatic analysis for beam degradation. Herein, we shall use the method of horizontal
lines [Rothe, 1930; Picard and Leis, 1980] and shooting method [Heath, 2005] to obtain numerical
solutions to equations (4.29) and (4.30). In the method of horizontal lines, the time is discretized
first followed by spatial discretization. The time interval of interest [0,Z] is divided into N non-
overlapping subintervals such that At = % and t,, = nAt. t, is called the integral time level, where
n=20,1,2,--- ,N. At is the time-step, which is assumed to be uniform. Employing the method of
horizontal lines with backward Euler time-stepping scheme, we obtain the following ODEs at each

time-level for equations (4.29) and (4.30)
ey (] 1\ dD... et gt 1 (Fm)’
a2 T\ T\ 5w ) T S OIS I WA A

" r D t=tn D%% At (’Y ) (T )

=(n) 5 ~(n))? =(n)
f ) <_¢E’ > (dD»M > ((7 )3 T 2) (4.42)
DJZ: At D,fnn dr t=tn (F(n)) (ﬁ(n))
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A

) A A 2% (dE

o ) T DyA Dy \7l_; )  Diat
ooy ((F™)°  Fm )\ de DU (F7) (7)) \°
(D) =(n))3 N ) —)\3  (=(n))2 (4.43)
Dy (7)) 7") =1, Dy (7)) (™)

where ¢ = &7, T = 1,), 7™ = I(F, T =1,), and 7 = /257X 4+ 72, Algorithm 1 describes a
procedure to determine ¢(7, t), E(F, t), and 7 at various times using an iterative non-linear numerical

solution strategy. The following values are assumed for the non-dimensional parameters in the
strong coupling simulations:

Yo

L=1,7.=1, At=0.1,t=2, w=0.05, 7=0.5, G :0,19— =0.5
ref
Co=1,0;=05 9,=1, ig=1, fi; =fiy = 0.4, Dy =1, Dy = 2.0,
Dg =15, np=ns=1, EByefr = Exets = 1, Kg=1, 6 =10 (4.44)
In case of weak coupling, we have Dy as EEZB and K as 31(9?9), respectively. It should be noted

that these values are constructed based on the (brittle-type) material parameters such as glass,
ceramics, and concrete.

Figure 4 shows the profile of Tyy as a function of the reference location of the cross-section at
various instants of time (due to the application of bending moment). In Figure 5, the plot of bending
moment at various instants of time for both three-way strong and weak coupling degradation model
is shown. Figure 6 shows the plot of chemical potential as a function of the reference location of
the cross-section at various instants of time. The extent of damage at various instants of time is
shown in Figure 7. Initially at time ¢ = 0 and when there is no degradation, the response is that
of a homogeneous neo-Hookean material. On the onset of degradation, the material ceases to be
homogeneous. As degradation progress, one can see that the tensile and compressive parts of the
beam relax at a much faster rate than that of the material closer to the neutral axis. Furthermore,
the region in the tension and compression relax faster in case of strong coupling as compared to
weak coupling. In addition, from Figure 4 one can see that Tyy for strong coupling is considerably
different from the weak coupling. This is because the degradation progress is dependent on the
deformation, concentration of the diffusing chemical species, and temperature of the body.

As Figure 5 shows, moment relaxation is observed for both cases. However, in weak coupling
the moment declines more than that in strong coupling case. Moreover, as moment decreases,
the chemical potential increases. From Figure 7, it is apparent that for both strong and weak
coupling, the beam has degraded considerably in the tensile region as compared to the compression
region. Quantitatively, extent of damage towards the tension side is three times greater than that
of the compressive side of the beam. Furthermore, D, across the cross section is not monotonic
for strongly coupled problem. However, in case of weakly coupled problem (for time ¢ > 0.1), we
observe that the extent of damage is monotonic. Herein, the main observation is that neutral axis
shifts further to the left, similar to the phenomenon observed in viscoelastic solids [Kolberg and
Wineman, 1997]. Moreover, in case of weak coupling for some instants of time the mazimum stress
does mot occur at either tensile or compressive sides of the beam after the onset of degradation.

This is of primal importance in regards to the calculation of failure loads/moments due to material
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damage. Hence, a simple approach based on strength of materials or a more complex finite elasticity
theory to calculate stresses without accounting for degradation will lead to erroneous results.

Algorithm 1 Pure bending of degrading beam (numerical methodology to find 7, ¢, and )

1: INPUT: Non-dimensional material parameters, non-dimensional boundary conditions, and non-

() (@ and @

tol » €tol tol
2: Evaluate 7 at ¢ = 0 based on equation (4.17). Use this as an initial guess for solving nonlinear

dimensional initial conditions, MaxIters, tolerances e

equation given by (4.37) or guess 7 based on equation (4.20).

3: forn=1,2,--- /N do

4. fori=1,2,--- do

5: if i > MaxIters then

6: Solution did not converge in specified maximum number of iterations. EXIT.

T: end if

8: Diffusion sub-problem: Given 7, solve equation (4.42) to obtain ¢!, Herein, we use
shooting method to solve the ODEs.

9: Heat conduction sub-problem: Given 5*) and ¢(*1) solve equation (4.43) to obtain
E(H_l). Similarly, we use shooting method to solve the ODEs.

10: Deformation sub-problem: Given ¢! and E(Hl), solve for 7t given by equation
(4.37) using bisection method.

1 if [[FOD 50 < )it — 2@ < ) and [3°TY =TV < ) then

12: OUTPUT: 50+ g+ and E(HU. EXIT the inner loop.

13: else

14: Update the guess: 7 « 50+,

15: end if

16:  end for

17: end for

REMARK 4.1. Based on a semi-inverse approach, [Rajagopal et al., 2007] have shown that pure
bending of a polymer beam stress relaxes under degradation. However, their model is based on
internal variables, which is difficult to calibrate experimentally. On the other hand, the proposed
(and calibrated) chemo-thermo-mechano degradation model is able to predict stress relazation and
shift of neutral axis without appealing to internal variable framework.

4.2. Inflation of a degrading spherical shell. Herein, we shall consider degradation of
a spherical shell subjected to pressure loading. A pictorial description of the boundary value
problem is similar to the one shown in Figure 1. The shell is subjected to an inner pressure p;
and an outer pressure p,. Due to the spherical symmetric associated with the problem, spherical
coordinates are used to analyze the inflation of degrading spherical shell. It should be noted that the
problem under consideration has relevance to safety, reliability, and defect monitoring of degrading
spherical structures (such as a tank shell and bearing structure) due to a pressure process system
[Pietraszkiewicz and Szymczak].

In the reference configuration, consider a spherical body of inner radius R; and outer radius R,
defined as follows:

Ri<R<R, 0<O<m 0<®<2r (4.45)
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where (R, 0, ®) are the spherical polar coordinates in the reference configuration. The surfaces
R = R; and R = R, are subjected to different pressures p; and p,. Under inflation, the deformation
in the current configuration is described as follows:

ri<r=m(R)<r, 0=0, ¢=27 (4.46)

where (7,6, ¢) are the spherical polar coordinates, r; is the inner radius, and r, is the outer radius
in the current configuration. The deformation gradient, the left Cauchy-Green tensor, and the right
Cauchy-Green tensor have the following matrix representations:

d 2
@ 00 (%) 0 0
F = 0 % 0 C=B= 0 mr 0 (4.47)
0o 0 = 0 0 %}_j

Using the condition of incompressibility, we have r = ¢/ R3 —|—7“Z3 — Rf’ such that r; < r < rg,

where r, = {/R3 + Tf’ — R?. The governing equations (balance of linear momentum) in spherical
coordinates for deformation sub-problem are given as follows:

T, 19T, 1 0Ty 2T —Top— Ty
ar r 900  rsin(f) 0¢ r =0 (4.482)
T 1 90Tyg 1 3T¢9 200 + Ty, + (ng — T¢¢) CO‘C(@)
— = 4.48b
or + r 00 * rsin(f) 0¢ * r 0 (4.48D)
0Ty 1074y 1 0Tyy 2Tg + Ty + (T9¢ + T¢9) cot ()
- = 4.4
or + r 00 + rsin(0) ¢ * T 0 (4.48¢)

From equation (4.47), the non-zero components of the Cauchy stress are given as follows:

2 2\ 2
7= puled) () =-ptute) (35) (4.492)
7,,2
Top = —p + (e, V) 3 (4.49b)
7“2
Tys = —p+nle,9) 53 (4.49¢)

The balance of linear momentum given by equation (4.48a)—(4.48¢c) reduces to the following:

0T | 2T —Top=Tog _ 00 _, Op _

or r 00 T 99

0 (4.50)

From the above equations, we have p = p(r,t). Using equations (4.50), (4.46), (4.49a), (4.49b), and
(4.49¢), we have the following non-linear equation in r;:

Boou(e(R, 1), 9(R, 1)) (RG — (R34 — R?)Q)
TTT(R = Ri7t) - TTT(R = Rmt) = Do —Pi = /

R;

dR
3., .3 _ p3\s
(554t~ )

(4.51)
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Once ¢, ¥, and r; are known, the Lagrange multiplier p = p(r,t) enforcing the incompressibility

constraint can evaluated from (4.50) as follows
(RS~ (418 - R2)°)
dR (4.52)

R2\ 2 2u(e, )
rt)=p; +plc,9) | - | — -
plrnt) = i+ ute.0) () R/ T

i

The chemical potential, specific entropy, heat transfer flux, and mass transfer flux in radial direction

(4.53a)

for the degrading shell are given as follows
10y p (RY P
= R q91"6 ref f — — — 2 Rsﬁre — Cre
7 e P ) = <r4 Frgp 8 ) et = e}
10y ¢ 11 R 72 Cp
=—-——— W — et} = -3 ¥ — Vye 4.53b
7 £0 v * 791ref{ f} 2p079ref T4 2 R * q91"ef{ f} ( )
00 Ox 211D, r R* oc
hh=—-——"—D,,,—=—"—"""|—=——F | — poDss.— 4.
RV et Or  RyUrefCref <R2 rd po or (4.53¢)
01
G = —PonDwa— (4.53d)
From equation (4.3a) and (4.4a), the final form for the governing equations for transport and
thermal sub-problems for degrading shell is given as follows
@ B 2p0D,,,, 0D, \ Oc D 9% B w@D%% R_4 o
0ot or )or Terr T e 5T R
1 R
— 6wD.,,,, ( E + —> (4.54)
pocp’ﬂ o 2/)0ch1919 3D1919 o 3219 dc
- D = Rsﬁre D, | —
( Dot > o . + pocp ar Br — P Pov s = po f o
AR et D,® [ 1 R* r R4 Oc
————— | = — —+ | —4RViewD,, | = — 4.55
N 00 <R2 rd £ R2 or ( )
Most of the non-dimensional quantities are same as that of the beam bending problem except for
the following:
— T R _ Dot
- —  R=— =2 4.56
"R TR R (4.56)
The non-dimensionalized governing equations for transport and thermal sub-problems for degrading
shell are given as follows:
o¢ (2D, 0D, \dc — 0% _ 0D, (R T R
- — __D%%T: — — —>Y —6 D%% 7 457
ot < T + or > or or? Y or <r5 RZ> “ < 2+ 70 ( )
— — — 4
—99 Dgy  0Dgy\ 9 — %9 _— [(d&\® __ 7 R\ oc
V— 2—— -D D,,. | — | —47w0D,,. | — —
ot < T o Jor T 7T oF ™ 2o )or
_ 54\ 2
+ 472D, (_i - —5> (4.58)
R T
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The first and second invariants of E for degrading shell are given as follows:

—4 —9 =2

_ 1 (R 72 1 (R 72 R

To— [y o™ g 2 (8 o™ ) (2 _q) > 4,

’ 2(?” 7 3) 2<FQ 7 )(FZ )‘0 o
1 (R’ : 2 R 7

TTe — = [£ 4 ) o2 1) (Lo 4.60

SR\ (?4 >+<§2 ) (F“ ><R2 ) (4.60)

The partial derivative of the first and second invariants with respect to 7 are given as follows:

— —4
Olg T R
o = 2 <? — F_5> (4.61)
oflg 1 (4R' o7\ (7 R
o s\ Tm )\ (4.62)
E R R r

Correspondingly, the non-dimensional equations to obtain 7; at each time is given as follows:

R A 3. g\ 2
Do —Di = 702M(C(R’t)’19( v <R6 - <R3 e Rf) > dR (4.63)
R;

Algorithm 2 describes a procedure to determine (7, %), J(7,7), and 7; at various times using an
iterative non-linear numerical strategy.

4.2.1. Steady-state analysis for degrading shell. In case of steady-state, we have h,r?> = C3 and
qyr? 4 s»h,r? = C4, where C3 and Cj are constants. This implies that ¢ and ¥ are the solutions of
the following ODEs:

_ _3 —4
E%%FQG_S - 23%%5 1_2 - % + 61 =0 (464&)
ar R T
— —4
— 01 w [ R T S —
_9 _ _
D1919’I“ §+T<E <T_4+2?_3>_C+1>01+02:0 (4.64b)
Correspondingly, the analytical solution to the above set of ODEs are given as follows:
_4 J—
T R C
J— _4 J—
— T w 1 c—1
9 — /_T_Cl w }_3_6 o — % - - _€2 dr (4.65b)
Dyy \ 2 \ T R T T 7Dy

For weak coupling (where Dyy and D,,,, are constants), a simplified form of the analytical solutions
for ¢ and 9 is given as follows:

2 R\ B
5:@(_—2+T4 + =2+ A (4.66a)
R 2r T
7B3D,, 7y

9= — +=+Y; (4.66b)

23191972 r
where A, Bs, Yo, and Zs are constants, which can be decided by the boundary conditions.
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B 2 SR
Ay=t—-—=-w (f—Q + 7> (4.67a)

T R ’I“Z
T w2 S8R 7 SR
By = _TZTO_ <EO —C —w (i—% + —_ 1—12 i (4-67b)
Ty —To R To R T
— TB2D,, Z
Yy =0 + 7_27_{; _22 (4.67c)
2D yoT T
7, —T, (= — TB2D 11
Zy =i To (5 g, IO e e (4.67d)
TiTo 2Dyy \T; T§

4.2.2. Quasistatic analysis for degrading shell. Employing method of horizontal lines with back-
ward Euler time-stepping scheme, we obtain the following ODEs at each time-level for equations
(4.57) and (4.58)

—(n)\ 4

2en+1) . 9 . 1\ dD... dentD)  Gn+1) - 1 N ( R )>
— — - —(n — = W

dr2 7(n) D) dr e ) RN <§<n>>2 (F)°

. —(n)\4
o) 2%\ (B, (") sw
D%%At D% =1, (7” ) <R n >

4

—=(n - —<(n —(n)5(n —(n 2 g 2
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The boundary conditions for diffusion and heat conduction problems are the same as the beam
bending problem. The other parameters are assumed in the strongly coupling simulations as follows:

R,=1, R; =05, At=0.01, =2, @=0.05, T=0.2, iy =1, 71y = 0.3, fiy = 0.4,
Do=1, Dr=15 Dg=12, nr=ng=1, Frer = Erets =1, Kg=1, § =10 (4.70)

In weakly coupling problem, we use D, K as EEZ{) and Egz,), respectively.

4.2.3. A discussion on the behavior of degrading spherical shell. Figure 8 shows the plot of
7; as a function of the inner pressure p; for strongly and weakly coupled chemo-thermo-mechano
degradation problem. For a given p;, one can see that 7; for weak coupling is larger than strong
coupling. This is because in the weakly coupled problem degradation happens at a much faster rate
as compared to the strongly coupled problem. The hoop stress ‘Tgy’ as a function of the reference
location ¢ = 1 due to various inner pressures p; is shown in Figure 9. Analysis is performed for a
strongly coupled chemo-thermo-mechano degradation problem. As the pressure increases the hoop

stress change sign. Furthermore, Tpy magnitude increases as the pressure loading increases. Figure
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10 shows the chemical potential as a function of the reference location ¢ = 0.1 due to various inner
pressures p;. One can see that chemical potential increases with p,.

Figure 11 shows the extent of damage as a function of the reference location at various in-
stants of time due to inner pressure p; = 0.5. Analysis is performed for strongly coupled chemo-
thermo-mechano degradation problem. At initial times, we have variable heat sinks in the entire
body.Additionally, as Ig > 0 the thermal conductivity decreases due to increase in Ig. Hence for
initial times, as ¥ < ¥y the material damage is less than that of at time 7 = 0. The extent of damage
as a function of the reference location at ¢ = 1 for various inner pressures ‘p,” is shown in Figure 12.
As the pressure increases, for the weakly coupled problem, the extend of damage decreases. This
means that the body degrades faster as one increases the inflation pressure p;. However, this is not
the case for the strongly coupled problem. One can see that the material degrades slowly in case of
strong coupling as compared to weak coupling. In this particular case, thermo-mechano coupling
dominates and play a vital role. As I'g > 0, the strain-dependent thermal conductivity decreases
as the pressure loading increases. Hence, there is less damage in the material due to decrease in
temperature values as compared to weakly coupled chemo-thermo-mechano degradation problem.

Algorithm 2 Inflation of a degrading spherical shell (numerical methodology to find 7;, ¢, and 1)

1: INPUT: Non-dimensional material parameters, non-dimensional boundary conditions, and non-

(r) (o) (9)

tol> €tol> and e €tol *

dimensional initial conditions, MaxIters, tolerances e
2: Evaluate 7; at ¢ = 0 based on equation (4.63).

3: forn=1,2,--- /N do

4: for j=1,2,--- do

5: if j > MaxIters then

6: Solution did not converge in specified maximum number of iterations. EXIT.

T: end if

8: Diffusion sub-problem: Given T’(J), solve equation (4.68) to obtain €U+, Herein, we
use shooting method to solve the ODEs.

9: Heat conduction sub-problem: Given 7"() and ¢Vt solve equation (4.69) to obtain
79(]+ ). Similarly, we use shooting method to solve the ODEs.

10: Deformation sub-problem: Given ¢Vt and E(jﬂ), solve for _5] 2 given by equation
(4.63) using bisection method.

1 7Y 279 < ) Ut — 20 < € and 7YY =3V < ) then

12 OUTPUT: 7+ 20+1 and 3V EXIT.

13: else

14: Update the guess: 7‘( D r(]Jrl)

15: end if

16:  end for

17: end for

4.3. Torsional shear of a degrading cylinder. A pictorial description of the degrading
cylindrical annulus of finite length is shown in Figure 13. The bottom of the cylinder is fixed
and just after time ¢t = 0, a twisting moment is applied. We analyze the material degradation and

corresponding structural response due to the torsional shear for a prescribed angle of twist. Initially,
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the body is a homogeneous neo-Hookean material and there is no transport of chemical species in
the body. For time ¢ > 0, the outer boundary of the cylinder is always exposed to moisture (or
a diffusing chemical species). The inner surface of the degrading annular cylinder is held at zero
concentration. This can be achieved by constructing a mechanism which continuously removes the
moisture (or diffusing chemical species) from the inner boundary of the degrading cylinder. Hence,
one can control the concentration of the moisture at both inner and outer surfaces. Similar type
of initial and boundary conditions are enforced for the thermal counter part.

In a reference configuration, consider a closed cylindrical body of inner radius R;, outer radius
R,, and height L defined as follows:

Ri<R<R, 0<O©<2r 0<Z<L (4.71)

where (R,0,Z) are the cylindrical polar coordinates in reference configuration. Under torsional
shear, the deformation in the current configuration is described as follows:

r=R 0=0+g(Z1) z2=AZ (4.72)

The deformation gradient F for the degrading cylinder is given as follows:

1 0 0
F=|0 1 rd (4.73)
0 0 A
where ¢ := %. Using the condition of incompressibility we have A = 1. The right Cauchy-
Green tensor C and left Cauchy-Green tensor B for the degrading cylinder are given as follows:
1 0 0 1 0 0
C=|0 1 rg B=| 0 1+(rg)?* r¢ (4.74)
0 rgd 1+ (rg)? 0 rg 1

The non-zero components of the Cauchy stress T are given as follows:
Ty = —p+ plc,9) (4.75a)
Ty = —p + ple9) (1+ (rg)*) (4.75b)
T..=—p+ p(c,9) (4.75¢)
Ty. = Teo = (e, 9)ry (4.75d)
The balance of linear momentum given by equation (4.11a)—(4.11c) reduces to the following

Oop 2

~5 + u(c,9)r (g') =0 (4.76)
10p "no__

50 + p(c,Nrg” =0 (4.77)
op

3, = 0 (4.78)

Assuming periodicity, we have % = 0. This implies ¢ = 0. Hence, g(Z,t) takes the following

form:

9(Z,t) = U (1) Z + Us(1) (4.79)
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where W1 and Wy are evaluated based on the input data. As the bottom of the cylinder is fixed, we
have g(Z = 0,t) = 0, which implies ¥5(¢) = 0. Correspondingly, the twisting moment to generate
the required change in angle of twist per unit length given by equation (4.79) is evaluated as follows:
R,
M(t) = 2w / p(e(R,t),9(R, 1)), (t)R3dR (4.80)
R;

The chemical potential, specific entropy, mass transfer flux, and heat transfer flux in radial direction
are given as follows:

1 oy par? i
= —— Rs’ﬂre — Cre - — Rs'ﬂre - Lre 481
= A - t{Cc — Cret } Spoceet + £{C — Cref} (4.81a)
Loy | o T S
=2 ¥ — Vet } = ¥ — Ve 4.81b
£0 oY + ﬁref{ f} 2p019ref * ﬁref{ f} ( )
00 Ox D, V3 dc
hy=———7—D,,— = —"—=—poD,,.— 4.81
Rs 791ref or Rs q91"ef Cref po or ( C)
o
¢ = —PochME (4.81d)

From equations (4.1a) and (4.2a), the final form of the governing equations for transport and
thermal sub-problems for degrading cylinder is given as follows:

oc poDs. 0D, \ Oc 9 9 oD,
ge _ & DL — w2 (2D, 4.82
rn ( g, >(97“ ooz = TR T, (482)
2

pocpV\ 0V pocpDyy 0Dyy \ 0V 0% dc

- | =L _— = Dyy— = Rs'ﬂre D%% a.

( Vref > ot r ot or ) ar PrrTvige TR0 f or

s’lgre D%% 2
L AUt D™ s op g b, r02 2 (4.83)
Po or

Correspondingly, the non-dimensionalized governing equations for transport and thermal sub-
problems are given as follows:

e D,., 0D, d¢ — 0% — [ — 0D,
~ e Vx5 — —wVv 2D%% T — 4.84
b7 (% 6?)6? o7 “1< T m) (4.84)
_00  (Dgg ODgy\ 09 — 029 _— [0\® _ — 286 _— 59—
Y—=— [ — — a— — D%;{ - -2 D%% v = D%% v 4.85
ot < P o Jor P =T a7 TOD Vi +TD 0 T (4.85)
where Ig, I1g, 887—;3, and % are given as follows:
_ 1 H—
Tr = 5#\1/? (4.86)
_ 1 _ _
Tlg — \/ - (37%? n 274\1;‘1‘) (4.87)
37]3 _—=2
= =T (4.88)
8ﬁ 1 =2 374
— (370 44 qx) 4.89
o 3TTe < TV + 47TV, (4.89)
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where most of the non-dimensional quantities remain the same as that of the previous initial
boundary value problems except the following;:

= R — - Dyt
R=—, Y =9YR,, t= 4.90
T T o (490)
Correspondingly, the non-dimensional twisting moment M (f) is given as follows:
Ro
() = 2r / H(E(R.7), 9(R,1) T, AR (4.91)
R;

Algorithm 3 describes a numerical solution procedure to determine (7, %), J(7,%), and M(f) at
various times for a given angle of twist per unit length.

4.3.1. Steady-state and quasistatic response of degrading cylinder under torsional shear. In case
of steady-state, ¢ and ¥ are the solutions of the following ODEs:

D%~ Do, + Oy = 0 (4.920)
— dY (W o2 _ — =

where C'; and C are integration constants. Correspondingly, the analytical solutions to the above
set of ODEs are given as follows:

E:/<W§f— _&) ar (4.93a)
TD,,,

0= / <—:—Cl (ffﬁf ez 1) - _EQ > ar (4.93b)
Dyy \ 2 r TDygy

For weak coupling (where Dyy and D,,,, are constants), a simplified form of the analytical solutions

for ¢ and 9 is given as follows:

c= g—wf + BsIn[F] + As (4.94a)
— 7B2D
J= 37202 4 Zsln[F] + Vs (4.94b)

where As, B3, Y3, and Z3 are constants, which are obtained by the corresponding boundary condi-
tions for thermal and diffusion sub-problem. These are given as follows:

A3 =7¢; — B3111[7i] - g??@f (495&)
— 1 o W og?  _og?

By = e (co — 7 — < (720 - \111)> (4.95b)
—  TB2D

Ys = 0; + 32 0 [7,]? — Zsln[F] (4.95¢)

1 — -  TB?D,,

Zy = e (0 — Ui — T3 (InfFi]? — InfF,)?) (4.95d)

111[7"0] hl[?"l] 2D7979
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For quasistatic analysis, method of horizontal lines with backward Euler time-stepping scheme
is employed. This gives the following ODEs at each time-level:

d2e(n+1) 1 1 dﬁ%% de(n+1) #(n+1) — () 2
—_— — — — =20 (¥
i (5 (5) %)) S s == )

(n)
t=tn D%% At

y_e)

A ( L, ( 1 ) dDyy ) I A A7) (@
4 7(n) —(n) 7 = T T = \ar - =m) A,
T\ R L) T T Ba o\l T D
__=(n) . () —2
27w’ — () 2 D 2/ (m)\ 4
P T (1) - (o)’ (a0) )
Dﬁﬁ " t=tn Dﬂﬁ

The boundary conditions for diffusion and heat conduction problems are same as that of the previous
boundary value problems. For numerical simulations, the non-dimensional parameters are assumed
as follows:

R,=1, Rj=05, At =0.1, t =2, @=0.05, 7=0.8, fip = 1, 7i; = 0.5, Jiy, = 0.2,
Do=1, Dr =15 Dsg=12, np =105 =0.1, Erepr = Erets =1, Ko =1, § =10 (4.98)

Figure 14 shows the twisting moment at various instants of time due to constant Wy, which
is equal to 0.75. Analysis is performed for strongly coupled chemo-thermo-mechano degradation
model. The concentration degradation material parameter 1, is varied from 0.1 to 0.5 while the
thermal degradation parameter Jiy is held fixed at 0.4. From this figure it is evident that as 7
increases the twisting moment required to keep the angle of twist unchanged, decreases. Reiterating,
the torsional shear stress required to maintain a prescribed angular displacement decreases. To
maintain a given angular displacement, lesser twisting moment is required if the material degrades
at a faster pace. That is, we observe moment relaxation due to material degradation and the body
creep until a steady state is reached. In addition, one can see that moment relaxation depends on
the geometry of the specimen. This aspect differentiates the stress relaxation due to degradation
from the stress relaxation due to viscoelasticity. Similar type of behaviour is observed when 7i; is
kept constant and z, is varied. Figure 15 shows the chemical potential as a function of the reference
location at £ = 1.0 for various values of ¥;. One can see that as U increases, chemical potential,
however, decreases, which is different from the degrading shell problem.

Figure 16 shows the extent of damage as a function of the reference location at ¢ = 1.0 for
various values of ¥;. Based on the chosen set of non-dimensional parameters, thermal degradation
dominates. As Uy increases, the extent of damage near the inner radius R; is not as profound as
that of the outer radius R,. Furthermore, as Ig > 0, and Ig at R, is greater than Iy at R;, D,
is much smaller at R, as compared to R;. This is because the thermal conductivity decreases as
R — R,. It should be noted that for low values of Wy, D,, is monotonic. However, for higher
values of Wy, D,, ceases to be monotonic. Figure 17 shows the extent of damage as a function of
the reference location at various instants of time for a given value of U;. To perform numerical
simulations, the values of z; and iy are taken to be equal to 0.5 and 0.2. Analysis is performed

for strongly coupled chemo-thermo-mechano degradation model. From this figure it is clear that
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for initial times, in certain locations, the material damage is less than that of at time £ = 0. This
is because of the variable heat sinks in the entire body and decreasing thermal conductivity (due
to increase in Ig). Similar type of behaviour is observed in degrading spherical shell problem.
However, such a behavior lasts for a short time (£ > 0.01) as compared to the degrading shell
problem. This is because the degradation due to moisture (or chemical concentration) dominates
in this problem after ¢ > 0.01.

Algorithm 3 Torsional shear of a degrading cylinder (numerical methodology to find M, ¢, and
V)

1: INPUT: Non-dimensional material parameters, non-dimensional boundary conditions, and non-

dimensional initial conditions.
2: forn=1,2,--- ,N do
3. Diffusion sub-problem: Given VUi, solve equation (4.96) to obtain ¢™. Herein, we use
shooting method to solve the ODEs. -
n

4:  Heat conduction sub-problem: Given W; and &™), solve equation (4.97) to obtain ¥ .

Similar to diffusion sub-problem, we use shooting method to solve the non-linear ODEs.
5. Deformation sub-problem: Given ¢™ and E(N), solve for M(n) given by equation (4.91).
6: end for
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F1cure 1. Calibration with experimental data: A pictorial description of the boundary value
problem used for calibrating the proposed model with the experimental data.

3 T T T T T

—o Experimental datafor tension

+— Proposed model for tension

=—= Experimental datafor compression

~— Proposed model for compression
Experimental datafor shear

~—= Proposed model for shear

T ! !
0 0.001 0.002 0.003
Trace of strain

!

F1GURE 2. Calibration with experimental data: This figure compares the experimental data
reported in [McAfee, 1958a,b] with the proposed constitutive model. The sample size is
taken to be 3. The strain invariants are given by (3.14a)—(3.14b). A good agreement has
been observed between the experimental data and the proposed constitutive model for the
diffusivity under tensile, compressive, and shear strains.
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FI1GURE 3. Bending of a degrading beam: A pictorial description of degrading beam in both
reference and current configurations. Bending moment is applied at the two ends of the
beam just after time ¢ = 0. Oyer and Oy correspond to origin (0,0) in their respective

configurations.
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(b) Strong coupling: Chemo-thermo-mechano degradation

FIGURE 4. Bending of a degrading beam: This figure shows the plot of Ty as a function of
the reference location of the cross-section at various instants of time. The stress distribution
is not linear, which is the case for finite deformation beam bending problem. Herein, we
observe stress-relazation for both weak and strong coupling. As degradation progress, one
can see that neutral axis shifts further to the left. Furthermore, the tensile and compressive
parts of the beam relax at a much faster rate than that of the material closer to the neutral

axis.
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FI1GURE 5. Bending of a degrading beam: This figure shows the plot of bending moment at
various instants of time for both three-way strong and weak coupling degradation. Moment
relaxation is observed for both cases, however, in weak coupling the moment declines more
than that in strong coupling case.
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FIGURE 6. Bending of a degrading beam: This figure shows the plot of chemical potential as
a function of the reference location of the cross-section at various instants of time. One can
see that the chemical potential increases over time.

45



1.0p-0-0-0-6-0-0- - 00O 0 -G -0 -0-6-6-0-0- 04
~ 09F .
|\i O_8JF!»\—EI—EI—EI—EI—E|—E—EI—-E—-EI—-D——EI——E-—EI—EI—EI—EI—E—E—EI—{
'S 07l % .
2 06|
% 0.61 X\x\* x,xjff\:j(,\:.—/)f‘\\ N
ho] 0-5% \x\x‘xs.x _x__xv—’/xv’/’)f"’{'} \!‘%
S 04f . " oo Nodegradation -
= =8t=0.0 1

= = +
g 03 ext=01 \
o 0.2F t=02 :

¢©t=05
A z 1
80 1 1 t=1.0
L L L L L L L L L L L L L L L L L
- 05 0 05 1
X
(a) Strong coupling: Chemo-thermo-mechano degradation
—
0.8} =-2-8-B-8-8- & & & & & & -3 -B-8-8-8- 8- 84

K -

MY z8t=0.0
>0.7F *~x L i
=07 T, *x1=0.1
2 06, e t=02
(<)) . "~ o ¢<1=05
g 0.5} S RNy t=10
% 0.4} \&\Q‘@ X\x\ ]
o ~ o x
Yo DRI ~
— 03f TR%- o N .
5 T2e
5 02% St - 20 N

0.1 i
ool 0
: -05 0 05 1
X

(b) Weak coupling: Chemo-thermo-mechano degradation

FIGURE 7. Bending of a degrading beam: This figure shows the extent of damage as a
function of the reference location of the cross-section at various instants of time (due to
the application of bending moment). Note that analysis is performed for both strongly
coupled and weakly coupled chemo-thermo-mechano degradation. One can see that a virgin
beam which is initially homogeneous after degradation is not homogeneous anymore.
addition, the extent of damage in tension side is higher than that of the compressive side of
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0.5

Inflation of a degrading spherical shell: This figure shows the plot of 7; as a

function of the inner pressure p,; for strongly and weakly coupled chemo-thermo-mechano

degradation problem. For a given p,;, one can see that 7; for weak coupling is larger than
strong coupling. This is because in the weakly coupled problem degradation happens at a
much faster rate as compared to the strongly coupled problem.
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Inflation of a degrading spherical shell: This figure shows the hoop stress Tgg’
as a function of the reference location ¢ = 0.1 due to various inner pressures ;.

Analysis

is performed for a strongly coupled chemo-thermo-mechano degradation problem. As the

pressure increases the hoop stress change sign. Furthermore, T9yp magnitude increases as

the pressure loading increases.
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F1GURE 10. Inflation of a degrading spherical shell: This figure shows the chemical potential
as a function of the reference location £ = 0.1 due to various inner pressures p,. One can see

that chemical pot

ential increases with p;.
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FI1GURE 11. Inflation of a degrading spherical shell: This figure shows the extent of damage
as a function of the reference location at various instants of time due to inner pressure

P, = 0.5.

Analysis is performed for strongly coupled chemo-thermo-mechano degradation

problem. At initial times, we have variable heat sinks in the entire body. Additionally, as
Tg > 0 the thermal conductivity decreases due to increase in Tg. Hence for initial times, as
9 < Yo the material damage is less than that of at time # = 0.
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(b) Strong coupling: Chemo-thermo-mechano degradation

FIGURE 12. Inflation of a degrading spherical shell: This figure shows the extent of damage as
a function of the reference location at ¢ = 1 for various inner pressures ‘p;’. As the pressure
increases, for the weakly coupled problem, the extend of damage decreases. This means
that the body degrades faster as one increases the inflation pressure p;. However, this is not
the case for the strongly coupled problem. One can see that the material degrades slowly
in case of strong coupling as compared to weak coupling. In this particular case, thermo-
mechano coupling dominates and play a vital role. As I'g > 0, the strain-dependent thermal
conductivity decreases as the pressure loading increases. Hence, there is less damage in
the material due to decrease in temperature values as compared to weakly coupled chemo-

thermo-mechano degradation problem.
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FI1GURE 13. Torsional shear of a degrading cylinder: A pictorial description of the degrading
cylinder under torsion in both reference and current configuration. R; and R, are the
respective inner and outer radius of the cylinder. X, Y, and Z are the corresponding
Cartesian coordinates in the reference configuration. The bottom of the cylinder is fixed
and for ¢ > 0 a twisting moment is applied.
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(b) Moment under different R;

FIGURE 14. Torsional shear of a degrading cylinder: This figure shows the twisting moment
at various instants of time due to a given angle of twist per unit length of the cylinder,
W; = 0.75. One can see that as Ji, increases the twisting moment required to keep ¥
unchanged, decreases. Similar type of behaviour is observed when 1z, is kept constant and
Ty is varied. Herein, the main observation is that moment relazation not only depends on

material degradation but also on the geometry of the degrading body.
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FIGURE 15. Torsional shear of a degrading cylinder: This figure shows the chemical potential
as a function of the reference location at ¢ = 1.0 for various values of ¥;. As ¥, increases,

chemical potential, however, decreases.
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FIGURE 16. Torsional shear of a degrading cylinder: This figure shows the extent of damage
as a function of the reference location at ¥ = 1.0 for various values of ¥;. Herein, thermal
degradation dominates. The extent of damage near the inner radius R; is not as high as
that of the outer radius R,. It should be noted that for low values of Uy, D,, is monotonic.
However, for higher values of W, D,, ceases to be monotonic.
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FIGURE 17. Torsional shear of a degrading cylinder: This figure shows the extent of damage
as a function of the reference location at various instants of time for ¥; = 0.75. fi; = 0.5
and 7i, = 0.2 are used in this case to for numerical simulations. Analysis is performed for
strongly coupled chemo-thermo-mechano degradation. Note that Tg > 0. One can see that
for initial times, the material damage is less than that of at # = 0 in certain locations. This
is because of the variable heat sinks in the entire body and decreasing thermal conductivity
(due to increase in Ig). Similar type of behaviour is observed in degrading spherical shell
problem. However, such a behavior lasts for a short while ( > 0.01) as compared to the
degrading shell problem. This is because the degradation due to moisture (or chemical
concentration) dominates in this problem after > 0.01.
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